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DIRICHLET PROBLEMS FOR MONGE—AMPERE
EQUATION DEGENERATE ON BOUNDARY*”

Hong Ji 1ax1ng OB »’f»*“> *

Abstract ,
The existence of C~ -solutions to Dirichlet problem for Monge-Ampére equatxon
degenerate on boundary is proved, and some appheatlons to the equation prescribed

. QGaussian curvature are also given.

S % §1. TIntroduction.

/ The purpose of the present paper is eoneerned with the Dirichlet problem for
‘Yhe equatbions of Monge—A mpére type LoD
det(u) =K () inQ | e

with - R L ,

%=0, on 00, S : (1.2)
where Q is a smooth convex bounded domain in R?, i. e. there is a strictly convex
' function :p(w) in O*(R?)such that Q= {m€R2{ ¢r(w) <0%. Throughout the preSent
fpaper we alwa.ys assume that
' 'K in O‘”(Q)and K>0in Q , @3

K= -0 and dK #0 on 80, - e 4)
As is well known, there have been ‘many works [2, 3, b, 6] devoted to the elliptio
oage and partleula.rly, the latter three to tho degenerate elliptio case. For’ the
degenerate case, however, so far only solutlons in 0% (@) 002(0) have been
obtained if there is no additional assumption on K. Naturally, one can ask whether

and

the solutions have much better regularity. This is just the motivation of the present
Paper. Our main result is ag follows.
Theorem 1. Let (1. 3) (1.4) be fulﬁued Then, (1 1) (1.2) admits a unhque
convew solution smooth up t0 the bounclm'y :
.., From the la.ter argument, reader can ﬁnd that if (1 2) is repla.eed 'by a
prese* -ibed emooth function @ on 8!2 Theorem 1 is st111 true, provlded that there
ex1ets a 0%(Q) convex Supersolutlon u in Wthh 6.(2 is nonohamotemstm for det ( 'w;,)
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The eruocial difficulties we ran into are the O’-estimate a,nd the estlmate of
lowe~ bound for ths maximal eigenvalue of the matrix (w;). We overcome those
obsiacles by loeally construoting an upper barrier like funotlon to. Problem 1.1)
1.2) and using it to evaluate the upper and lower bound of "Au m seotlon 2. The.
0% ggtinate is presented in gection 3 Wlth the aid of Aubin’s. teohmques in [1]..
The existence of O”~solutions is bagsed on a regularity theorem for the boundary
problems of nonlinear degebera.te elliptie equations recently given in [7].

With a similar argument we also provide in section 4 the existence of O~

solutions for the followmg problem S
' det(uzj) =K (w) f (w, u, 6u) nQ, (LB

u=0o0n 02, . . ' Coe T d.e)
‘which i8 studied by many authors, for example, [4] for non homogeneous boundary
value problems. Here f is a -sniooth ‘positive function subject to the following

and

conditiong _ A .
~f is convex in p and £f,>0 in @ X R*x R, @.7.
p .
f(X, N, p)<h*(p)for all # in Q and p in R?; : (1.8)
p)sh T\p p
F(X, 0, p) <O(L+p%)*, (1.9)

where N, O are nonnegative constants and A is a pOSlthS function in Li.(R?%)
satigfying structure conditions '

'jKdm<J hdp. (110)

Theorem 2. Let (1 3) (1.4)A. 7.8 (1 9)(1.10) be fulﬁlled Thfm (1 5)
{. 6) admits & unique comver solution smooth up to the boundary. :
 Remark 8. Iff=(l+ p2)2 (1.8) is just the equation presoribed Gausman
ourvature in two dimensional spaoce, Theorem 2 tells us that one can find a smooth
graph with any given Gsuussmn ourvature K and mesting any glven plane curve
over 0Q. ' ' '
The dlsousmon fo: nonhomogeneous boundary problems W111 be publlshed m
another papel ‘ ’ ‘

