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RELAXATION AND EXISTENCE IN NONISGTROPECAL
PLASTICITY PR@BLEMS |

Tang QiGH +)*

Abstract

» Grnng a nomsotropm plasticity ploblem on & Sobolev Spaee , the author tries to relax

it to & new problem which is posed on a subset of BD(Q). It is ‘proved that this relaxa—
tion does not change the equilibrium energy and that the solutions exist in sueh settings
under not too restricted conditions.

§ 1. Introduction

The theory of plasticity is a’ﬁtraotmg more and more people s attention. In the
study of fracture, dislocation and buoklmg, a lot of efforts are made in consuierlng
~ plastic behavior of the matberial, ‘ '

In the later 70’s and ealier 80's, many ma’ﬁhematicians concentrated on
making and solving a reasonable mathematioal model for isotropie, homogeneocus
plastioity problem which obeys the Von Mises yleldmg oriterion. The reason is
$hab if a material obeys this eriterion, ib§ deformations are only permanent elastio
with, respeo*b $o hydrostatio pressures, while for other dlreomons, it will be plastified
when the force is sufficiently strong. ThlS theory. has ‘some relations with the
Navier—Stokes equatmns It is proved that the dlsplaeemenﬁ solutlons for these
p:roblems lies in the space '

U(@)={uc L' (Q)?, e(u) = (Vu—i—VuT)/ZEM(.Q ), divu e IA(Q2)}
whioh is nonlocal in the sense that if pEO0HQ), u€U(R), u is not sure to be an
element of U(Q) due to the effect of divpw. But the study of Navier-Stokes
equaﬁolons has accumulated a lob of experience in dealing with the divergence
opera,tor We can avoid the dlfﬁoulty and get appropriate approximation results,
' When we deal with nomsotroplo plasticity, some maberials behave in an
megular way. For example the reinforced ooncrete, its. yleldmg oriferion makes
the admissible elasbio stress set a general unbounded GOnvex se’a and we" hawe bo
face the displacement function space ’
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- UP(Q) ={ue L*(Q)} e(u) € M (Q) such that i(e(u)) EM(.Q)}
In this case, wo have no more desired approximation results. This would cause a. .
lot of trouble in computation because the discretised problems are ‘ofﬁen pos2d on a.
subset of Sobolev spaces. If we can not prove, by putting the problem on Sobolev'
spaces and BD(Q) as what we should do in proving the relaxation, bhat the oqui—
librium energy remains invarian®, we shall probably meet the so called Lavr entiev
phenomenon (cf. [1]), which infer that the finitc element method or finite differ—
ence method is difficult to apply. '
This paper bowever, gives an approximation result for bhe latﬁer case when
Q is star—shaped We prove that under not too res’or.wb boundary oondltlont the
two problems -

P, uggfp{_[agb(eu')>dw—j9f<m>u§w>dw},

Ul p=to

Inf {J’ (6(0)) dart- La_ (T (to— ) )i T — f gf(w)u(w)dm}

" u€BI(D)
have the same infinimum where Problem P is on Sobolev space and respects the
boundary condition while Q neither is on Sobolev spaces nor respects the boundary
conditions totally, where BD(.Q) ={u€I*(Q)?, e(u) € M (2 )} Tt is proved also
that under limit charge hypothems Q admits ab least one solutlon in U, (Q)=
{u€BD(Q), n¢(e<U))<+°°}

§ 2. Notations

‘We use some standard convex a.nalysis notations to write down our problem
In the theory of quasi-statio plastioiby ’ohat we are 1nte1 ested in, it is always
supposed that there exists a potential of energy (e (u)) such that v

co() €3¢(e(u)) (), Va. 0. 2€Q. » ‘ (2.1)

Here we suppose tha,t the mechanical object is occupying an: opén star—shaped o?
.région in B?® (We supposs that it is star-shaped with respeot to the -origin, ) and
of course, it is supposed o be bounded u, Q2—>R% is the displacement function.
e(u) = (Vu+VuT)/2 is the symmetrio part of Vu and is called the strain tensor of
:%. o(w) represents the Caucey s’oress tensor. 9 is the sub—-dlﬂ’erenmal nota,tlon let
p: X—>R be a convev funotion where X is a reﬂexwe Banach space, then for any
.mEX aGX’ﬂalp(w) Jfand only if o S

P(y) >¢'($)+<0'; y"'@xﬁx
-If we denote by * the Legendre—Lagrange transform of y;
P*(o) = Sup{<<r w>~¢(ﬂ?)}, VGEX oo
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then (2.1) is equivalent to saying that

e(u) € —o*(~ cr) a.e. v€Q, : (2.2)
We suppose that * Sa'blSﬁeS ' '
) =00}, gL, Y E = R 4(0) =05 (2.3)
dom y*={n € B, §*(n)<-+oo} contains a nonvoid ball in B
with center 0, radius r and is a closed se’; : (2.4)
() <C|n|* on dom ¢ | (2.8)
J* is a striot convex function on dom ¢* (2.6)

We denote further by f€ L*(2)? the density of body force, by uo EWL?(I")® the
displacement boundary condition, Then the problem can be posed as follows:
Find u, ¢ in an appropriate function space such thab
e(u) € —oP*(—o) in Q, :
div o+ f=0 in Q, , E 2.7)
ulr=u . on I’;
with I' =00, : - .

