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LARGED;EVIATION FOR EMPIRICAL FIELD
OF A SYMMETRIC MEASURE™

Wu Livmine (ZE*

Abstract

This paper discusses the large -deviation for the empirical field of & symmetrie
measure.The lower bound of the large deviation is obtained by extending the classecal
Shannon-MeMillan theorem. The upper bound is established by means of Legendre‘
transformatlon and the minimax theorem.

§1. Introd uction

Let F be a finite set and introduce the compact product space Q=F¥, Let P(QY
denote the compact space of probability measureson 2, and P,(2) denote the
subspace of all elements of P(Q) which are invariant under all shiffs ;:Q—>Q,.
¢ €N, where (6i0) (j) = - (6+4).

Let us consider & symmetric measure y on £, i.e, an element of P(2) which is
invariant under all permutations. By the well known de Finetti theorem, u is a

. mixture of homogenous product measures, i.e., has a representation

— N
A RACOr

where m is a probability measure on the space P(_F) of all probability measures on:

F.
Now we define the empirical field R, as the random element of P(Q) glven by

B (w) =— 2 894«»

where §, is the Dirac measure at w. The dlstrlbutlon woR;! of R, under u helongs:
to P(Q). Our principal result is that the sequence '

woRY, n=1, 2,--
satisfies a large deviation prinoiplé with the rate function given by I(»)=

mf( )h(v, p¥),where h(», p¥) is the Donsker—Varadhan's specific relative entropy
pESupp(m

of » with respect to p¥. More expliocitely, we show in Section 3 that for open subsets
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2.~ () D
n=0 .

For a symmetrio measure y on Q, the regular conditional probability measure
given on Z,, is known to be (de Finetti):. . -
2.) (@) =p(e)¥  a.8.(u), | 2.1
where pEP(F) Now denote by m(dp) the distribution of random function w—>

(w) under x. By (2.1) we have for all BEF = U Fa

n=0 .
- ¥(B), - ¥ '
w(B) =, o Bu@) = [ 0" (Bmdp). @.2)
From (2.1) and the ergodioc decomposition of u, we get also '
' / ®) = g ‘

For » EPs(Q) and n>0, we denofe by
H,(v):=~ 2 viw:ok) =£®),b= 0, 1,4, ~1],

log v (w:w (k) =& (B, h=0,1,--,n—1) | 2.8)
‘the entropy of » restrioted to & ,. The speocific entropy of » i§ defined as
h(v):=lim = 1 H,,(v)~1nf—-H ) 24

‘because H,(v) is subadditive in n. More precisely, the Sha.n.nen McMillan Theorem
-ghatbes that

lim llog;[a:ww);g(k) B=0, 1, ,n-1]=;h<v£) ~ (2.B)

holds for »-a.6 £€0, and in I'(»), where »f =v(-|J) (E), v-a.8, is the ergodio
deeomposﬂnon of v. We remark that h(+) is concave, upper semi-continuous on
P(Q).

" Now let pEP(F) and »€ P,(Q). Then

H(v, o) = Jlog gd]? dv=>0 . (2.8)

defines the relative entropy of »| %, with respect to pN [ F . and the specific relative
-entropy is given by

W(v, p7) = lim L H,(, p¥) =lim 2 [H, () -0 3} 9(w(0) =a) logp(a)]
= h() - Br(o(0) =a)loge@@) @n

‘with convention: log 0= —co, 0 log 0=0,
. We need a remark on the space P(Q).

Since Q is'a compact space, P(Q) is compaot t00. We shall use the following
sexplicit metrlo Ohoose a sequence (go,,) of coniunuous funotions on Q. satlsfymg the
- dollowing condibions: ' ‘ ‘
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@ the linear span of (qo;.) is dense G, (.Q);
@ lel <1, n=1,2,-
@ for each n, there exists k(n) €N so that

A S F Kn)e
Now define the metric d on P(2) by
a( )= 32| g - [pudul (2.8)

for v, u€P(Q).

