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LINEAR TRANSPORT EQUATION WITH
INDEFINITE COLLISION OPERATOR

Cmu Yri(# #)*

Abstract

The operator theory on indefinite inner produet spaces is used to diseuss the half-
range problem of linear transport equation with indefinite collision operator. A counter—
-example to [1] is given and & relation between measures of nonuniqueness and noncom-

pleteness is established.

§ 0. Introduction

In this paper we consider the following linear transpoort equation with

partial range boundary value condition
df _
T 7ﬂ+ Af=0,

' Q+f (O> =f.+y
If@1=0Q), (t—>+o0).

Here the coordinate operator I' and collision operator 4 sare selfadjoint opera-
torsion on a separable complex Hilbert space H. T is assumed %o be injective and
‘bounded and Q.. is the spectral projection of T' with respect to(0, —l—oé). 4 is Fred-
holm with finite-dimensional negatbive part.

Sinoe R. Beals’ pioneering work™, which in the situation when. A is positive
definite proved the existence and uniqueness of equation (0, 1), many efforts have
‘been gone to the study of the nonuniqueness of equation (0, 1) When A is not
assumed to be positive. [3] considers the case when A is semi-positive and Fredho-
1m, [2] is one of the few papers which drop the positivity eondition on the collision
operator A. In [2], the measures of nonumiqueness, and noncompleteness are
studied under the assumption that A is T-regular, Unfortunately, we find that
‘the main results of [2] are incorrect. A counter-example will be given in § 3.

In this paper, we drop the regularity condibion on A, only assuming that the
mogative parl of 4 is finite-dimensional. Full-range theory is developed and the
meesures of nonuniqueness and noncompleteness are studied and a relation ef those

(0.1)
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two measures is established, As an application, the measures of nonuniqueness and
noncomplebeness of symmetric multigroup transport equation in isotropic media
are fully characterized.

In the case that A is indefinite, it is natural fo introduce an indefinite metric
structure into the problem, When A is assumed to be T-regular, as is required by
[2], the analysis can be done separably on a Hilbert space and on a finite-dimensio-
nal space The analysis is much complex in the absence of régula,rity condition on
A and we find that this generalization is by no means trivial.

Note. That a subspace of a Krein space is said to be positive/negative definite
means in this paper that it is positive/negative and nondegenerate,

§ 1. Full-Rang Theory

To deal with the nontrivial kernel of A, we first need a leﬁma. Let us recall
our assumptbions on the operator pair {T', A}. T and A are selfadjoint, T is bounded
and injective, A is Fredholm with finite-dimensional negative part.

Lemma 1.1. A és T-regular at zero, é.e., the root space Zo(K) of K=T"*A at
gero s findte-dimnstonal and nondegenerate under the indefinite énner product

(o) Da= (T4, ). (1.1)
The proof of this lemma is elementary and we shall omib it here, Since A is T'-
regular at zeao we have the following decomposition
| H=Zy(K)+(TZy(K))*. (1.2)
Sinoe Zo(K)cD(4) and Zo(K) is finite-dimensional, the space (TZo(K)):N
D(|A|*?) is a ITj space under the indefinite inner product
' (ey 2)a=(4-, *). (1.8)
Let » '
I4={(TZ,(K))-ND(|A|*?), (¢, +)a}. (1.4)

Then K;=K |, is selfadjoint on IT,. Let B be the spectral resolution™ of K, on. -

the real line,
Lemma 1.2. The solution of the equatéon

{%{-+K1f-o, F(8) €Iy, 0<< 400,
IF® e, =0@). @G—>-+o0),

f(#) =exp(—1tK3) fo.
Here
fo€ B(0, +o0)+ D Z(K)+ > ker(K —A).

E€0op(K), Ref>0 A€0p{K),ReA=0
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Proof Let @, 5>>0 and @, b are not critical points™ of K. Olearly, we only
need to prove that |
. lexp( — tK 1) H(a, b)fol| >0, #-+—>00,
We assume without loss of generality that '

o(K 1)c: [a, b].
Let the triangular model™ of K; be
| s F & Q 2
Ay ~ F* N
A4, G* [P
FSAS VA

