Chin, Ann. of Math.: -
12B: 3 (1991), 358384,

TIME-DELAY AND SPECTRAL DENSITY FOR STARK
 HAMILTONIANS @b —ASYMPTOTICS OF TRACE
FORMULAE"™*

D. RoBERT* WA,NG ‘XUEPING » ( }_,g- ,T.) m.e'

Abstract

This paper studies the Schrodmgel opara.tm with a homogeneous electric fleld of the
B 'form A+:v1+V(a:), where = (21, *»+, %) ER" It is proved that in the specotral repre—
sentation of the free Stark H&m1lton1an, the tlme—delay opelat01 in sc,a.tteung theory
can be expressed in trems of seittering matrix and under reasonable assumptions on the
decay of the potential ¥, the on-shell time’—delay operator is of traes class and its trace
is related to the local spectral densﬂ;y via an explicit integral formula. Some asymptotlcs

for the trace are established when the energy tends to mﬁmty.

§0 Introductlon

- This paper is a oon’umua’omn of our work [14], in Whloh we proved the
existonce of a global tlme—dela.y operator in scattering theory for Stark Hamilto—
nians and established the relation between time-delay operator and soattering
operator. .
In this work, we wan?t to study the relationship between time-delay and local
speotral density and to give asymptotlos for the seattellng phase. and the trace of
on-shell time—-delay.

Lot Hy= =4+, be the free Stark Hamiltonian and H=H,+7V(s), where
VELI,O,, and satisfies that for some go>0 o

lV(a;) ] <O<m1>1"“° fox o= (w1, ¥') ERX R”" a;1>0

and

. |V ()] <O<a;1>"§'s°, otherwise, .
Then it is known that the scattering operator § for the soatbering process of (Ho,
H) exists and is unitary on L*(R"). Let F 4 L*(B")—>IL*(R: Lz(R“‘l)) be the
unitary operator defined by
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(Fa) (M y) =(yA)e ¢ Pu)(y), yER,
where G/(D) = (D}/8) — Dy, Dy=6"2(8/0wy), Ay = 2 (8%/ox3), and v(A) is the
Irace operator on the hyperplane =M. Z 4 gives us a speciral representation for
(F 1HoF zitﬁ) (A ) =Mp(M- ).
Since § commutes with H,, by a theorem of von Neumann, S is deoomposa,ble ir
the spectral representation of H 0!

(FBFTP) (M y) =S MNP, ) (y), ¢'EL2(R LZ(R”*))
where S(A):L?(R*™1) — L*(R") is called the scattering matrix, By Kato-Kuroda
theory ‘8’, we have . '
S (\)=1-2msT (), - I (0.1)
where
T =7(Me PV =V (H -A—d0)™. V)e*Py(W)", M op(H)  (0.2)
Whene§er (H - R.+fz;o) ™o llm(H hiF%s)“l exists, In [14], we have also seen that

time-delay operator tD for the scattermg process of (Hy, H ) sat_sﬁes
bD = S [Dly S ]

By studying the smoothness of §() on A, we shall derive from¥(0.2) that in the
spectral representation of H,, #p is given by a family of operators {f, (M), AeR}, '

‘where -
tD(?») —%S*(?u) ;S’(?\,) ' h | o (O 3)

(0.8) is Elsenbud—ngner formula, of tlme—delay for Stark Han:ultoma,ns Wlth
suitable assumptlons on V, we shall prove that #p(A) is of frace oclass on L?(R~"1)
and its irace, ocalled mean time-delay, is rela,ted to the looal spectral density by

(t‘l))(?\,)vstr(tp(?\,))%—.?w[ 3a;1V(:v) ° (2, o }.)dm T0.4)

*; A) is the kernel of -a%- Eu(k), Bn()) being the spectral resolution

of H. (O 4) is ba,sm for studying asymptotios of trace of time—déiay on ‘energ'y—-Shelll _

A. The organization of this work is as follows In Section 1, we study the smoothness
of the boundary Values of resolvents and prove in partlcular (O 3). We glVe also
several estimates-for the norm of T (7\.) in Scha.ﬁten classes, which guara,ntes p (7\.)

10 be of trace class. In Section 2, we establish (0.4). Seotlon 3 is devoted to sbud ylng .

the asymptotlos of some traces related to soattermg phase In Seotion 4, we give

asymptotios for mean tl_rnefdelay LG5> (N, agh—> — ~ic0, The same problem for A— +oo

is more subtle and is left as an open question here; it will be studi‘eii" ellseWhere;?



360 CHIN. ANN. OF MATH. : -~ . Vol 12 Ser, B

s§ 1. Smoothness of Resolvents and Scattering Matrix

We begin with giving some estimates over the resolvents R(A+de)=(H -AF
#8)~ as ~>0,. The following results have certainly something to do with the recent
works of Jensen ™% and. Wang®® (Theorem 5.1). But the conditions here are
different from those in the above-mentioned works. At first, we assume that

7602(3"),-?-77—1751;“(3"), pork=1,2, (@D
Hm  inf 2V (o3, ) > 1. | @2

S . 1m0 o € RP”
There exist 81, & >0 such that for any R>0, one has
<a:1>3"1|V(m) | + |8,V (0) | <OLa'y~ for every (@, @), o> - R @ ER"'1
| (1.3)

Here 0>0 may depend on R, : S

Flom (1.1)—(1. 3), it is known (so0 [2]) that H = —A+w1+V(a;), defined on
D( A) N D(wy), is essentlally selfad;]omt 'and H hasmne, sigenvalues, In the follow—
ing, we denote still by H the selfadjoint realization of — A+m1+V(w) By
Mourre's method, we can easily prove the following

- Proposition 1. 1. For overy s<1/2, MER, the limits: . .
- (D> R +’00)<D1>”—11m (D> *R(ML0e)<{Bp™

‘ewist in morm of operators on L*(Rr). Moreover the map A—><{D >R (?»+@o) (D>
Locally Holder continuous on R (Here (D> =1+ |D:|®)*?).

Proof We verify that A=D, is a conjugate operator for H in any bounded
interval IR, Clearly ¢[H, A]=I+8,V and *[[H, A], A]=(&"/02))V. So by
(1.1), these eommutators are bounded on I*(R™). Let g€ 0=(R) such that

' g(wi) =1 for @3> ~1, g(w) =0 for ;< -2,
By (1.2) and (1.3), for B>0 large enough, there exists >0 such that
Ex(I)ilH, A]EH<I) ol qy(I) +EH<I) g(@1/R)0nV Er(I). (1.4

Tt remains o cheok that Bu(I) g(@/R)8,V Ey(I) is compact. Then weo can apply

Mourre's theory which give-s the desired results. But (Ho+%)™ g(wy/ R)a‘,_lv is

elearly compact, Since |

[(H+8)™ (Ho+@) 1 g(@1/ ROV = - (H +®)‘1V(Ho+w) g(ml/R)a‘,‘V

and by (1.2) and (1. 3) V(H +f1;) -1 is bounded, we see that (H +fz,) 1g(ws/R)3,,V 18