§ 3 ‘Lower Bound

The following theorem wil_l be proved in this section.
Theorem 3.1, Lot u be a symmetwic measure on Q=F%, and lot /.z,-—--j . o¥m (dp)
be the de Finetti decompos@t@on of ,w Then for any opan subset G o_f P(Q)

hm-!'—log;b(R EG)>- inf I(») : (3.1)
n YEGNP(L2) .
where : I()= inf Ay, oV).

p Esupp(m) )
. The main idea %o get the lower bound estimation above, as indicated by [4],

81, [2], is to give an exbension of Shannon-MecMillan—Breiman Theorem. AS &

result of independent interest,.the folloWing generalization of S-M-B Theorem is-

stated as :
Theorem 3.2, Let » € Po(Q) and w given in Theorem 1. Then we have

vw:o(®) =£F), k=01, { ,n—1] e e |
nl ¢ 'u'[w’w(k) g('l‘;) k= 01 1'"‘—1] apﬁsiglﬁmzww’ pN) - I(v")‘ (3'2)

for v-ae. & €0, where vi=(+| H) (), v-as is the ergodic decomposition of v.
Pfroof of Theorem 8.2 Set A,=[w0€Q2:0(k)= 5(70) k=0,1,+-+,n ~1]. Obviously,
oY (42 = IT (@)™ (83

‘(with convention; 0"=0 for r>0 and 0°=1)..
Now, the first term in(3.2) can be writen as

L 10g »(4,) - L1og u(4) - 2 Tog » (4n) - 3 Tog j o (Aym(de)

= 1 __1_ Dty 0)\n, - \
L tog v (4 - Llog [ (IL o@)™) m(de). B
Letting n approach infinity, we have R .
| . %log'v(A,.)ﬁ'— Wt voacs @y
by (2.5) and : | o
: : D, (¢, o)~ (w(0)=a) v.a8; - (8.6)

by Birkhoff ergodio theorem.
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Now, Wwe see olearly that the key to the proof of Theorem 3.2 is
U p(m< H p(a@) P& D) rp(dp) 1¥/»—> sup II P(w)”““’(o’““’ v—a.8. (3.7)

pEsupp(m) GEF

In order Yo prove (3.7), we remark firstly for aE.F,
¥ (0(0) =a) =0=D, (&, a)=0 for all n, v, 2.8, - (3.8)
Indeed, setbing A:={£C€ Qv (0(0) =a) =0} 4, woget

[, D& dv=[ BID.ED) | A= Buluomal £

=[ v¢((0) = a)dy =0,

Now, fix £ €Q such that(8.6) and (8.8) hold for all a€F. An elementary
-estimation gives us -

IHP@”"“"” I0 p(w)"“‘“‘°’=“’l<~ 45 <§.a>>op'(w)”"”".°_’=_a o
Jlog p(a) + | D (€, @) — v (@(0) =a)| | SN

for all n with |D,(§, @) -1/ («(0)=a)|<é¢, where 6>0 is chosen sma,ller than
min (¢ (0 (0) =a):2*(x(0) =a)>0),
Therefore, .
 ILp(@) 9> [T p(a) oo

uniformely for p€P(F), and (8.7) can be easily deduced from the trlangular
inequality and the following fact that '
[ela>]* e on any proba,biliﬁy space.
Finally, combined with (3.5) and (3.7), the formula (3.4) 1mplles that the
- Heft term in (8.2) tends p—a.s o

, -h(v;) ~log SuP II p(w)v‘(w(o)rza)

pEsupp(m) aEF

- it (BN - B () =) loge(@)]

p €supp(m)

= inf A(»f, p¥) . - (y(2.n).

p Esupp(m)
In order to obtain our lower bound we follow [2], [3].
The following lemma is taken from [2], [3].
Lemma 3.3, Let vE P,(Q). Then there ewists a sequence (v,) of ergodéc measures
convefgéng to v such that , -
| | Lim h(v,) = h(»), - ©(8.10)
supp(w(v)) =supp(@(»)). (8.11)
We remark tha,h 3. 11) was not s’ca.’ued in [2], [3], but is prov1ded by their
proof. : E
(8.10) and (3.11) imply . '
| I(r—I().
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Proof of Theorim-3.1: Let vEP, (Q) and U be an open: nelghbmhood of v, Tt will
!sufﬁoe o show

1im %iog@(R,,ETb} Iy, (3.18)
1) Assume now that » is ergodio. In.view 0f(2.8), there is a neighboﬁrhbod of »
‘ Up= {P, Ifk,di/ —fkdv ‘ <eg for ]G—"—-‘]., '2, oo, m}U
where fi,-+, f are F-raeasurable for some p=>1.