It is well known that, in genearl the Sub——dlﬂ'erentlal of a convex function is
not a single valued mapping. ‘Therefore (2.7) can hardly get a sabisfied inber—
'pre’oatlon in, form of equations. o the mathematical explainabion that we try to
find is a varlamona,l one. By the standard arguments employed in convex analysis

and variational analysis, it follows that (2.7) is equ;valjant to the following two

minimization problems:

P :rnf{j - ,,';www-j f(w>u(w)dw} e
tP*'Vveg%m{ [ (- a)dw+j (o. n)uodr} e

: where p>6 p>1 such that 1/p+1/ p’ =1 4: is the Legendre—Lagrange bra,nsform of :

() =§g§{§: ﬂ-@b’(n)};_VEGE, o | (z .10)
where &:m=_Emy, the convention of summation over repeated indices are suppesed
. here and in the following. By direct estimation, we get

0(|¢]| - <@ <o(|E]*+1),

OO hO>0, for w0, (@.11)

I1; follows from E]s:lza»,nd—'.[‘ema,m':i”J that o -
InfP=SwpP. .. (2.12)

~Finally, I would like to sa.y one word more a,bouia dom \,(1* If the stress soutbion

o‘ satlsﬁes, for any €&, o (v) €Int dom ¢* ‘then o'(a) cauges: only elasbm deforma- .

#ion, while if a(a;) €0 dom z[:" then on the point plasiuo (u'reversmle) deforma-
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‘bions happen,

§ 3. Limit Analysis Hypothesis

In the previous section, we transformed the mechanical problem 0 a pair of i
minimization problems, Due to the fact thatb Y* is given in an abstract form, We-
can nob get more informations on ¢ but (2.11). However, (2.11) can not in
general guarantee that Inf P oo, This can also be explained in the dual form: if
S is suchthat there exists no o€ L - (©2; H), div ¢+ f=0 such that *(—o (z)) € Lt
(), then Sup.P*=—oo by definition. The mechanioal explaination for this. .
Phenomenon is that the force S i8 so .strong that- it destroys -the struchure of the-
body considered. 8 : ' ‘

- Evidently we need criterié, ) ohéraote‘rize the above mentioned phenomenon..
This leads to the idea of introdneing the so called limit analysis problems,

Definitions 8.1. The limit analgsis problems of P are defined as

PLA: Inf «U o (e(u))dm}

uer r(0)?
J" H)u(e)do=1 ‘ _ o . (3 .1)«
o . v
where ., (€) =lim §(#) /4,V¢ € B, and "
PLA*  Sup {A}. | - (3.2)
. . . geLeya, domw‘) ' )
d1v0'+M—

Remark 3.2. If (&) =|¢ | for some p>1, it is easy to ‘see thatb Y. (€)= +oo-
for any £+#0 whioh implies Inf PLA = ++co, From 17he followmg proposition, it is: '
0asy to see tha.t the nature of plastlcmy problems determines that we can not have -
the form s (§) = ]§ [” beca,use, when the force increages in certain dlreomons, the
objeot is expected to be destroyed, that is to say, for some force density f, we should:
have Inf P = —oo, or i} ig equlvalent 1o say that for some & we have Yoo (§) <40,
otherwise, it is easy-to verify that Sup PLA*= +4oo, : :

Remark 8.8. It is easy to verify that for any a<0, .v,b“, (ocf) =, (£).

Remark 8.4. In general we have (of. Ekland-Temam®™?)

+o0>Inf PLA>Sup PLA*> =0, | - (3.3

Propos1t10n 8.5. The in ﬁmmum of Problem P is finite 4 f and only 'z,f Inf PLA*
>1. In this case, Problem P* admits a unique solution o-. .