: compaot g0 i EH(I ) g(ws/ R)&,,V
- Suppose in addmon that

(ak/ak)VEL‘”(R") 70<9, i>2. (1.1,
'We have the followmg result on ‘smoothness of 7«.—-><D1>'°R(7\. +30){Dy)~* defined
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on R ‘with values in the Banach space of bounded operators on L?(Rr),
Prop051t1on 1. 1 Assume (1.1);, (1.2) and (1.8). Leb s>y+1/2 Then,
. , A->{ D> R (A+60){D>* '
is (§~1) times continuously dzﬁewntwbla and;
%wiysﬂ (h:£80)<Dsy™= KDy~ lim R(hstbe Y Diy™, VKER,
Proof - It is an easy consequence of multlple commutators teohmques e,
Remarks 1.9. Arguing as in our previous work [14] we can replace im
Pbropositions 1.1 and 1.1’ the weight <.D1> -1 by p1/2 where p€0~(R), p(mi) 1 for
- @120, p(wy) =<w, > for at<< — 1, '
Propos1t10n 13. (1) Assume on V' (1.1), (1.2), (1. 3) wml o S
: NV (1 o) |<O. p(@1)* for s>1/2. o (1 5)«#
Then A->8 (L) is locally Holder continuous on R with values in .,? (L2 (R“‘l) T
(if) Assume on ¥ (1.1), (1. 2), (1.8), (1.8)¢ and

(8¢‘V(m1, @ ) |<o. P(%)s - ) - (15)1
Then 7\.->S (A) s contmuously di, ﬁ‘erentmble ffrom R 'mto .,Sﬂ( L2(R*1)) and —g;—‘-q}s. locally
Holder from R into %(I*(R*1)). »

Proof (i) Let us denote F, (1) = 7@) g-iew),

. Tt is sufficient to prove eontmuﬂiy for, A—-)f “a(M)p® with values in ,S,” (L"’ B,
L2(R1) for s>1/4. : v
For that we have from abstract seattermg theory e

3374(?») s Fa(A) +p° ——2-——p ((Ho A—do)™ - (Ho~7t+00)'1)p

So we have clearly the result,

- (ii) Using translation invariande we ha.ve T(A+s, V)=T (?\. Vs) ‘with Ve (mi,
@)=V (@;-+e, a'). :
Then (11) results easuly from (. 1). In partmular we have

(x) F a8V ~ 0V (H -1~ %0)‘1V V(H-2- @0)_1(6@117)

—V(H A w)‘l(@ V)(H A- 00)‘1V]574(7\.)* e

Remark 1.4. Clearly if we have [8’;,V(w1, o) | <Op(wy)* for 0<k<j then one
can prove that A—>8 (A) is of olass 0" on R with values in (L2 (R”‘i))

‘ Corollary 1.5. Les 1y denote the time~delay operator for the soattering pfrooess of

(Ho, H). Then tp s clecomposwble in the spectral representation for Ho, and we have.

(Tt F T N )= toM P, +)) () (1.8
~ Jor any y €O}(R,; L*(R* 1)), In addition

0:3) 45 (0) = - 8* W)L 8 0), vaeR,
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Proof Notice tha’o (ﬁ' 2Dy F M) (7\. y) = —fb lp(}» y), for any $ €0 (R I?

(R*1)). Pro_pos:Ltlon 1.8 1mphes}that O (R L2(R”‘1)), is invariant by F SF 1%
So .

(FASDEFT 0 9) = -8 BO* S EW, D]
Now it follows from (0.2) that #p is decomposable and
4 d v
' W) =B®)" [& ks S |= a3 () -_m)

By a,n argument of densnsy, we can prove that (1.6) is in fact valid for any
peL’(R; L? (R*1)). with #° 414,6 D(#p). Notice. that (0.3) has the same form as
the Elsenbud—ngner formula for time-delay in soattering theory of Schrodmger
opera’ﬁors w1thout Sta,rk effeot (see for example [16]) ‘Since both time-delay operator
and sca,tterlng opera.tor may be deﬁned in an a,bstract setting, we wonder if such
formula is universal.

" To be able to deﬁne scattering oross sec‘nlons and scattoring phages we study
HOW comvamty olasses for T (?\,) and —-—(?\,) (for theses notions see [4])

- The followmg lemma will be usefull:
Lemma. 1.6. Onusider W a méasumblé fmotiofn, on Ry x R} satisfying

(+) W (ay, o)] <O<a,1>“‘ <m’>“"' for every #,>0, @ ER”“l

(=) IW(wl, ’)|<O<z1>"" <a;'>"" for every 2,<0, & ER"'1 _ .
- Suppose s, ER arbitrary, 5,>0, 8>0. Then the operator F 4 (?») W s compact.
Moreover of p>0 is such that 8> ((n-+1)/2p) +1/2 and 8'>(n 1)/p then F 4(M).
W s in the Schatten class O?(see [4] for definition).

Proof It is sufﬁclent to study compacuty of W F 4(7») Fa\)W.
" We write down .
W a(h)* ?A(K)W =W x(Ho A) » (@B, (A)/IN) 2 (Ho— 1) - W,

where ¥ EOO (R), x(w) =1 for |u| <—and write for -i— <s<1

Wﬂ'A(h)*fA(M W= Wx(Ho AMp~e (o' (dEm(?»)/dk)p“’)p x(Ho -MW.
So we are reduced to s’ﬁudymg compacity olasses for
A=W X(H 0~ W)P—s
‘Write it as A= Wp Sy(Hop= ?») +W[x(Ho—?»), pl= B+E
-Ad first we ﬂtudy B. We have olearly, for the p—norms in the Soha.tten class 0’
the 1nequa,111;y | ~ _
o Bl p<5(ilBil|;)+_llellb+ IBsly),
where : | . C _
By=a >y g () (Ho+i - 1),
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By=<a"> o> (1~ g(@1)) 74 (o, D) (Hoﬂ ?») ¥, N30,
By =<'y~ <>~ (1 - g(21)) (L=7s(@, D)) (Ho+i=1) " .
Using estimates of p—norms for pseudodifferential operator'™ we have
IBUS<O [ <oy (Lt o]+ [§]) M1 < +oo 1t 87> 2,
The cut-off symbol ve(®, &) is defined as '

: Ye(®@, §) =1-6 (miélgl ) 0<w<2r
seor] 230w B3
' 'We have '

| B, ﬂ,’?<0 J(Kv’r‘_"(zv Sk £y -210) i i

1 a,nd 81> 1 +s
P

SollBalI"< Joo if &>
For B, remark that on supp (1 -7.(z, £)) we have [.fvi—r- 4 [ |< <§>“ So

| Bs|3<<0 (J' aos E07 pald’m) ,[ s +I£I=|<<f>“<m1>p(s Wdwidé < +oo
s M 1 -+ |
if 8'> op
To study the operator B we have to control the commutator [x (H 0~ A.) f(ml)],
where f(w:) =p~*(w1). We can write

[x(Ho—A), f]——-—-- j G- ?\.)e"”"( F(a) - f(m1—2tD1—t2))dt (1.'7)'

8.

and _ _ _
f(mi) - f(w1 - 27§D1 - t2) = (225.D1+ tz) ° Jj f, (501 -+s (2#D1 -+ t2> ) ds |

ot [ b s@iD )G, @

Here we have used a specific property for Weyl quantization: for a ﬁrst order
operator asw+B-D, and fa smooth function, the symbol of f(aw+,8D¢) (deﬁned by
the spectral theorem) is exactly f(oa w-+B£). ‘

 From (1.7), (1.8) and (2.2) of [14], we ha,ve

x(Ho—-A), f1= j(ZtDi- )5t~ ;\‘>e;tm<J 7 (‘”1+3(2t171+t2))ds ) ;

24 f“ A —1) 2o (L)f "(ou-+s 2D+ ds i (1.5,
"and for every k>1 | |

ch [Z(Ho 7“) tf]— 2 OJD’+1fi(i h)t“’e‘m‘

(Vw%ﬂﬁmmﬂﬁu T
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where 8;>1. :
As for B we decompose H= E1+E2+E'3
: E1-—Wg[%(Ho 7")y
Using (1 10) with & big enough we see that
N1 EBlp<O+[ Byl
In the same manner we have for Hy=W (1 -¢)- 7,,(m1D) [x(Ho Ay o1,
| B3| ,<O| Bal, choosing a>1.
For Es_—W(l 1)) (1 —ys(w, D)) [(Ho~A), p~°] we have

| Bally<O[ <2 (X = 7a(2, D))<w1>?‘6' P8

-1 nta , 1

2p Ty

~ Summing up the three above estimates we have proved Lemma 1.6.