and ‘ :
Ou=N@u{Z X Z"yDaP.
Moreover, we choose a spacs decomposition such that exp( —tKy) also has triangular
form (of. [4]) '
| S@ F@#) 6@ QX
A -F®|
Ap(t) G®)"
S (t) *
From the relation oxp( — ZtK' 1)= (exp( tK4))2, it can be calculated that
| F(28) =8 (8) F(8) +F(5) Ax (2), \
G(2t) =8 ()G @) +G B Ar(8), - (1.5)
Q(26) =8 (1) Q) +Q®H8* () - F() F () *+G($)G(®)".
Tt is obvious that F (¢), G‘(t) Q(t) N (t) Ap(t) and Ax($) are all con’omuons in §
in uniform topology and

exp(—tKy1) =

S (%) =e“’s
Ap(t) =%,
Ay(t) =e77,
Since o '
o(8) Uo(4s) Uo(ds)co (K< [a, bl
‘we have S
leTt4x| <o,
o™t e,
le~t8)<ete/3,
Thus from (1.5) we see that as #—>+o,
17 ()]0,
162 |0,
| 19 0.
Therefore . '
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Jlexp(~tK41).E (@, b)fo| >0, t-—>+o0.
Hence we see that if : :
fo H(O, +°°>+ > Z(E)+ 2 ker(K -A),

£€o0,(K) Ref>0 A€Oop( K )y ReA=0
then f (t) =oxp( — K1) fo is bounded as {—>-+oo,
On the other hand, if f(¥)=exp(—tK,)f, is bounded as {—>-oco, then we S0
that

foEB(-oc0, +00)+ B Z(E)+ ?2 ker (K ~1).

€oy(¢K ), Ret>0 A€op( K, Rea=0

We need o preve that H(0, +o00)fo=H(-o0, +00)fs. Let b>a>0 be arbitrary

positive real numbers such that ¢ and b are net critical points of K. From the
above paragraph we see that ' | '
| lexp GK)E(~b, ~a)|>0 (t=>-+o0).
Let .
| (1) =exp(GK DB (b, -a)f(8).
Then - _ '
896 _ g.9(s) - Kug(8) =0
Hence g(%) .is constant., Now . - )
| lg@ I<lexpGK) B(~b, - a)||f(#)]—>0, #>+co.
Therefore ¢(t) =0, i.e., H(-b, —a)fo=0. Thus '
E(—~oco, +00)fo= E(O +00) fo.
Now we ﬁx b>a>0 such that
O(Kl)c( b, —d)U(cv, b), (1.6)
where O(K;) is the set of critical points of K. Then we have the following lemma.

Lemma 1.3. H(a, b) ésa Il space under (*1*).x The dimension of mavimal

negative subspwces is the same as that of mavimal negative subspmces under (e, *)4.
Furthermore, E(a, b) s closed in H and the induced topolog%es by (25 *)a, (o *)p and
+, ) are all equinalons. '

Pfroof Let - | A
W=(Elswn)™ S 1.7
Then for o, y € B(a, b). . ' : | v
| | @ 9e=Wa, s | o (1.8)
Le’ﬁ W ha.ve friangular model™ |
W =18, ley We, F, G, QY. o (1.9)

Now
a(S)Uo(WN) UG(WP)Cf’(W)C[l 1] ,

The space E(a,, b) has the followmg decomposmon
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E(a, b) —NC—DA{Z—LZ*}@AP
=N@rPOr{z+{s"+Wi'F's* - W5 G%" ' €Z2°}}. (1.10)
Under (-, )T— (W, +)4, P is positive definite and on P :
(We, )a=Wes, +)a. |
Henoe on the subspace P, (¢, +)r isequivalent to (s, +) since a(Wp)c[%—, -i—] and

{P, (v, +)r} is a Hilbert space.

Similarly, (+, *)r is equivalent o (o, +)4 on N and {N, — (+, <)z} is a Hilbert
space of finite dimension., -

Now we shall prove that the third term in (1 10) is nondegenerate under (e,

*)r. If .

p=g+2+WirF*s* - W3'G*s", zEZ ez,

such that (@, 21)r=0 for any 2, € Z,then
| 0= (Wey, s+2"+WitF*e —W5'G"e*) a= (82, 24
Therefore z*=0 since § is surjective, Now if # is (¢, + )y orthogonal to {z5+ W' F"z.
-Ws IG*zoleGZ*}, then 2=0, Henoe »=0, Thus the third term in (1.10) is non-

degenerate under (-, +)z. Therefore we have proved that H(a, b) is II; spaco under
(¢, *)r. Now since the third term in (1.10) has dimension 2dimZ and Z is a null
space under (s, +)p, Wo see that the maximal negabive subspace of HE(a, b) under
(¢, *)r has dimension dimN +dimZ, whioch is equal to the dimension of maximal
negatbive subspace of H(w, b) under (s, *) . }' | '