Pfroof “When A= Sup PLA*>1, there oxists'a o which is PLA* admissible, e,
: g o CELY (2 dom )y div a+7\.f 0, These 1mp1y that 0'/),6 L”'(Q dom :,b'),
'div o/A+ f=0 g0 that = '
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- j glp*(_a/x)dw—;—mjp (. mywdl" (3.4)

.exigts and is finite, which implies hha.t-Inf P=8up P*>—oo, That the prsblem Pe
.admits a unique solution follows from the olassical convex analysis theory.
Propoeltlon 8.6. If Sup PLA*>1, any mrommmng soquence of P is bounded in
LD(Q) ={uETH®), o) EIX(2; )}
Proof We take the following as notation ab firsh:
Py Inf j ¢(u))dm-—x j f(w)u(m)dw,}, VO<T<h.

uEWi, p(2)
u‘z-'—“-'“o

As Sup .P*—?»>1 Inf,P;rl—O is a ﬁnlte eonsta,nt ‘Let un bo a mmlmlzmg
sequence for P. We have then '

[ pletuis-], f<w>um<w>dw——[j P(o(um)do=1 | F(@)n ()00
+ A= 1/8) [ (o) > (/M) Int Pyt (1=1/1) [, wlo@n)is

f v=01j (o (um))da+0s.

Thus the conclusion is clear.
Deﬁnltlon 3.%. The limit analysis hypithesis of P és gwen as
Sup PLA*>1. - (3.5
Remark 3.8. OContrary to [8], we do not glve'ﬁhe limit analysis hypothesis
as Inf PLA >1 because we have not. proved $he fact that Inf PLA=Sup PLA*
thch the auther beLeves 10 be frue for a big class of potentla,ls 4:

§4. Relaxatioh of Problem P

In the following, we always suppose thatb Sup PLA*>1. As is well known now
that the solutions to plasticity problems are nob in usual Sobolev spaces, So before
solving the problem of existence, we. have to put the problem on an appropriate
function set and prove that all the related conditions are properly posed.

Following the general idea in studying variational problems, we put the
‘problem on the funcbion seb U.,, Q)

Definition 4.1.

U,(Q)= {uel‘:‘(@)s e(u)EM(Q B), j ¢:(o(u))<oo}  (4.1)

| "where M denotes the space of bounded Radon meagures.
‘Remark 4.2. The definition of P (e(u)) when e(w) CM(Q; H) is as gO].lOWS‘ .
for any @ € Oo (.Q) @ (@) =0, we have :
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Wew) o= Suwp [ [oe@-#'@lp.  (42)

oc€05(Q,EB)
The details can be found in [2].
Rermark 4.8. In the practioe, if there exists a convex function iy whioh is
| convenient for the disoussion andthere exits 0, C'>0 such thab
O (o (@) ~ 1)< (¢) <0(¢o(§)+1), (4.3)
then we can work in U,.(2).
Remark 4.4. If we note BD (.Q) {uEL1 (9)3, e(w) EM (Q; E)} with its
natural norm ' ’ ,
' Il poear = lulz}(mﬁ |6 (%) | uca,mn - (4.4)
then BD is a Banach space and U, (@) is a nonempty convex subsst of BD(Q). Also
if {u} <UL (D), w,—>u in L*(Q)%, e(u,)Be(u) in M(Q; B) weak-star, [Y(6(Un))|uqe
<conct., then uCU,(2) and Hy (4.2) we have ) .
[ pew)<tim/ yiew). B
We mention here that the study of BD(Q) has been done in [6]and [8]. It is:
woll known also that in solving plasticity problems, the boundary conditions are
nob respeoted in general, thig seems to be the case here $00. The central point is to-
introduce the. generalized problem and prove that the new problem aohlves the:

same energy level as the original one,
First, we give a relaxation of the problem P:

PR:  Inf {j ¢(e(u))ozw+j (T (vo—1) )aT — j f(m)zxw)ozw}-,f (4.6)

uEWi,2(Q)s
where Fy(p) = (i nj+pm,) /2 for all pE€ R3, n denotes thi outward unit normal of
2. By dual oa,loula,tlon, we can show (ef. [9]) that PR* and P* are exactly the
sarme. So ' : o
Inf PR= Inf P, 4.7
Remark 4.5. PR doss nob mean thatb the SOlll‘blOD. does not respect the
“boundary conditions to’aally As a matiter of faot, on all dll'GG'blOIlS & where ¢, (§) =
oo, we-have 7 (up—1u):£=0, ' -

The first step of relaxahon goes well. The second step is to put Hhe problem on

right funobion set: let - '

Q: Inf {J ¢(e(u))+'[ l,bw(j\(uo—u))d[' If(w)u(w)dw} | ',(v4_8).' _

BEU, (D)
e .Now we hope to proye that S :
| | 0 Infp- Ian, — - (4.9)
which is muoh less ev1dent We speclfy dagain the da,ta, i and uor lot f& L (Q), ug€ ~
Whe(I")3, As T is the 02 boundary of a star-shapedregion, there ex1s~bs g>0 such:
that for any #: [¢—1] <so, the region B, ={w: €t |¢~1] <eg} is a ring-like
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wegion such that for any y € R,,, there exists a unique wEF a.nd & [t 1| <&y such
that y=u/1. We define Uy: R,,—>R? such that .
Uo(y) =uo(2), (4 10)
‘where y and @ are linked by the relation y=w/f, €. Then it isclear that Uo&
W (R,,). |
We define Q,=0/(1+8) = {yER’”‘, y=uo/(1+8) for some &€ Q} and