' Rema.rk 1.%7. If we replaca the weight funetion p(ws} by {Ds>7Y, Lemma 1.6

‘a,nd 81>

So 'llEsI\p< +oo if '>L =

can b‘e“lmproved in the sens» that we have the same conclusion for 8>

> -2—13-4*% This is.easy 1o see: we work as in the proof of Lemma 1.6 and we remark’

that with the new weight the commutation formula is simpler

[x(Ho— M), f(Dl)]=——-—-It (G- x)e”m(J f (Dr’rst)ds)d#

Moreover in this proof we can take any @>0.
Proposition 1.8. Suppose n=>2 and V' satisfies
1V (@ 9| <O for >0,
@ {lV-(wi o) | <0<w1>“5‘<w’>'”' for @:<<0

with £>0, 6’>—-ﬂb—1-. 3> —54— 12 then T'(A) ea?(L?(Rn-i)),

(11) If both V and 3@,V satisfy asswmpmon (fz;) then (?») and . p (?») are in

0?(L2 (Rn—l) )
~ Proof (i) Using (0.1) we have

T() =F a) ¥+ Fa(h) - Fa(d) ¥V (H -2~ o)1V o F a(M)'=T2(A) - —To(A).
Write ¥V =Vy+V2 where ¥V and Vs satlsfy -

|V iCa, @) | SOLaplor ey ="
for o:12>0; _
|Vi(ws, m) | <L OLwsd>~ 2(m’>“°'/ 2 for a;1<0
for =1, 2. R
We can compute the eompael’ny ola,ss of T.(M). usmg Lemma 1.6. For Ty(A) we

Wmte down

Ta(%) F sV P’""P (H - d0)~tp’ 9’5’4(70
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‘with s>—’}l—, we apply Proposition 1.1’ (Wi'iah Remark 1. 2) and Lemms 1.6,

Now we wan? o consider p-norm estimates for 7' (9\,), (?\.) as 7\.——>:|:oo

A% first we need some nmform energy estlmates for bounda.ry values of regolv-
ents, : ' ' _ |
Lemma 1.9. For every s>>1/2, t here exists 0 >0 such that
<Dy~ (Ho ~ A ti0) D> ~°| <0, VAER.
Proof By translation in @ variable, on e has. o
|<Ds>=*(Hy ~hkio) < Dsy~*| = | <Dsp~ S(Hoﬂ:w) ‘1<D1> |, VAER.
Lemma 1.10. Lei V satisfy (1.1)—(1.3). Assume in add?ztwn that V € L= (R").
“Then for every s>1/2, there ewists 0>0 such thas ' B :
@) KDS-R(£i0)<D>~| <O, ¥A<O,
(i) o(@—N)"*R(Axio)p(w:~1)**| <O, V%<0 -
Proof (i) Let I,=[A-1, A+1]. We. Clalm that ’ﬁhere are >0, R>0 suoh tha.t
¥ : Ey(L)[H, D 1Ex(I 2) >0, umformly in A< - R,
Then (i) follows from Mourre's commutator method. Remark tha under the
 assumptions (1 2) and (1.3), we have
Hy(I,)[H, D1 Ex(1,) >0y Hy (L) + Bu(l) 9(“’1) @oV) En(1),
-where ¢,>0 and g€ 0=°(R) with g(wi) =0, fora;< - R, and g(wy) =1, for o>~ E‘,0
1, Take p €05 (] ~ 2, 2[) such: that p=1on [ -1, 1]. Then |
<P(H ~ M) 9 (@) 20V | <Oll@(H.) <o > g (@1 +M) | <O') (H,+8) "> g @+ |
: LO"| (Hy+8) gilw)<a’> g (@ +1) |, A<0.
Heére gl(zvi) 0, if m;<-R,—-1 and gi(e1) =1 if > - R,. It is olear that (H o
$) 193 (#1) <a’>~"® is compaot and the. multlphea.tlon by g(ml—l—?\.) converges strongly
$0 0 in L*(R"), as A—> - co, Conseguently
| | (Ho+’1') ACHCHS g(wl+7~) |I—>0 a8 A—> — oo, (*)
is proved.. . cs :
(ii) Since- |lp(a;1 =AY 2(])(H h) {Dy* ]I is umformly bounded, (of Lemma 2.9
~dn [14]) (i1) follows easily.. ' :
" Lemma 1.11. Suppose V satis ﬁes (1. 1) (1 3) and
l|a¢1V(a71, w)"L"(Rx xR"%; 1)<1 . i . (1 2)’ »

Then the esmmwtes (1) wmi (11) of Lem'ma 1 10 hold for A.ER (fm pwfrtwulwr forr A
Pa*oof It is the saIme as for Lemma. 1 10 assumptlon (1 2)’ glves a umform
Mourre estimate, R B
Lemma 1.13. Oonsider W6 measirable funotzon swt@sfymg (+) wnd ( )of

Zomma 1.6, Assume 8>2—L + 1
S 23p T
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For every >0, there ewists O>>0 such. that . ‘
1) [F W, <OAY™+<Aper2) for A<0;
@) | F W y<O(L+ Ay -+ QA @/2-0/2+%) for 40,
Proof We use the same method as in the proof of Lemma 1.6 (with Remark
1.0). Then. |24 W [5< I D ™2 (o= 1) Lyt [W (o=, <D~k
‘We use translation in A, : : -
As in Lemma 1.6 we have six terms to estimate.

1) B <Oy fo <or-thy ey Fdas, VN0,
80 [B: (1) |,=0([A]®), |A|—>+ce.
2) 1Ba) <0 Cort1y™>ods.

So | By(A) |,=0(|A] %) for A—> - oo,
=0()  for x—;;poo :

) 1B 13<0 <o+ 155Gy i

the integral is taken over the set { — |£|2— <Y/ 2<a;1< |£]244€>%/2}).
Compute the last integral in polar coordonatbes in & we obtain
S O(|A|2-5%), A—> — o0,
B0 ey s o
We estimate the other: three corresponding berms. in: the same way. So we obtam
Lemima 1.12, ' .- SR : v
~ Proposition 1.13. - Suppose that V saitis ﬁes the wssumpmon (1) qu/th 81—- 811 of
Prroposwt@on 1.8. Then we have . . ’
T @) 1y=0(|3[ %) for dor—o05
4 V&0, |T(A) |p=0(| | »22-4ex2/24) for j—>+co,
Furthermore if 0,V satisfies the same assumpiion as V then the above estfz)mtes holdk
also for tp(M). For the estimate h—>+oo we assume (1. 2)’ of Lemma 1.11,
© .Proof Asin Proposmlon 1.8 we write T' (A)=Ty(A) ~Ty(A). We have . :
T Ilp—-0(<%>”’ 2""") for <0 -
and L e
[T (A) [, =0(A> ™2+ <?»>‘"/2‘”’2”+8)2 for 350,
By applymg Lemma 1.12, one has.
Ty(h) = F (Vo™ (@1~ 1) o™ @1~ 1) vp (wi A) (H - ) *’P (x: a,);

. » Lo P @m s NF M

Usmg Lemma 1.10 for ?\.<0 and Lerama 1.11 for A>0 we ge’a
SR TS0 Fa )V 0™ @ =Ny

' w1th o 1ndependent of A. ‘
Then for every s>1/4 we have
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T3 (M) | ,= O (Capr/2e+2e72%) for A<0; 4
[ T3 (A) = O (L + Ay Ay n/a-/225)2p5%) for 10,
Putting together these estimates we prove Proposition 1.13. The corresponding

. egtimates for {p(A) are obtained via dT

an
1.12;

and formulae (0.2), (1.5) by using Lemma,

Remark 1.14, If 81> +-12— and V, 8,V sabisfy assumption (i) of Propositlon

1.8 then Proposmon 1.13 shows that lim T(A) = hm tp(A) =0 in tra.ce norm (see
A=y w00’
§4).