Next we shall prove that H(a, b) is closed in H. Oonsider the identity map

. i: {B(a, b), (4 *)}>{E(a, b), (, *)a}.. .
We shall prove that ¢ is bicontinuous, Leb ©,€ H(a, b) and o,~>0 in the topology
induced by (¢, *)a. Then for any y €14, (@, y)a—0. We seo that for any 2€ (T'Z¢
'(K))lnD(A) (@, Az)—>0. Now
H=(AD(A)N(TZo(K))*) +TZ0(K)

ond o, | TZ(K ) Hence »,—>0 weakly in H. Thenefore 4~ is continuous,

Conversely, if @, € H(a, b), ©,~>0 in H, then for any yEH(a, b), (@ y)r=
(@, Ty)—0, i.e., (@, W,)4—>0. Henoe 5,~>0 weakly in II, since W is invertible in

II ,. Therefore 4 is continuous, Hence H(a, b) is a closed subspace of H, and the::

topologies on H(a, b) induced by (¢, +) and (-, )4 are equivalent. The equivalence
of ‘topologies on H(a, b) induced by (-, *)4 and (:, «)p is obvious since their weak:
~ bopologies are equivalent. : |

- Lemma 14. E(a, b)cD(4).

Proof E(a, b) reduces Ky a.nd K'y| v is continuous. Hence B (a, b)cD(K3):

CD(K)CD(A)

Now leb _ .
: {aly @y, G, Bz, ***, Ay, %}-’:{5601:(1() lIm&'#—-O}
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and denote

X =70 (K)+ Lo (KD} + B (a, DB(-b, ~@). (L)

'We know from Lemma 1. 3 and Lemma 1.4 that X is a Krein space under (e, )T
and X CD(A) Let 9 and B be metrioc opsrators™ on the Krein spaces {X, (e, *)p}
and {Zo(T),(+, *)r}, respectively. Let Py be the (-, )4 orthogonal projestion of
I, onto I,©,X. Let P be the parallel projection of H onto (TZ,(K))* along
Zo(K). Then we define an auxiliary operator on H A

Aem=APo+T77<P Py) IX+TB<1 P)lsyme c.(1.12)

Lemma 1.5. 4,,4sa positive operator on H with bounded inverse and
‘ "D(4s,,)=D(4).

Proof Since ZO(K)CD(A) and XcD(4), we see that D(AB,,,) D(4).
Clearly kerAys,,={0}. Now we prove that A, is positive. For s€D(4) nranPo,
3/ S X 2EZ 0<K ) ’ |

(Ap,-(@+y+2), o+y-+2) = (Ado+Tny+TBe, m—l—y—{—z)
= (@, 8) 4+ (ny, Yo+ (B2, 2)r=0
(since (T'ny, &) = (Ki'ny, )4=0).
Therefore Ay, , is positive. Next we shall show that ran 4, ,— H From (1 12) we
See that ' -
. Agyq=A(Po-+Ki'|x) +T:3Izo<rg-)-
Hence rand,,,DA(D(A) N (TZo(K))*)+TZy(K) = H.,
Now we denote

K giq=T""4,,, (1.13)
‘and define two auxiliary Hilbert spaces ' '
Ha,,={D(A), (¢ )}~ (1.14)

and ‘ |
Hg,, = {HA,.;,,’ (|1 Kzhle, DIV o S (1.18)

We see that K, is selfad]omt on H,, Let Qi be the spectral projeotions of K,,,
with respeot 10 (0, +00)/(— o0, 0). Q. can be extended to a pair of complementary
projections on Hy, . | |

Remark., H 4o, ond Hpg, are meleVant 1o different ohomes of metrio
operators 9 and 8. They are also irrelevant to the choice of the real numbers &
and b in the definition of X, Thus in the sequel, we suppress B and 9 in H,, and
. H Kome :

Lemma 1.6.%® There ewf&sts @ unfque bounded Mjectq)ve albedo opemto‘r E’ with
dense range such that ' | - -
| E: Hy—>Hg Hy,

where Hm=v * .')}_’ and
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1) Q.EQ.f=Q.f,
2) P.HQ.f=0.