Since v-a.s R, converges weakly to », '
' llm zz[R €U,) = =1,

~ Assume I(») <oo, as o’ohermse there is nothmg 0 prove, by Theorem 3.2,

dvlyrﬂd’

rl.?",.w L | Fisg - and for g”=ﬂT, we have
: s ’ ntp L

llogg,. “I(v),as e | , e
" Now nobe that the set " - Sl |
[R.E€Us) = ﬂ{’ S ot~ jfkdp <sf B
_belongs to F ,4,. This a,llows us’ 0 write. ‘ . _ 
w(B.€T) > R EUw L 10g 6i<T () 46, 90 )

> oxp(~n(1 () +8))? (B €U, —log gu<I(3)+5)
and sinoe the secend factor in the lagt number approaohes one, we obtain (3.13),
2) Now let ¥ € Py(2). Approximate » by ergodic v, with I(»,)—>I(») as ensured
by Lemma 8.4. and (8.12). Then the left side of (3.13) is greaber or equal to-I (v,.)
for all n big enough and then we get 3. 13)

§4. ,.:U;Qper Béuﬁd

In this seotion, we shall prove . :
+... Thorem 41 For any. closed: subset O of P(Q), we have

Hm n*log w(R,€0)< - .inf I(») N C %)

>oo vE0NP(Q)
wherre w and I (¢) are,  given in Theo¢em 3.1. |
In order to obtam the upper bound . 1) we follow [4] and 1n1;roduce a
statlona,ry modlﬁcatlon of R,. For each non—negatlve integer n define wm,: 0->0 by
' o _. m;,.(co) (@+ng)-w(@), yEN 4= 01 o 1
and T R~ Reme »
Clearly RS (co) cP,(Q).
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Lemma 4.2. For any F v-measurable function f, we have

\j_de,.—jde; <—?q-a’”-tlfno.x - (4.2)

Prroof Note thab
[ des_- S Fobomn

[ fam=2 LS se8,

and | fobioma=fobs for 4=0,1,+-+, k. |
~ The following lemma is the key to our Theorem 4. 1.
. Lemma4.3. For any measurable subset A 0 f P,(Q),

fim n-tlog w(RsE A) < —sup sup inf inf B qfd’v —'log'je’dp" );

n—>c0 k>l FeF, vEA pEsupp(m)
avhere “f € F” signifies “f s F-measurable”
Proof For any k>0 and F,~measurable function f, we have by the Markov’s

inequality and (4. 2) _
w(B,E€A) <exp( - mf chlv)jexp(% j. faR >dy. _.

<oxp( - % 1ot jfdz?+2l\fllw>- foxp(22 | sa2w)am. 4.8y
Letus esbimate the last factor in (4.3). | -
Let I ‘V
| C[F] o
' 2f°0m,;., j 0,1 ,k 1.'
" Then

" | fdR, RS <
- |3 -1 B o <1
which implies ' _

o] '
oxp(3 | sar.)au<e jexp(— S s (If1) 5 5 xR (o)dn (44)
by Jensen’s inequality. S :
Noting that p= fp m(dp) and that for 1>k, fo0 fo@m is ‘independent under

the “‘proba,bility measure oV, we geb

sntora ol " o) 7 ) =[(Joe P

3=0

where it follows by (4.8) and (4 4) that - o
| | BTN
w(ed)<oxp( -2 it savaifl. )| (foae” ) meae.

Theréfore we golb
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 Timnlog @(R: cA)< - Line fdv +-—1~:1'og sup Jefde
) ]0 vEA4 ' k PEsupp(m) :
= —f~Yinf inf

vEA stupp(m)(J‘de —log 3fde )
Yor any 5>1 and any Fy-measarable function f. :
- Proof of Theorem 4.1 We establish ﬁrstly (4.1) with Rs replaomg R,. Its proof
is divided into four steps

Step 1. Assume firstly supp(m) and O are convex,
Beoause the funetion :

(#: )=> | fiv ~10g j plan)a"

is continnous, concave on f and convex on (p, »), we can apply the mmlmax
theorem and get subsequently

‘ sap inf inf (dev logfefdp —inf inf sup q Jdv —log |é'dp? ),
fEFy v€0 pEsupp(m) . )

vEC pEsupp(m) fEFy

which is equal to _ :
' - inf inf Hk(v, pN)

: - ¥€C pe&upn(m)
by the well known Va,rla.tlona,l ‘prineiple of the entropy (see e.g. [4])
Therefore, we get by Lemma 4.3

1-1m n~'log u(R,EC)< —supinf inf k- LHy(v,0%). (4.5)

%k ve0 pegupp(m)

Since the function &~ H k¥, P¥) is ls.c. on the compact space Ps(.Q) P(F)for
«©gch Ic>1 and

i o, ) o, ) =supk o, o7,
'we can deduce in an elementary way

lim inf inf ]alﬂk(v, pN)—lnf inf h(v,p%¥). : (4.6)

k—oo vE€C pEsupptm) veC pEsuppi{m)

. Then we have by (4.5)and (4.6)

lnnnllogy,(R’EO)<——1nf mf h(y, p¥ ——-_-—ian(v) , | (4.7)

v € Cp Ep Esupp(m)

. ”Step 2. Assume thatb supp(m) is convex, and 0 is an a,rbltlary closed subset of .