§2. Mean Tlme—Delay—Scattermg Phase and
~ Local Spectral Density

In § 1 we have studied the tlme—dela,y operator and the time delay matrix
#p(d). If V and 8,V satisfy :
{IV(wn @) |+ | Gu (@1, @) | <0<w1>1‘“<w’ =% for @;>>0, @.1)
| (@4, @) | + |8V (1, @) | <O<‘U1>—6'<‘U’>—°' or ©;<<0 '
with 8 >n-1 and 9> (n+1)/ 2 then for each AER, t5(A) is of trace-class (Propo—
sition 1. 8) and we can define the mean tlme—delay

oy = () = —i- (8 (1) - )
We know also from Proposﬁlon 1.8 that (tD(A.» is contlnuous on R (locally
Holder).
Moreover if for 0<<j<Kk-1 we have o
|03,V (w1, @) | <OLap>'™a">™ for 130, -
. {lai,';V(wl’ ,)|<O<w1>—6’<w’>_6' for €U1<0; :
+then {#p)y is Ok—smooth on R,

@.1);,

To make connexion be’nween <tD> and the speotra,l shift funcbion of Birman-

Krem [B. K] we have to study compaocity class for (H ~2)~ o (Hy-2)7%
- Lemma 2.1." Suppose n=>2. If V. satisfies (2.1) then for rrewl p=1, k=1,heN

-1 n+2
2p

compacity olass O, fo'r efvm"y :€C\R."
For ‘proving Lemms 2.1 we use the followmg

such that 8> 61> n B>

" Lemma 2.2. Let us consider o measurable funct@on W on R”XR" as in Lemma

1.6, If 5,> "”pl, 81> p’ a> e amd 9>—i?—+a1, tken the opemtor W(Ho —z)"ws
gn:the Scﬂattqn. dlass G for overy zEO0\R. "

2p

+1-g4 then (H ~2) %= (Hy-2)"* is in the
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Proof of Lemma 2.2 By using the same method as in the proof of Lemma 1.6
the resulb is easily obtained. - - . : , :
*Proof of Lemma 2.1 Iterating the resolvant identity we have

(E-a)™ = (Hy-2) = (H, - z-)’*é( ~V(Hy-2)"Y)
+(H-2)"1(~ V(HO z)‘i)l‘“f1 2.2y
N is chosen big- enough.

Taking (k1) derivatives in z we get
(H-2)P- (Hy-2)™" |

(k 11), P 1{<Ho 2)~L. Z(V(Ho—z)-i)d.;_(ﬂ‘ 2~V (H, —z)"1)N+1}
| 2.3)

First we choose N b1g enough such that the second term on r, h, é is in the
Sohatten ce. The other terms are of the form - ' '
(H ~)™" ALV (Ho-2)™),

'm+Q1+§Zs+ +Q’r>k+'r, 1<g5, 1<m<70
So we have fo compute eompao:tty olass of products hke .
- (Ho—2)™ V. (Ho"z) "V (Ho- z)*q’ V(Ho“"ﬂ')—q"
This can be done by using Lemma, 2.2 and Holder mequahty in: Sohatten olasses..
This finishes the proof of Lemma 2. 1. S ‘
Tt results now, from Blrma,n-—Krem theory([B K] extended to non seml—bonnded

operatms}, that we have .
Temma 2.3. Suppcse V sat@sﬁes (2.1) qu,th 8’>n 1 wnd 81>-- Then |

i) For every fcOs(R), f(H) — f(H, ) is of race class
ii) There exists £ € Li,,(R) such that -

() - FC) = [0 +6 4. for evry fe o:(R)
Supwose furthermore that 61> "‘;1 Then
. iii) det B(A) =2 for g, 6. NER. . , .
Now we want to conneot the spectral shift funot ion £ to the speotral resolution.

7= j F0aBa(0) o evé'rfy' FEC®)).

' Lemma R4. Urmdea" tke assumptwns (2 1) on V, (81>——suﬁ‘ices kea"e) foa‘ ewry

, f E 00 (R), 3‘,,V f (E ) ds of tmce class wnd fwehwfve . ,
U () - D) = - @ S (D). _»
Proof At first for & big enough, 2, V (H,-+8)7* is of--tla,ee:class. Then using,
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the frick of Lemma 2.1 we can prove ea,sﬂy that 8,V (H +4)~* is of trace olass So

0.,V +f(H) is of trace olass,
The relation we want o prove is clearly equlvalent o
tr([Dy H1f(H) - [Ds, Helf(Ho)) =0.

For every 1EOT (R2), [xDs, H1f(H) and [x-Dy, H,] f(Ho) are of tra,oe olass.

Oyelicity property of the trace gives
tr([xDi, Hylf(Ho)) ‘"tl'([xDi, Ho]f<Ho)) 0

Take now yxz(w)= x(-R-> where xEOo (R), z=1 on[ ——%—,—12-] We have.

O=tr([xz* Dy, H1f(H) - [xz* D:l; H,1f(H,))
=tr(ze ([Dy, HIf(H) - [Dy, Ho]f(Eo))Hr{[xR, H}D,- f(H))
~ [z, Ho]DLf(Ho)}
Oontinuity property of the trace gives, ' ' : i
lim (el sy H1f(H) - (D Hyf(Hy) = (LD H]f(H) [Dy, H)f(H,))-.

R-rdeco

But we have :
Crn H = Uty Hol = 4 x31+1},2 ot 2 a2

2 ———————
R e ,awl ..
So we have to show that

| llmbr([A 221+ Ds) (F(H) - F(H))) = 0
'Ohoose N big enough and. write
F(H) - f(Ho) = (H+4)g(H) - (Ho+%)"”’g(ﬂo) ,
=(H+6)™ - (Ho+%)"N)9(H)+(Ho+%)‘N(y(H) 9(50)),

where g € Oy (R). Then from (2.3) and (2.4) we obtain
FH) —f(Ho)=(Ho+4)™*+ K, K being of trace class.

It results o o

[4, x:]1 Da(f(H) ~ f(Ho)) = [4, 1e]Ds(Ho+6) " K=L(R)-K.
Usmg m10r0100a1 looa,hza.tlon as in Lemma 1.6 we see easily that

IL(R) <0 VR=>1. -
" But L(R) converges sﬁrongly on LZ(R") to O as R——>+oo So by a Well known:
theorem about convergence of traces ! we obtain : : :
: llm, .ﬁ,r(L(R)._K) =0,
which ends fthe proof of lemma, 2.4,
Proposition 2.5, (1) Suppose v smf@s ﬁes tke wsswmptf&on 0 f Lemma 2. 4

Then the defrwwt'we ém the dfz,stmbut@onal sense of the spectml shwft funotwn § s
given by C B :

.A.f,g-'v(h)"'=;7_j(?»)_ -=tr( oy 2 (n))

(2.4)
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awhere. n is by de findtbon the distribuiion

<my =10,V -p(H)).
3FH

(A) dsnot of tmce class 1)

(Not@ce that @ priori 8,V .