Here Q. is the speciral projection of T fwfoth freSpect to (O, +00)/ ( —oO, O)
Lemma 1.7 Eguat@on

T-—f-+AB,,,f 0,

Qf(0) =Fs
I£ ()] =0Q), t—>-+oo
has a unique soluwcm forr every 1€ Q.(Hy) such that
(0, 4o0)—>Hpg
és d@ﬁerentwble and £(0) € HpN Hx. The sobution s
() =exp( — 1K g,0) Efs.
The space Ho={IsO+X, (*, <)at isa Hilbert space and K reqbrmted to Ho \
selfadjoint and injective. Leb ‘
HO:K {HO) (lK -

oy A} (1.16)
- Then we have '

Lemma, 1.8. HK~HO,KC-DX@Z0(K) Here on X and ZO(K), the - dnner
products are (e, *)r and (B+, *)r, respectively. The siaectml resolution E(+) con be
ewtended to Hyx for every Borel set im R\{(a, D) U(-b, —@)} and the extended
projections coincide with the speciral resolution of K |a, k.

§ 2. Half-Range Theory

Now let us consider the following equatbion

rE%f.t?_-q-Kﬁ,=O, on Zo(K),

%1—+Kf1=0,“ on X,
9 afa B " (2.1)\ »
—-&—i———l—Kfz-—O, on Ho,x, .o
Q+f(0> =f-+€Q+HT, ,. ‘
UlfC#)lleO(l)' (t>+00).
“Here - ' L o
B f[O pooysHy
is contmuous with £(0) € HyN Hy and fis differentiable on (0, +<>o) and -
3 ' BIORTTORSAORS O
Where fo(t) € Zy(K), fi(t) € X and fz(t) € Ho,x. |
We introduce measures of noniniqueness d* and noncompleteness y* by the -

following definition
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ot = dlm{solutlons of equaiuon 2. 1) with Q. f(O) 0}, | - (2.2)
y*=dim Q. Hr/{f. €Q+H r|for £, equation (2.1) has a solution}~. (2.3)

Denote
MZ‘;O (ker(K — a;) +ker (K - a,)) + E (Za‘(K)+Za‘(K))+kerA+E(w, b).
| | (2.4)

We have :
Lemma 2.1, * dlmQ+HT/{Q+[(M,.+E(O a)+E(b, +o0))N HT]}" and d*
= dimker{Q,: (M,+H(0, a) -+ E(b, +o0)) N Hr—>Q.Hr}.

Proof For f(£) to satisfy Equation (2.1), we see that f,(0)€kerd, f:(0)€
H(a, b) + 2 (ker(K ;) +ker(K a;))+ 2 (Zo(K)+2Z5(K)) and f3(0)€

' E(O w)-{—E(b +400).

Hence f(0) € M,+E (0, @) +E(b +00).
Therefore our lemma follows 1mmed1a,tely

For A€ a,,(K ) and Reh=0, A0, we have the followmg deeomposﬂnon

ker(K —A) =h(K)+5.(K)’,
{z,;(K) —ker(K —A) +Z.(K) +Z,(K)"

such that {#.(K), kx(K') }, {B (K, Zz(K)'} and {Z.(K)", Zz(K)"} are Hilbert
pairs™ under (e, <)y and these pairs are mutually or‘thogdnal; Mbreover, _
(K -NZ(E)=Z(B) +h(E)'. - (2.6)

(2.5)

Similarly we have

| {kerA_—_—ko(K){L'{co(K)', . @1
NZy(K) =ker K 4+ Zo(K) +Zo(K)" -
such that {Fo(K)’, Zo(K)'} is a Hilbert pair under (¢, +)p and 4
ZO(-K) 7"0(K)@T{Z’O(K)’".FZO(K.)'}@TZO(K),.'@ (28)
Moreover, KZ,(K) = ko(K) +Z,(K)",
Denote _ o
M*"aea,(%% 0<.Z;»(K Y +Z\(K, )")+£ewu§.m<0 Z(K)+B(-b, -a) '(/2.9)
and . |
M =M+ M, —E%(K)?EI:WO ZA(K)+E<a, b)+E(-b, ~a). (2.10)
Now |
M= (M,)o+ (M) | (2.11)
where o S _ '
(Mf).°= A€op (%}-Rewo_kh(K), | (2 '12)
and o ' .
(M,),, 2 RE)+ 3 Ze<K) +H(a, b), - (2.13)

: }.Eo‘,(K JsReA=0 . fea'p(K) Re£>0

and
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M~ (Ms>’0+ (Ms> m'
where | .
Moo= = Z,(K) (2.15)