P, uev%?.ﬁms“ .p(e(u))dm—f f(m)u(w)dw}. o (4.11)

T4 is olear that _ _
Inf P,>Inf PR>Inf Q. : (4.12)
o to prove (4.9), it is enough %o prove that ln%)l Inf P,=Inf Q. Let u; e a Q

admissible funcbion sabisfying

[, 9w+ #u(T@—u)ar~|, f@u@)is<Int @+s.  (4.13)
We extend u, to % such that : | _ |
~ (U DEL, \
“*{Uo, 2EQ_\Q | #1®
~ and define A (¢, &) =dist (22, 8Q,), 0<1(s) <min{A(4e/3, (5+1)8/3); 4= —3, —2,
el 2}. Let 01 be the standard mollifying sequence. We define . '
Va=buoi(((1=8/(A+e)a). (4.15)
It is elear that Vg is not P, admissible. ‘We have o make a trancabion near the
boundary: let @, be a truncation funo’uipn-such that
ps(2) €O*(R?),
0<p.(v)<1,
e(@) =0 in Qy/s, : v - (4.16)
(o) =1 in R®/Qays .
@,(@) =constant on each 82, when 8/3<3<2s/3.
Let ‘ , v
Us1 = (1~ @)V s1+ @, R (4.17)
which is P23/3 admlss1ble independent of 1(3) by our choice. Therefore, for any 0<
8<1, :

Inf Paye<| (51— g0V ) +pab(o(To)/8)1da_

+ =) [ $Tp@Wo=V )/ A=8)dat [ f@ua(@dn.  (4.18)

- Then as 1—>0 first, frem the generalized J ensen’s inequality (of. [7])and by an
an alysis of the support of Peor V. and the definition of Uo (of. (4.10)), we geb

U [, WTP@ToVa) (1 ) <[ (TP® o= Tn((A=0)/(1+8 )/ (t=8)=
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’i‘,ﬁ‘J‘QS<1—‘%>W<Vs1>/S<L’s<1—qoa>4:<e<&><<<1-e>/m1+s>>m>/s>
o[, s-pdhe) ((A=e)/ L))/

+J $(1= @) Ppe( T ([Uo—u) (((L—8)/ (1+8))w)/s)dl

+ 430 H(TD (A=)/ (o)) )i,

i [, 0y @ | F@) (A= kTl
where V,=U(((1-6)/(1+¢))a).
'Thus ib follows from (4.18) that -

Tt Pas< [, s0-p (e ((1=8)/ (1+))a)/9)
] s )T o= ) ((1—8)/ (L6))/s)dT
[, 5 =PI UL ((1=8)/(L+e))a))da

~[ F@ (@=paV.+oTe)dn.
By letting e—>0, it is easy to see that

lim Int P28,3<J a1 (0 () <m)/s)+j s¢v°°(.7‘(Uo—u) (@) /$)al — j F@)u (o).

Then tendlng sto 1l we geb S :
lim Inf Py <Inf Q+8 ' - (4.19)

-0

which gives us (4.9).

§ 5. Existence of Solutions.

From our arguments given in §4, we know now thab it is reasonable to
investigate Problem @ when we deal with the existence of solutions. If w is a
solution o Problem @, i} is called a ‘generalized solution of P,

| Theorem 5.1. Under all the hypotheses made befo're and
- Sup PLA*>1,
Problem Q admits at least one solutéon.
Proof Led; Unm be a sequence of Q admissible funohons such thab

tim [ (e + | (T o=l = f(w)um@)dw ~InfQ.

Then we know .that |
| ' {um} is bounded in BD (Q) _
Up to ohoosing a subsequence we may suppose hab w2 in BD(Q) Then Up, (w)—*'
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%o (#) in L¥?3(Q), which implies L f (w)u;,,(m)dm—). L f(@)uo(w)de, We define

o L fun(®), vE€9,
Uy (m) = {
UO(w)7 mE.Q_,,,/Q.,
Then {%,(2)} is bounded in BD(Q,,) and it is easy to verify thab -
U (2)—>uo (@) in BD(Q) weak-star,
where to=u,(z) for s€Q, =Uo(w) for 1€ Q_,,/Q. By Remark 4.4, we have
lim [ (@)=, d(oGio)).

m~r00

Thus | - | |
tim (| (o)) =l | dCoCum)+[ 4T Womr)) + [, ;9 6TD)
?Jplb(e(uo)) +L z{:m(j(Uo—ap)) +L /a‘l’(e(m))‘ |

-8

Thus we have _ _
It Q> x[:(e(uo))—f- [ 4T To=t)) = |, floYue(e)do

and the theorem is proved
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