(i1) S’MPPCSU furéhermom 81>(n+1) /2 Then, for every 1/2=2s>1/4, p™%8,V -
By

T —— 0° U8 of trace—class.

(iii) Suppose that 61>(n+1)/2, 8’>n L and V satisfies (2.1); for every =1,
Fhen aEH (Aysy.) s O on R"XR" 3,V( ). aEH

», @, w) 4s mtegmbla on R" and

we haw

- f 07 (o) 228 0, a)im.

In pwrtwulwr the Spectml shift function & s cont@nuously derivable on R
Proof At first recall the Stone formula , ’
_ dEx(A) = (2w) (R (A +10) - R(?\. @o))d?&
“Write down

0By
| P
- with N big enough Usmg Proposﬂuon 1.7, Rema,lk 1.2 and Stone formula we

o0uY LI g =p- a,,V' (H- x+@)*”»p-s'pS<H poviyr 2

have to prove ﬁrst that :
 A=p"%8,V (H - A+4)"¥.p~¢ is of trace elass.

"We consider separa,’aely ' o '

Ay=p~ s V (Hy—A+3)"¥p™, _

A3 =700V ((H = h6)™ ~ (Ho = A+4) )p™

Al =p~'sath-s<Ho W e A

A" p0V [(Ho—A+8)~%, p™°].

1 is easily ohecked by the method of proof of Lemma 1.6.

For Af we oompute the commutator by derivating (N —1) #imes the’ 1dent1ty

(o147, 1= (Ho- 249 (2f 47\ (y -2046)7,

: where j‘ (m1) =p~%(wy). Then
(N -1)| [(Ho—x+@) ¥ 1= = klyl(Ho-—?»+%)“’(2f'3/6w,+f") (Ho—M+08)"",

i+k—N+2

_As in the proof of Lemma 1.6 we decompose mto nme terms

[(Ho M—%)"N f1= 9[(H 7~+@) B f]g+(1 g)?’[-,-]g |

BRI VG RPH L SRS RO JOR Ve R Vi R, oW O, [ Ry b
+A=9) @=L 1C -7+l 1 -9)(A~-7)
+@~-9gl-, ~](1 g)(l P+HA=gA-y)[+ 10~ y)(l s
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It is not difficult to prove that p°9,,V X (eaoh of the nine ’oerms) is of hra,oe olass,
In partioular remark that f'=0(p*") et f"=0(p*"*) and on Supp(1-+) we have

f(@1)+ §1——0(pi‘s) 0(1) with the ohome%—:<s <%_

To check A, we use identity (2 .3). Remark that each term ends by V (H, ~A+4)
p~¢ and we write '

V. (Ho~A+6) 70" s=Vp~s(Ho— ?\.+q,)‘1+V[(HO ~A+8) "1™,
Each ferm on r. h. s is bounded. With this remark it is not difficult to see that Az

isof traee olass.
 The third parb of Proposition 2.5 comes from the followmg lemma,,
Lemmea 2.6. Under the assumption of (iii) proposition (2.5) we have

€)) BE“(?», +) 45 0 on REZX R

(if) For every bounded gnterval I CR, every roal ¢>(n+1) /4 and e'vefry real §=>0

there e.ists O1,x,r such that

2 2Bu 3 5 )| <O () p<y1> o(-ar)p(—9)*

for overy o= (v, @ )—>R xR, y= (yl, ¥) EB,,,XR" =
" Proof of Lemma 2.6 We have, by the Stone fmmula,,

0By _ (-1 (H 7\,+q,)—N(RH(7\.+9/o) ~ Ru(h -~ ’&0))(5 A-+6) "

_ o\ 205
-1 N aEH N a—EH
with RH(A,:&:@O) (H %:F@o) We have used (H 7\.—{-@) = (w) 55

Deno’amg p® (ml) p( —a;) we have to estlmate in L“(R" X R’;) the kernel of o
(A =p" " p "(H - h+6)° “¥RBp(Atio) (H - —~A—8)¥pp¥”

Trom a theorem on kernel of operators™ it is suiﬁolent to show that F.(A) is
in the space Z(H*(R"), H*(R")) from some s>n/2 (H*(R") is ’ﬁhe usual Sobolev
space), Olearly ib suffices to prove this for F(A) =F (). As usua.l in this paper we
~ decompose F(\) as o : :

FQ)= p""‘P’(H ?»+%) Yo~ p"RH(7»+w)p"(H ?»+%) “HeptHp"
for some o>1/4 Then we have to prove that o
G(A) =p"*ep" (H =~ A+6) p“’Ei”(Lz(R”) H(R))
for some N, o>1/4, s>n/2 if r>(n+1)/4. For then G*(M) EQ(H“S(R_J_’)_, L*(R")).
We decompose G(?\,) in three terms: G(A) =G4 (M) + G (?\.) +G3(?») A
| G (N =pvRep g (H —A+8)7

The assumptions on V guaranties unlform elhp’ﬁlolty of (H M—fb) for a:1>0 (wfoh'

weight |£2]+ |as| +1).
So taking N big enough we have', . :
' . G (). G,? (Lz(R") H ‘(B.") Wl‘bh s>n/2
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-GN =p"p"(1-g)v(w, D) (H -A+5) "o ~ '
' For this case, as in [14] Lemma 2.7, we oan qonsﬁruét a parametrix for y(!v,
D) (H ~A~+4)"¥, TakingN big enough and fr>a>%
(B7), H*(R")) with s> .
G (h) =

we have clearly G,(A) €& (L”

p Hep' (L -g) (L -v(x, D)) (H -A+5)"+p

=p1-9)(A -7 (e D))P“’(H ?»+%)”N+P A-9A-7(a D))[(H H@)‘ » P77
——G’ (7\,>+G" _

or G5(A) we cxamine the symbol of p"(1-g¢)(L~vy(», D))p~°. On ‘the support of
1-y we have |£|?~ —wm;. So the principal symbol of this operator is of order
I adns uhiformly ins€R",
So G4(\) € Z(L*(R7), H*(Rr))for s>n/2 if 2(r - 6) >n/2.

~ For G3 (1) we use the commutator formula

- DI 2497, fl= 3 blj| (H -0 H@F 0/ 00" (H -148),

'.7+70 N

f=p7. So this term is bounded on L?*(R") for 1/4<0<1/2 and we have also G4(A)
€ Z(L*(R), H*(R")). |

To prove that agf’ (A) has a kernel of olass O (R’;XRZ , éﬁ?lying the samse
theorem about kernel we have o prove that G:(A) € Z(L*(R"), H VS(R“)) for some

:s>n/2+j. Then it is possible if rr>""’j£1 . We have in this oaso

;;a 323 OBy (2\ @, y) ‘<0 P '(wl)p '(yl)p"( — 1) p*( ~ .m)

End of the proof of Proqaswtwn 2.5 We want to prove the equa,hty
| W =[0¥ @22, 5, o)
. .in the dlstrlbumona,l sense. Denote by £ (?\,) the rlght hand side.