AE0y(K),ReAa=0

M= 3 LR+ B Z(R)+B(-b -a).  (2.16)

o AE€0p(K), ReA=0 Ecoy(X0), Bef<O _
Woe see that (M,), and (M), are neutral under (-, Ve and {(M)or (Ms)o} i8 &
Hilbert pair. Moreover, M is a Krein space under (s, *)r and |

M~ (Mr>n@T<M8)n®T{<Mr)O+ (-Ms)o} X@TZ (K) ' (2°17)

Now choose metric operator §= =18 such thab
0(<Mr)o+ (Ms)o) (Mr)o+ (Mo, - E o
6((M).) = (M), @uas)
0((_M3),,)=(Ms),,, ‘
and the corresponding canonical decompositions' are

{(Mr)o‘*‘ (Ms)o= ((M(ro+ (Ms)o) @T((Mr)o+ (Ms)o)-h

(M) n=(M,)- @T(Mr>+; - . (2.19)

(M= (M) -Dr(My) .
From (1 13), we see that

ramp =H(0, “)+E(b +°°)+<(Mr)o+<-Ms)o)+ (Mr)++(Ms)+ (2.20)
and from Lemma 1.6 we see that
Qs: ranP. N HT(c: HeNHp)—>QHr
i bijective and continuous, We also see that ran P N Hp= EQ+(H r)., Thus Q.[(H
(0, @)+ E(b, +o0))N Hrl is olosed in Q+HT. Denote F=Q+ [(E(0, a)+H (b, +
©0)) N Hy]. We have |
QL AQUI (M B, @)+ (b, +oo)) N Ha1)"
=dimQ, Hy/[Q M, + F]

~dimQ, Hy/[Q:(M,) s+ F] - dim QM+ F

Qe(M)+F
Now the first term can be caloulated as the following

QuHr _ _gim Qu(ranP. N Hr)
Q+(-Mr)++F _ Qi(M)+F
' “dlm(Ms)+ +d1m(Mr)o+(Ms)o)+y

and fhe' second term is . : .
dlm___Q_-!_-_y_ci'_ﬁ_'_ dl Q+(Mr)-+Q+((Mr)o) +Q+(Mi)++1?
Qi(Me)s+F B.(M,)+F
-—dlm(M,)._ +dim(M,),—9d

Thus
C ot dim(M) e+ dim( (M Yo+ (M) ~ dim (M) - dxm(Mr>o+8
=dim(M,) ;. — dim(M,)_+8%.
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Therefore we have :
Lemmag 232, dim(M,), ~y*=dim(M,). - 5*,
Now denote , S '

{MﬁMﬂ )z, = (2.21)
= « . - 2.21
ML - 7“509)1;2,1%3;0 (K B A)Zz(K‘)+£EOp(1§ReE<O Zf <K) +E< - b’ w)° .
We have ' | .
Lemma«2.3. M= (M)®o( M, Yo

where |
Mp)o= 3 p(E)

_ . A€0,( K, Rea=0
48 neusral under («, +)5 and ,
M= 3 Z,(K)"+

. Z
A€0p(K),Rear=0 E€op(K ) Ref<0
48 a II, space under = (% *)m, and of
‘ _ . (ML)n=(ML)—®T(ML>+
48 @ eanonteal, decomposition, then |
o | ‘ M(ML)*“‘:dim(Ms)i-; ‘
00mb_iping Lemma 2.2 and Lemma 2.3 we obtain a relation between measures

s(K)"l"-E("_br -a)