~

\

§2. C? Estlmates of Solutions for o
" the Regularlzed Problﬂm I .,

The 1daa we shall a.tta.ok Theorem 1 1s to app10x1mate Problem (1.1) (1 9)
by the followmg regula,rlzed problem e
v dot(u,,) -K+8,in0 With u= 0 on 89, 0<s<1 o o _v ('1'.11
This section is devoted to the estimates of all the derlvatlves up to order 2 of ‘the
solutions to (1.1’), and the, lower bound of Au R U e
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From the result in[2], it follows. that (1.1’) always admits a unique smooth
woonvex solution for all 0<<e<(l. Denote by % the solttion for the case =1 which is
the subsolution of them for all the cages 0<s<1. - |

O'-estimates. It is eagy to see, from the convemty of y and w and the maximum
Pprinciple, ' R _

- m;nu<u<u<0 . (2 1)
The condition (1 3) and the convexity of » guarantee that Iau[ attaing its ma.xlmum
“on Q2. On. the other hand (2.1) implies -

@<t ed w@®<wu® @9

“‘:for a1l p on 9Q, where ¢ n is the interior normal to 22 and v is any direction at the

‘angle <w/2 with n. To estimate from above we a,ssmme that p is the origin, n the ¥
axis and the ¥ axis moets 2 at points p.and p. In v1ew of the oonvexlty of u and
'(2 2) it follows that

() =1 (p) < () <t (B)- " (2.8)

»From (2 2)(2.8) We can 1nfer '

- ()| <m&Xlaul S
“Now we have completed the estmates of u and its fn-st derlva,tlves
O-estimates. We begm w1th the estimates on 8. Let p be any point on 9Q.
Suppose that under the coordmate system mentloned prevmusly the deﬁnlng
'Iunotlon ) is sub]eot to ) . o
R lpw(O) o lp,,(O) =-1 a.nd ¢,,m(0) >0 ' - | (2.4)

Wlth X :,b,,a‘, t[:,,a,, we have, at the orlgln,

0= -X2’w um‘!‘lllm(o)uu ’ | , (2 5)

- So uxx(0) is controlled. To eva.lua.te u,,,(O) we oons;.der, after dlﬁ’erentla.tmg both

“sldes of (1.1), the equatlon
G o (Xu)y=K (bounded term) -+a”(bounded terms), . (2.6) |
where a = 8% Au — w;; and the bounded terms are referred to all the terms controlled
“-by gomse ¢onstants 1ndependent of s, sometlmes, we oall them the constants under
“eontrol. 'l‘hus we have o : '

‘ . ”(X'w}u"‘f» S Lo .7
where the a.bso]ute value of f is eontrolled by -~ o o .
|f| <O(K +trao(a?)) <O'1(trao(w")) (2.8)

‘sinoe XK =X dot(uy) =0 on 82 and trac (a¥)>2V K. 8o we have

. , - at((Xw) Fy(ay - (o+9%))yZ0:in 0 i
if y is chosen big enough. By means of the: eonvex1ty of Q one can ohoose a sultable.
constant ¢ such tha!;_i.g .

Xu:}:y(wg (a; +y2))§0 on' 6.{)

_An a.pplioa.tion of the maximum principle yields -
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There is someWhat diffioulty in estlmatlng u,,.,,(O) We first oldim that 80 Js
noncharacteristio for the linearizad operators of (1.1") in w. It is eaSy to see that

.the solution u to (1.1) is subharmonio funotion ‘ginoe Au=2(K-+e&)Y/ 2>2E 1/2 in

Q. Let us solve a houndary value problem . :
R du=0K in Q with 0= (max Ki/“’) and u=0 on 3[2 (. 9}

*Obvmusly, its solutlon is a,lso a subha,rmomo funotlon smooth up 0 the boundary.
- The strong maximum principle shows @u/3n< 0] <O on 98. Hereafter, all the