P,(Q).

Slnoe o is closed and then compach, we can choose for each s>0 a ﬁn.ﬂ;e
number of couvex. subsetbs 0, (&) such that

O§08=LJJO,5<6)
and -« ~ian(y)'>ian(y-);s

‘(by the lower seini continuity of the funotion (», p)—-)h(z:, P )
We get finally from (4.7)
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Tim ntlog y(RLEO)< - inf T(r)< ~intI()+s.
v€Qy vE€ o

Step 3. Assume only that
supp(m) = U B; (finite umon)

where B; is oloéed, convex in P(F).
In this case, let '

| | i = %%ES jm pY m(d,p)
whioh satisfies the assumption of Step 2.
Evidently, one bas _ L
M<2m(3;)m‘” ‘
Whlch implies
Him ntlog u(RLE0) <sup 11m n~t log w; (Rs [=10)) <sup( - 1nf mf h(v, N))

200

= —inf inf A(y; pN)

v€0 péesupp(m)

Step 4. In general case, supp(m), being closed in P(F),is compact.

Then for any >0, we can choose a probability measure m® on F such that |
supp(m*) 8 the union of & finite number of the closed cowew subsets of P(F)
(1 - g)m<m’, ‘

|} supp () =supp (m)

Leﬂmg s = J Nms(dp)

We have therefore by Step 3
lim n 11og w(REO)< < inf im n™log MB(R €0)

n-yco e>0 ‘n— 00

-<<inf(— inf 1nfh(v, pN))—~ — inf infhA(y, p¥)=— 1an(v) (4.1)"

T e>0 pEsupp(me) PEC ) . pEsupD(m) veq
by the lower semi-continuiby of funotlon (v, p)—=h(v, ™)

It remains to show (4.1) for R, in place of R;. In fact, Orey has shown 1n (3]}
that the large.devigtion principle for woRy;* or e (R:)™ is equivalent, Bub for the
comple’neness we glve here the demonstration.

-~ Metrize P (Q) as in (2.8). Then by Lemma 4.2 the distance between R and
R;, converges 0 zero uniformly in e as n—>co. Hence if 6>0 and O, is a olosed s—
‘peighbourhood of O, there exists (&) such that for any fn>no(8) -

[R.cOICLE EOS] [Rs EOs] N P:(2).
~ Thus (4 1)’ implies: .
fim nlog w(R.€0) <11m 'n”ilog /,L(Rs EOS) — inf inf Ay, 0¥).

n—eo €N Py(Q) pEsupp(m)
Now let & | 0 and use. the faet tha,’ﬁ h(v, pN ) isa lowerseml con’omuous funchion
1o obbain (4;.1), '
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Remarks. 1) Theoerm 4.1 still holds when F is a general compact space.

The proof is exactly the same as above afber the cha,nge of “fe ZF ”by“f is 5?' =
measurakle and conbinuous”, :

2) When one considers the large deviation for the empirical distributions e
D;', Theorems 3.1,4.1, and the confrastion ?rinciple say that Io(@) = inf

P Esupp(m)

H(Q]p) is the rate function.

De Acosta has given in [1] an upper bound of the large deviation for wo .D‘1 as |

following -
I’(@Q) = sup - inf (j 9dQ — logf e”dp)
_ gECKF) £ Esupp(m)
Whloh comoldes w11;h Io(Q) in the oase that supp(m) is convex by the minimax
theorem, But in general, I7(Q) <I,(Q). The difference between I, and I? can be
shown by the following example: .
o 1 1
| F={0, 1}, u= 5 ¢ L 3 oY,
where 8 is the Dirae measure. In this simple case, we can give easily
' 0 . fQ=03,0r 8y,
L@~ {, _ TAhorss

+oo  otherwise,
ID(Q)— sup. (Q<0)9(0)+Q<1)9(1> 9(0)V9(1>)——0

~ In general, ID( ) is always & 0ONVeX funotion, bub Io( ) is not. So Theorems
3 1and 4.1 extend and 1mprove muoh bhe results ob‘na,med in [1]. ‘
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