of nonuniqueness 3 and noncompleteness 7*.
Theorem 24. dim(M,),-*= dim(Mg)_ - §*,
Next we shall .cha.racterize the g_é_ometﬁc fea,turé of &* éi:x_d v*. Let
M {QEr+B(-0, 04 B(-w0, -BINK,  (2.92)
M ~{Q H,+H(0, 6)+H(b, +o)}N AL, o (2.23)
We have the following . ' » o :
Lemma 2.5. . M + §8 positive/ hegdtw‘_we deﬁnfi&f@- under (s, o) T'amZ
| M=M.®M.
46 @ canondoal déoompos@t@on of M. . |
Proof Let m=g-+e€M,, ¢€@,Hy and ¢€H(-a, 0)+E(-o0, —b). Then
S O<(Qr 9')1_’=<'m'; m) -+ (K7, s | _
and (K™%, ¢)7<0. Thus we see that (m, m)p=0 and(m, m)r=0iffe=0, ¢=0, i.e,,
m=0, Therefore M, is bositive and nondegenerate. Similarly M_ is negative and
nondegenerate, Let M ,™ denote the (-, )y orthogonal complement of M, in M,
Then | o
| M= {B( 00, ~b)-+E(-a, 0)+H(0, a)+E(b, +00)
 FQENIMAEQ, a) 4B, +o)T}N B
={Q-He+B(0, 6)+B(b, +o0)} N M=M._. | |
Henoce M, M= M., 'Sim‘i'lafrlj M_t1’¥’M+. So M+ and M. ‘_ are -closed in {M, (-,
- *)r}. Now it suffices 0 prove that‘{{ﬁl+,»' (55 e} is'a ﬁilb’erf space. Let #,E M
such that (o, ©,)r>0., Write @,=1,+f; #,€Q,Hy and J€H (o0, —p) +8(~a,
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- 0). Then -
(tyy Ty 2= (O D)2+ (for fu)05
Honoce (t,, &) r—>0 and | ful z,—>0. Therefore for any m& M,
(m, @w)z=(m, ta)z+(m; fo)z
A =(Q,u7n, t)o— (| Kaglm, fu) a0
Hence o,—>0 in M weakly. Therefore {w,} is bounded in M. Thus {M,, (o )z} i8
o Hilbert space. Now by [4], we see that M =M+®TM_ is a ocanonical decompo-—
sition, : | |
Theorem 2.6. 8 —dimM N M. and y*=dimdl N M.
Proof By Lemma 2.1 and since (E(0, a)+E (b, +0))N Hpis (¢, °)r positive
definite, we have - o ' :
5* = dim{(M+B(0, @)+ E(b, +°)) NQ-He}
—dim{(Q_H+E(0, @)+ E(b, +0))N My} =dim M_N Mz
Ag for v, by Theorem 2.4, it suffices to prove that '
dim(Mg)- - dimM_ N Mp=dim(M ). - dimM N My.
From Lemma 2.5 we know that M=M_®rM., is a canonical decomposition. By
T.6mma 1.3 we know that Mz is a direct sum of a II; space and a neutral space.
Thus by [4], o ~ ~ : I
Mo={(0, 9) |y € Le M YDr{ (4, Bu) lueD(B)SMs}.
" Hero B is a continuous linear operator from D(B) to '-m, and L a,‘hd'"D(i'B) are
¢losed subspaces of M. and M, respectively. Let "Bf-=U|Bl be the polar decompo-
sition. Then U is a partial isometry from D(B) onto ranB. Let o(-, +) be the
gpectral resolution of | B] in D(B). Then we know that o((1, +4o0)) is finite—
dimensional. Now it can be easily caloulated that
My=My ={(z, 0)|o 1 D(B) in M} @De{ (B, v) |vEran B}
| ®r{(0, 9) ly L L+7an B in B}, |
Since _ SR '
| Ma=4(0, 3) |y ELYDe{(, Bu) [u€o((L, +oo))}
Dl (w, Bu) |w€ ([0, 11)}®sl(y, Bu) [u€o({1h)}
and . - , o
dim(Np)-=dim{{(u, Bu)|u€a((h, +00)) YDA (0, ) lyEL})
and  MzNM_=4{(0, )|yeL}, we have o '
dim(Mz)- —dimMz 0 M- =dimo((L, +00)).
Similarly, | , _ |
M, ={(0, 9)|y LL+7an BY®2{(| Blo, T)|0€((0, 1))
Dsl(m, 0)|s LDBIS{(|Blo, T)|v€a((d, +o))}
®ri(|Blo, U0 |v€a({iD} .
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dim(My),. = dlm{{(w, 0) |w_LD(B)}+d1m{|B|'v, va)]'on'((l +°°))}; MLﬂM+
i{(w, 0)|oLD(B)}. '
Thus dim(Mp), ~dimM;, NM,= dlma( 1, +oo)) Therefore we have proved our
- theorem,
Corollary 1. 8*<d1m(M 2)- and '}'"‘<d1m(M e
Corollary 2. If A is semi~positive and Fredholm, then 8% =dim(kerd). and
7+ =0. . »
Proof When A is semi~positive, every J ordan oham of K res’urlc'hed to ZO(K )
is at most of length two™). Henoe dim(M);=0. Therefore by 00r011ary 1, y*=0.
‘Then by Theorem 2.4 we see that 6% =dim (M R)_—-dlm(kerA) — ' :

Generally, 8* need. not equal dim(Mg)._. The. followmg example is to 111ustrate
$his. .