1
5 P

’ From (ii) Proposmlon 2.5 we know that, for %—<S<

-race olass and has a 0 kernel. So we have easily

e oo,y 2Ex ) = f.
J‘or pcO0y (R) we have by Lemma, 2 4

<P Er=r(@uY (D)) =i (fqo(w o v~3¢,V f aEHax-pm)

The con’olnulty of trace gives ¢, gD) f«p (7») £ ().)dh

This proves & =¢ and ends the proof of ]?roposmon 2.5,

Remark 2.6, Using sioothness iri the energy A of boundary values of the
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Tesolvents Rg(k:l:%o) (Proposition 1.1’ and Remark 1. 2), we can prove with the
method used in Lemma 2.6 that Ey is also O® in A with corresponding estimabes

g & 6 ‘

Remark 2 7. From Proposutlon 2.5 and § 1 we have the followmg equa,lltles

Cooy (W) = ~ 2+ (1) = 2 j 2.V (@) 3£H O, @, @)dw.

for

§ 3.' Asymptotic Trace Formulas

The speotral shlft function is deﬁned modulo a consbant. We propose here,_
given 4 € R, to compute asymptotlc for 5(?») -¢ (Ao) as A—>-oo,
To be simple, ’sape KO—O Then we define two funotlons 5.& (7\,) by

£,(0) =£Q) - £(0) = f 0. (@) Bul0, N (5 )i, for A0, (3.1)

£ (1) =£(0) ~£(~1) = [ 2.71(@) + Ba( =4, 0) (&, a)da (32)

More generally we are interested in studying

| ow, (&) —-—’br(W, f(%)) a8 A—>»-+oo0

for suitable W:Rr—R and f: R—C, supp f compact or f small enough at +oo, In
all this paragraph V satisfies (2.1); for every j=0; W satisties the assumptlons (+)
and () of Lemma 1.6 W1th 61>rro/2 &' >n—1; W is continuous on R~

As first we want o give some informabions about f(H), for a suitable olass of
smooth funchions f. Then we shall proceed by smoothing and apprommatlon

‘Lemma 3.1 Oonsq,der @ a comples funciion wnwlyt@c in @ conbe neighborhood. of
the semi—real wms [0, +oo[ defined by

Q={2€0:|Imz| <& |Rez|, Rez=>0} U {|# |<sl}
. fw'z,th 8oy 81>>0. Suppose that thete exist r>0, O>0 such that =~
4 lp(z) | <O forz€Q.

Then g-p(H 2) and (1 g) ya(m, D) -p(H?) are nice pseudod@ﬁ'ewntwl opemtoa‘s _
More precisely -

D) gop(H?) =0p(ay,) with

| 820fas, o (2 £) | <Oas(KE)™+<@s)) A fm‘ all (w, ) ER” xR2,

i) (L g)+Va(@y D)+ @(H?) =0p(aqy) with -

|820%0, 1 (@, £) | <Olass<E>~<E>™ for all (@, §) ERIx B

Proof The method is s’oandard in analytlo functional oaloulus, By the method .
already used in Lemmas 2 6--2.7. of[14] we prove Lemma 8.1 for p(w)= = (1 ~2)"
2€C/R with control in 2 for |2 |—>+o00 such that |[Ime|= eolRezl Then using the
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Cauchy formula we getb Lemma, 8.1 for the general case -
o = [ o) o)

(For details about estimates used, see for oxample [15] or [3])
Remar k 8.2, As usual the restriction r>0 in Lemma 3.1 ig not essenma.l*
weo-can drop it by writing p(H?) ={H)*.{HY *.p(H?) with some integer k>r.
Lemma 8.3, Oonsider a Sfunction f which can be written as f(u) =p(u) -@(u?)
where p is @ polg/nomwl of degree m=>0, @ an & nalytic function as in Lemma 3.1,
(We shall say then that f € AL). Suppose 2r —m> (n+2)/2+ay and 2r — m>n/2. Then.
w. f (H ) is of trace class.
. Proof The proof is easily done by using the parbition of unlty 1= —g+(1- ~9)
(@ )+ 1-g)(1-v(a, &) and Lemma 3.1 (see §1.2).
Lemma 3. 4 O’orn,sq,defr fe %’ mth 2r —m>(n+2) /2404, 2fr m>fn/2 Then.

we have | |
(W (L~ 9) (1= 7@ D) F(Z)) =01) a5 4>t-co,
 Proof -
| -0 o 228 ()| <IF - 00+ (e DY) <o

by the proof of Lemma, 1.6.
" We want now ‘o compute asymp’aotlcs for

F‘(x)=br(W°'g° f(—~>>+’or(W(1 9)7(0-D) f( )= Fa@) +Fa (0.
I} results from [3] § 3 (specially Cmollazy (3.17 )) thad; we can. ob’oam asymptobic:
expansions in A-—>--oco for'the’pseudodiﬂ"erenbial operators g°f <H> and A -g)ey(ze
D)-f < ) More preelsely on the supports of g and (1 g)y(m, D) f ( ) behavesv:
like a‘pseudodlﬁ‘erentlal operator with a symbol of the following form L
Sy (B ) 0 04 4msn P ) "

with unlform estlmates in A for TN (7\.) in symbol spaces; a; can o oomputed (see .
for example [3]). In partioular go=1.
So we have bo esbimabe '

() = UW(aa, ')g(m )f("’1+|5I +V(‘”))dwd§

- Ta(0)= ”W(wi,'_')g 92, g)f(fvri'ff[ +V<‘”))dmdg

" Lemmia 3.5, Suppese f €Ay, with 25 ~ m>n/2 Thew EUDTENE
D If < -1, w8 hivé for k-s260' S
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720 =12 ([W @ g anyaa )( £ (I 2)dn>+0(?v"’2”°’)
720 =2/2([W @) (1~ ) @) [ | Jam+0G*~)

for some a>0.

If oy > ~ 1, we assume fwthefr'nwre
lim o7* W (@, 2') = 1(') dn Ll(R”“1 .
Thon @1+oo
@ If o=~ o S
sy =we ([ 7(lnlan)([ 1) )} +00, doot
@) If > -1, | o
“J1 (?\.I):—_—‘}\,n/zfim;_(” u“xf (v+|n |‘2)du’ dﬂ)(j_l(a?_' Ydw )_{_{o.(}v‘n/?flti'a.)’

=0

A—> oo, :
Pfroof @) Ohangmg of variables § aVES ki gives

i) s [ W o, 0 -g (6174 22 )ozmzs
For every s€]0, 1], there exists 0O, such that
| (gl 2t B0 ) g1l

for every ;> -1, @’ €R", EER" :
Now choosing s small enough such that §>8;~1 we gelb the asymp’ﬁotlo for J,

(7») J2(A) is cheoked in the same manner, remembermg $hat:

1—v<wi+§>=o(—-——-——--——“1“‘;ff,?1 .

with aeo”(] i1 ) 9= 1on[ ](see([14])
(2) and (8): I’a is not difficult to see that we have to eshimate

for every A>0,
We have

Ty = || wop(utlnlintn.
u>4Alr

Ifoay=-1 1ntegra’n1ng by parbs gives. ,

o Ty=wm® [(nlYir0a.
- e> - 1 ‘we have clea.rly ' ' '\. __
| Tt (] ol i,

T g0

<0, i w1+V(w1, o) ‘ <§>2(m—-2r) (3. 3)
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This proves (2) and (8) of Lemma 3.5.
Summing up the results obtained above we ha:xre proved
Theorem 3.6, Foa* every f € AT with 2r — m>n/2+1-4-ay, 2r - fm>n/2 we have:
@) If o< -1, »

(W, 7 (E))= (2m)maove (j W(m)dw)(jf(|n|2dn>+o(m/2) A> -0,

For ay> -1 suppose furthermore
lim a7%W (04, 4') =1(a')in 1}1(13/“1

(2> If Oy = —1: , ' A

w(W-1(3) - @12 100) ([FCInlDam)([1D0") o (a1
@3) If ay> -1, : :
fi1'<W f(H)) (205) -n N./2+1+as;, f uts f (it l”)lé)du d’?‘ .