Evample. Let H= span{el, 81, @3, a.,} C, {ei, @3, 63, 94} isan orthonormal base, }
Under this base - R - , ’

1 0 1
-1 1
T , 8=
-1 e 04
b 4 15 12
A“l-—‘ 11 4 b5 12 -15

6|18 12 B 4
12 156 4 5
Tt is easily caloulated that §7'=—1T8 and S4=AS. Moreover
AT (261+63-+205-+64) = — 2(20, 405+ 205-+04)
AT (64285 — 05— 204) = — (614282 — €5 — 294),
AT (201-+ 63— 203 = 65) = (201-+602— 203 —0s),
A*lfl?(ei+2eg +e3-426,) =2(01+262 +e3+20,).
Hence ' :
‘ VA 1(A M= Spa,n{231+eg —2¢3 — 64}
is (¢, *)r positive definite and A
1 Z(AT) = Span{el+2ez+e3+264}
is (¢, *)p negative deﬁnlte Furthermore =
QM p=Q.{Z:(A7T) +Z5(A 1T)}|
. :-—Span{el —0s, 61+e3}=Q. H.
Heonce the half-range problem has a. umque solution for every. f, EQ+H an& ‘there-
fore 3*=0. But dim(Mpz),.=1. ' , - o :
. Remark. This example shows that the half—range problem may have unique~
Dess even. though the spectral subspace of AT wﬂah respect to the nght balf plan
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(M,)o such that o= g/—l-zeMRnM Since (M,)0 is neutral under (o, *)r, the
corresponding of @ t0 # is one o one and onto Hence we have proved our lemma,

Since T and 4 are real, Y*, Mi, Ms, M,, (M,)o, (M), and {ZA(K )+Zz(K )}
are all real subspaoes (a subspace § is real if 08 =8). Now.
> dim ¥ _=dim(M,)_.+dim(H,)_,. .
and since 0Z,(K)=Z;(K) and Oker (K - x) ker (K - x) for Aea,(K ), Im &#0
we see that L
dimY _N YR—- dlm(M,)_ = dlm(MR)_
Thus we have the following :
Theorem 2.9. When the operator pair {T', A} swt@sﬁes Asumptions 1, 2. and 3, |
' Ot =dim(Mp)_ and pt= dlM(ML)+ '
Proof Since 5t =dim M RﬂM by Theorem 2.6 and dim M RﬂM =dim Y
"NY_ by Lemma 2. 8 we have 8* dlm(M R) Now by Theomm 2.4 we see tha,t 7
=dim(M ). : :

§ 3. Symmetric Multigréup Trahsport Equati'on

The symmetmc multlgroup apprommatwn in neutron transport with 1sot10pm
soattenng leads 0 the coupled set of N equations ’

w2 @, w)rofict ) =5 310w [ 11t ), |
§=1,2, -+, N, - (8.1}
where u €[ -1, 1] and O= (O{,) wxy i8 a real symmetrio matrix, We take 63>0,>>-
>oy=1 and denote by " ihe diagonal matrix with diagonal entries gy, -+, oy. We.
do not consider the condition 0:;=0 required for physics reasons, neither the
~ physics necessity that fi(¢, ) be noﬁnegafive (q',‘=1,‘ 2, «s, N),

Leb H._sef-) L*( -1, 1). Define for f in H, .

Tf(u) =uf(w),

B @ =5 20 [_faw, (32

A=I-B. | |
As above, @ is the orthogonai projection onto the maxima,l T—pos:Ltive/T—negétive
T-invariant subspaoe of H, Now we come t0 consider equatlon(o 1)y, From [2] we
know that the operator pa,lr {T, A} satisfies our requirment tnat T and A are