420
Ho(Ar/EtIta) - A too, :

Corolla,ry 3.7. Theorem 3. 6 holds for every f €Z(R) (Sokwwrtz space).
Pfroo f Denote bY pm the m™ Hermite polynomlal of degree m. Oleally we have-

Dm(u) e“"’/ze ﬂ%

{;pm(u)e Y/ >0 18 a total se’u in Z(R?).In par’olcula,r fixing N >0 big enough there
exist 8;>0, 11m 8;=0 and polynomials g; of degree m; such that

() - gi(w) 072 | <e;(L+u?)™Y for every uER (&)’ y
It is sufficient to prove Oorollary (8.7) for W=0, o SR

In this case we can write

we(w (2 )) ’or(\/W f( )JW) -

and from (3.4) we, have v :
(VT N(H) ><tr(\/W (& ) )<tr(\/W F N( )- ~/W) (3.5).

with, f7x(u) =gi(w)e™” 2"“‘(“1'_7:%7)‘&'
Consider the case (1): ay<< ~1,
Mulbiplying (3.5) by A~*/2 and making A—> o0 we get-

(2m) ( j W(w)dm)(j (07l 2>oz;7>< lim R FEWT);
tim A2ix TH( L)) < (o) (jW(w)«zw) [f,,mnlwn.

Al oo

But we have

o<[(#13n1  FinClnlinss, [+ i1y -van.
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8o making j~>-+oco we obtain (1) for f.|
_ Oages ((2) and (3) are checked in the same way. ‘
Corollary 8.8. Define o (A) =tr(W-Ex[0, A]), A>0. Then the conclusfwns of

Theorem (3.6) hold for f(u) =1, 1l(u) where 1|0,14 is the characteristic function of
'the sniterval [0, 1]. -

Fo'r sxample tn case 061< ~1 we find

lem A2 g% (A) ==a),.-fW(w)dw,
’ ~too . .
o, being the volume of the unit ball 4n R*, :

Proof We approach 10,1, by smooth functions with compaoﬁsupports below and
above, v

‘Remark that for IW=6‘,IV we havej' 0,V dw=0 so Corollary 3.8 does nob give
the leading term for £,()) as A—>-+oco. To solve thig problem we have to check the
second term in the asymptoho of tr(W of < >) |

Theorem 3.9, Suppose W satis fies(+) of Lemma 1.6 with —ay>h+1, 8>k+1,
kEN, 0<h <n/2. Then we have, for every f € Ay, with 2r - m>n/2,
(¥ D) i, W) 100y i

for some >0, In pariéoular

0t W)= (2 { W(w)dw)(j #(lnltyan).
0u(f, W) = (2m) ([ @ (ax, @ )amda's”)([ Cllm)
| -+ @y ([ W@ @aae [ £l

Proof Under our assumptions we remark that we can use Taylor formula in
(*) around the point |£|?/A for fO((@s+ |§|‘°‘+V(w))/x) until the order %, because

‘we have J|w1W(w1, ) Idmldw <+oo for 0<1I<4E. Wlﬁh ‘bhlS remark we can prove

Theorem 3.9 in the same way as Theorem 3. 6, (1) (See also Lemma 3 B).

Theorem 3.10. Suppose n<<3, V satisfies (2.1); for efvefry g and

I@ V (2, 8) | SOL> o™, with o< -2, for 620;
_ [a‘,y(mi, N | <Oy <)t 'w%th 3:>2, and 8, >n/2 for 21<0,
»whea'e ‘o">n 1 Then fwe have S
lim AS-2E, (1) = <2""> @™ . jV (m)dm,

’ ) At doo )
where G, 48 the aera of unit sphere 8»*. A

Proof We begin by applymg Theoxem 3 9 130 W =8, ¥ with k=1 and f €A,
~‘Uomputing the constant we find ' s
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i 32 <6le f( ))- ( )(205)“”0,,<JV(w)dm)< J f(u)u"/2‘2du>. (3.6)

Now with (3.6) we end bhe proof exactly in the sa.me way as that for the proof of
Corollary 3.7.

Now we give a result for &_ (A).

Theorem 3,11, Suppose V and 0, V satisfy (2.1)¢ and (2 1)1 with 3y =8, -1>
(n+1) /2. :
Then ' '
(1) lim §_(h) =& (-o0) evists
(ii) o8,V *Ex(] — oo, A))p® is of trace class for every AER and we have:

f §’(/~b)d/b——§1a; oy (w)dp= tr(p” ‘e V «Eg] — oo, A]p°)

=J &,,V EH(K.Q: z)dw.
Pfroof We have seen in § 2 that
&(1) = f 27 3E” (\, @, o)do— tr( 07 3EH p )

for —i—-<s <-—, (Ploposmon 2. 5)

Usmg the ideas of the proof of Propomhon 1.18 we can show
——O(IM"") A—> — 00, - (8.

- Then |¢'(2)|<0O|8]™ for-every A<<0.

This gives (1) —.(31'> otl >.1).

3.7) gives also th‘aﬁ p-sa¢,V-EH[ ~ 00, A]p% is of trace olass and

2N oF . aE ;
‘trU <p 0,V + MH s)du} J‘; ( OV 2 )d[.b
=11 (p7%+ 05,V « Byl — o0, M]+p°). L
This proves (ii) by Remark 2.7, :
Remark 312, With Remark 1.14 1 We can see tha.t a natural chowe for § is to
take §(—o0) =0 (mod Z) ‘

§4. Ajsymptbties of Mean Time-Delay

In this seotion we study the asymptotms for the trace of on—shell ﬁlme—dela.y
operator tp(?\.), which is equal $0 the first derivative of soatbering pha,se To simplify
notabions, we assume that ¥ € 0"*1(R*) and

|2V (@)} <0<w1>“‘"“‘<w’>"", @= (1, @ Y )ER’ XR”“" I
a &N, la]<rn,+1_ AT TS RN (4.1)
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 with 81>(n+1)/2 d'>n~1. Then it is known (see §8 1 and 2) that p(A) is of
trace olass on Lz(R"‘i), for every AER and we ha,ve

> (M) = — 2 J aa,,V@) (m,w Nz, O (4.2)

where {ip) (?\,) trip(A) and N is the local speotral densﬂiy for H = - A+w1+V(a;)
These high energy a,symptotles for bhe mean ’olme—delay <tD>(?\,) are olosely related

40 those of g; Tn ‘this section, we conbent ourselfves with “establishing some

asymptotic formulae for {¢p>(A) as A—>-oo. .

- We begin by giving esblma,tes for 0Bx/ o, a3 A—> — oo,
- Proposition 4.1. Let ry, ‘rg>1/4. Then under the wssumptfbons (4.1), for any 8>
0, there exists O>0 such that :

"(wi)““ (7\,)<cv1> nn<o<x>1+°*f=-“ forr every A<0,  (4.8)

Here E(?\.) Ey(A):
Pfroof By Lemma 1. 10 one has for every s>1/ 2 }
[<D>=B(Axio)»D> | <05 N C )
(@ —A) " PR(AF0)p(w ~ M) 7¥2| <0, uniformly for A<20. (4.5)
Now putb Rl(?\.) (P —-A)72, for A<<Ag, Whare P=- A+V(m), Ao =1inf a(P)
Using resolven? equations we get easily by 1nduot10n the formula -
R= > (R1m1)1 e Ry (@1 Ry)™+ (R;ml)’ R(JlRl) ,

. . 0<1<] O<m<h~1 .
WhereR (H 2)~, Ry=(P- z)‘l, zEC/R
. From this we ge’o
(?v) (- 1)’*"(1%1(7»)%)’-——-(?») (w1 B(M))"

. for any, j, FEN. ‘ (4.5)
From the estimate [<{z:>~ ’(Ri(?\,)a;i) (DD <O,,s<7»> D, Q< o, j=1, we derlve :
easily : :
<O<}\'>-j-k+(1/2)+s 3:<7\:o

>—’ . (7") <f'71>_k
From (4.4),ib follows that for every s>1/4 - .
| [t B(Mti0)<ory” s}<0, <>»><1/2>+°
(4.8) can be obtained by interpolations, -

Now we wan} o give an a.ppromma.tlon for the local spec’oral densﬂ;y 682\. ,Whlch

4s the distribubional kernel, restmoted to the dlagonal for-%lg- From now on,denote

' Re®) = (Ho-1)" Ho=—day, and 220 () = L By (hrio) - R(h o) ]. Then

one has
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8E _dH, &
7. oh

Asg in § 2 we can show that {w:1)°0, V <w1>"3 s> %-, is of trace class in I? (R") .

6E0

VRo(?\.—}—%o)—I—R(?n w)V (4.6) -

From (4.5) it sollows thab

<tD> (7\.) = - 201:171'((:1;1)33‘,11/’ ) (w >—s )

3E° (@, ; Mdo+r), _ (4,7),'

Eo

— I oV (a;)
3Eo

where (sy 3 A) is distributional kernel of - (A) and

r(\) =2 {tr(wos@ﬁV L (3)V Ro(htb0) ord™

—t1dw; >0,V B (N — %O)V an (@) <y >'s} _ : (4.8)

Lemma £2. Under the assumptions of (4.1), lot 1/4<s<8;~n/2—1/4. Then.
for any &>0 one has ' :

l<w1>33¢1V (¥ Ro(:xio) <w1>‘s|]tr<0 Qom0 20: (4.9)

|l
| g

Here ||+ || denotes trace norm of operators in L2 (R")

o (0)0. R(hakio) <ard™ ltr<oc<x>n/2+2+a-26= A<0.  (4.10)

Proof By Proposfolon 4.1, one has
<w1>861V (x) V Ro(A +%O) {wy)™* ‘

S 0<?»>1’ 2e <w1>831V (%)V<0J'1>8

<O’ <7\‘>1/2+e

KDY wsp*™™ —-57;" \) <o>* 7" |.

: : . n 1/2 :
Heore n<r<<28;—1 and <D> ;=<1<§ |D,|2) . We claim that for any r€ [0, n-+1],
. : =1 . ,
si>r/24+1/4,
| <Dy L) caye] <OQp7asmas a0, (4D
I% suffices o prové (4,11) for r &N, Then an interpolation gives the desired result.
We prove (4.11) by an inducbion, For r=0, (4.11) follows from proposition 4.1.
Now suppose (4.11) to be ’ﬁrue for any o<r<h. Let r= k+1 Remark that

(H )4 or 98y =i %ﬁ” ).

We canwrite L R
oL <>»> -@<H ki) -1<w1>-s= 20y

R | +(H ~A+8)" 1(01D1<w1>‘s* 1+02<w1>‘s"2) (?v)’

where O; and O, are some constants, Making use of the esbimate
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|<D>"(H — 7h+'b)‘1<D>"*2<w1> 1Il<0<?»>, AER, r<n+1,
which can be easily proved under the condition (4. 1) by commutator method we
obtain '

@B o]
<0f<x><D>k-1{ oyt %]f— D <w1.>f92“

+ [<orcas= Sy e b

a//<7\,>k+1+o-sx-8a’ 7\'<0
This proves (4.11)by induction. (4.9) follows 1mmed1aﬁely (4. 10) can be prova&“
in the same way.

The main result of this secblon is the following
Theorem 4.3. Lot (4.1) be satified. Define F (-) by
r (‘51) "aauV (31) if n=1, (@=a1)

F@)- j Ay (mg, o)de!, if n=>2.

Assume tkwt ‘there exists a & R such that

F(aa) =a|my |7 +0(|o| ™ 2), @1—> — 00, | (4.12)
Then the mean time—delay has the following wsympﬁot@c ) o
{Epd (\) =0o|A| 2284+ O(|A] -70) A—>—o0 (4.13)

where

0; Jra 1"(31+1 n/2)
T @m Tt T TGl "

with by=1 and b,= (0,-1/2) ' (n/2-1/2), foo W=2, oy betng the surface measure of;
the sphere S**, and
vo=min(8;+8/2—n/2, 261—-n 2 e), foa* any £>0.
Proof Accmdmg $o Lemmaa 4.2 r(A) =0 (|A]/2#2He=20); pes—o0, for any a>0
BEO

(m, w; A)dw (see: |

We need only to establish the asymptobio for ——2wJ‘ 0,V (@) -
(4.6)). ’

Oonsider first the case n=1. Then _
8E° (a;, @; Ay = A’b(m —A)%
where Afz,( °) i ’ohe Alry funo’slon, Whlch has well known a%ymptoblcs [11]

A,,, (@) ____e_.i_.__

pEv

(1+}v0(wf3/‘2)) w-*+°° Lo ,_(,4'145‘-

' 4@(—:1:):#((&09(3 3/2; 4)+o(m‘3/2)> g2oo, . (4.1B)
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Let €]0, 1, It can be easily estimated thab
el @ Ai@, 1) e=0(e ), Am>—oo,
@=ht|ale
and for any 0>0, one has
J ' .V (@) Ai(w—N)2dw=0(| 7] “b), A—> —o0,
A—0<@<AE[A[0

Here B=08,+1. To evaluate the mtegral for <A — O we use (4.1b) o obbain

- 1+sin —-Im]:"/?

20~/ | @ |

- Ai(w)?= +0(|o|™?), #< —0, 0>0 large enough,
Then o v |
J . 'Arz(m-w)zdw%—c“(lﬂi%%Im’w)dm+0<l?»l“‘*>
Jo<r [2]% _ ~= 2w |o-+A[*V o]

=317 [ i O e

:Similarly we can show that if G (z) =0(|a|™#%), g—>—o0, then
I G (@) Ad(o—) "dw =0 (1A 4-3/3), > —oo,
X <A—C

Applymg the above estimate with G (@) = F (o) — (a/ |#|#), we obtain

aE o  T(B=1/2) |- _ ’
F 2 (@, o;\) do = ——= A B+1/2+0 A8, A=>—o0,
[, *@ S~ R [A|25210((3] ), A

| (4.16).
TFor n>>2, notice that Ho—=— Ao, is unitarily equ1Valen1J Yo (—0%/0wy) +a;1+§'2

§’ER”‘1 It can be easily computed that

3E° @, @ 1) — (2) 1—»j R 146 (o + £2—1) ¢ .
By (4.14) and assump_bions on V', one has |
I 2,V (a;) aE° (o, @; ?\.) do= Jnmx (2m) 1" (J R”17’ (wy) Ad (w3 +£2— ?\.)‘?clwi)dé'e

Utilizing (4. 16) for p=— &2+ A—> —o0, We obtain

[0 @52 W= (o 8)[1] O[]0

 Hfor ?»—-) —oo with

1w '-a”*' /2= 1/2‘1-'(/3 rn/2)
K B)= G 2 T®

Here 0,3 is the area of 8"~ ‘with the conventlon 00—2 ThlS proves (4 13)

Remark that the asymptotic fcnmula. (4. 13) ma,kes sense only When 81>-- + 3.

TIn the proof of Theorem 4.8, we take: -6-E—'- as ‘the ﬁrsb apprommatlon for —— () (see

Oh ' 37\.
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(4.5)), we can in fact improve the remainder estimates in (4.18) up 10 Yo=01+

3—mn

2

1]
(23
(o3
[4)
[53

(6]
£7]

[s]
9]
[10]

- [11]
- [12]

18]
[14]

[15]
[16]

(i7]
. [18]

_ The details are omitted.
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