selfadjoint and T' is injective and bounded,’'and A is Fredholm Wlth ﬁn.1’ce—d:.men.~ '
sional negatlve part, Moreover, A is T-regular, . -
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Lemma 8.1. All Jordan chains of T~1A restricted to Z,(T~*4) have Zeﬁgﬁi two,
- Proof For a in kerd, o=1"1By is constant, and hence T'z_| kerA, Thus every
Jordan chain is at leagt of length two. If @y, @, and ws€ Zo(T*A) and T Awg=a,,
T Awy=w, and @, € kerd, we shall prove that o, =0, First we see that
(Awy, ©5) = (Tw1, 22) = (@1, Aws) = (Awy, @5) =0,
and sz - Bma—urvl, i.e., @y=I""1(Bwy+uw.). Hence '
: P(T“l(ng +uwy )) ~ BI " (Bogtumy) =uy.
Smce BI'- 1ua;1——0 we see that A"~ 1B.fv9—0 i.e., I'"*Bw,€kerd. Now -
0= (Aw,, w5) = (AL *umy, I umy) = (um;, I~ 1um1) (B %uwy, I'" ’u:vi)
_ = (I"Puwy, uwy).
Henoe %o, =0, i.e., wi=0. - : o
From the proof of the above lemma, we also have the following corollary.
Corollary 3.2. For every s€Z, (T~*4), (4w, o) >0
- Lemma, 3.3. For 7\.6 R\{0}) ﬂap(T’lA), the root space 4s (-, <)g positive/
negwtwe deﬁmte foa‘ A=0. Furthermore, A ¢ not a erdtical Point and Z,(T 1A)=ker |
(T4 -0).
Pfroof Let hEker(T"A ~A) and %0, We see that
_ k() = (I" — Aw) "1Bh. : v
Let Bh=001{fy, *=,fx], fi being constant, Suppose ?u>0 For foe{l ., N}, if A=oy,
then f, 0. Denote
h=min{$|A>0;} - 1.
Sinoe h+#0, we gee that h>1. For 1<j<n,

T 1
T o f‘”’“e“’ D-

Thus

(Th, ) = -(;"f Iiu)z du>0,

Therefore, ker(’T‘lA -A) is (e, .)1, and henoce (55 *)a positive deﬁnite. We know
from the triangular model of self-adjoint operators on II » Spaces™ that .this_ iniplies
Z(T4) = ker(T'-*A~—2) and A is not a eritical point. '

Lemma 3.4. The ebgenvalues of T*A outside the real line are contained in the
%mwgrmwa*y axis., Fwthermore, if A€o, (T*4) N {zE C|Rez=0, g0}, then Z,(T-*A)
=ker(T 14 - ).

- Proof Let A€o,(T ~4), Trod+0. From the proof of the above lemma we ses
faha_t for h+0 in ker (T4 - 1), o
: _' . h(u)=;(1;,11_~ff?vu)"1ﬁBh,' R
and Bh=col[fy +, fvl, fi being constant; Since - :

| (0, - uReN)?Z (0;-+ uReX) *(RoAZ0)
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for all u€ (0, 1), we have for all € (0, 1,

11
|a,—?\.u|2- |05+ | ?

(ReA=0).
Therefore

(Th, b)= Ej-ilaulfill =0 (ReA0).

But we know from the operator theory on II, spaces (of. [4]) that (4A, h) =0, Thus
0= (Ah, b) =A(Th, k) #0.
This contradlotlon provesthat o,(T-24) N {zEGI Im 7\.%0} is contaimed in the
imaginary axis,
Now let A€ 6,(T2A) N {z€C|Rez=0, zan} and 0£hE ker(T"-A -4). We see
dhat kb= (I" - Aw)*Bh and Bh= f col[fi, =+, fxl, fi being constant and

fim (BR)= + 2 o j hy (u),au |
1.3 ,
"2‘-2"*’[_1 2

g;— ?\.u

- Y ofs g
20, oo | o

Let A be the diagonal matrix with diagonal entries

A= L o TPl

“Then ,
ker (T4 - &) = { (I —2u) | f €0V, f'€ ker(1—0A)}
and . _
Ker (AT-2+1) =ker(T-24 - A)*=Tker(T*4+A)
C ={u M) €O, f Eker(1- 04}

Now if there is g+0 such that (T4 -i)g=h, then |

bl ker(T—14 —a)*=ker(AT*+A).
Since u(I" +?\.u) 1f is in ker(AT~*-+A), we have

_ e
0~ oty au

=t | £5| % (0g+Au)®
EJ_1(|Z,|2+’1M|2>2 s

_&( _ omloylfil?
ﬁ=1j-1(lcril2+|;\‘ lz)z du#0,

This contradiction proves that Z.(T*A) =ker(Te™*4 -A).
From Oorollary 3.2 we see that the negative index of the II;, space {(T'Z,(T*
AL, (o, )4} equals the dimension of A-lnvarlant A-negative subspaee in H.

Hence by Theorem 2.9 we have
Propos1t10n 8.5. For symmeirio multlgroup transport equatxon with isotropio
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scattering, we have the following description of the meagures of nonuniqueness and
‘noncompleteness:

8*=The number of negative eigenvalues (eountéd by multiplicity) of the NV x.
N matrix I' - O;
7¥=0.
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