Totters 0, 0y - denote vanous oonstants under oontrol. A similar argument

.p10V1des a(u u)/3n<0 on 0Q sincs A(u u) >K 1/2 Moreover under the ooordmate«

system we have used prevmusly in (2.4) one can obtaln e
Y Gn(0) = X2 — 10 (0) By =00 - (2.10)

‘f01 another constant O and henoe

e (0) =1pe (0) 4+ X2 (u — u) zﬁm(O) (u u),}O - (210’)
This means that u,,(0) has a lower bound away from zero whioh is 1ndépendent of
8 and 99 is noncharacteristic for the linearized operator of (1 1) in w. Using

: (1 1') we can complete the estlma.tes on 2Q of 8% with la[

Remark 2 1. Let X 5'9; be a tangentml veotor mth respeot to 20. Then
bibiu, ,—-b bfu,j = b”b{,(u u),+X 2(u u) =Db b’u,,>0 on 9Q gince b’bf,@ is a vector a,t
the angle less than ow/2 with the 1nter101' normal, Here b,,——@b/aX i ‘

The next part of this section is devoted to the interior estimates of all
derivatives of second order. It suffices to estimate the ‘upper bound of i sinoe (uu)

is posmve in .Q Wlth W Au+m1+w2 we have

LW = “’Wi“QE (s “u113u22s) +2Au+AK | ) , (2 Ll)

Lemma 22, Let (1.8) be fulﬁlled and let v be @ solumon #o (1. 1') Then there
exisis @ constant 0 ondepandent 0 f & such that du<<O.~ : _

Proof From the 0>~boundary estimates carried out plevmusly, it follows that
there is a oonstant O which is independent of & and satisfies W<O on 9Q. If. W -

attaing ite maximum on 0Q, this lemma is proved. Let us consider the case that W

attains its maximum at a pomt pEQ. Obviously we: have, at P ‘
U gge= — (tgpet2m,), 8=1.2° 0 . (2.12)

CIW<O0. st T (2,18)

dnd :

Substltutmg (2 12) into (2 11) and obgerving (2.13) we can arr1Ve, at p,

O>2 2 Cirdse — Ug1sllzes) +24u+ AK
= 2 [2 (’“123 +’M223 ): + 2%’“223] + 2Au + AK

>2Au 8|w| +AK
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Henoce : . .
W (p) = mox W <max(5(a|*+ | 4K /2).

This completes the proof-of the present lemma. : -

Lemma 2.3, ~Let (1.3)(1.4) be fuZﬁued Then du has @ Youwer bound which is
away fo"om zero and éndependent of 8. Furthermore, for each O°° vector ﬁeld X b‘as
-twngentwl to 20, so does H =15y én a naoghbowrhood of 0%

Proof By means of the interior estimates for elliptio Monge—Ampere equlon
in [9] it sufﬁoes to prove ‘the assertion in Lemma 2.3 to be true in .Q\Qa—{we

Q| - (x) <d}for some positive eonstant o 1ndependent of s For any pomt peaa

we take the coordinate system as before, namely, p as the origin and the 1nter10r
normal to 9Q at p as the axis a. Evldently, under the present orroumstanee, wo can
assume the deﬁnmg fuetlon of the form

— =y g(mi) Wlth g9(0) = g(O) 0and g(O) >0. - (2 .14)
Differentiation of (1.1) ylelds at onoe . o
Li(uss) =" (1) 5= 2(16121 = Umum) +Ky. - (2.15)

Introduce an auxﬂla.ry funotion W= un—l— (#3 — h*) where the constant % is yet to be
determmed and henoe . :
I’W 2(“112 un:tuizz) +K 11 +2u11 o - (2.18)
We shall restriot our attention on D,=0N {O<m2<h} It is easily seen that W=>0
on o) ﬂaD,, since u11>0 there To prove W>0 too on &Q ﬂ@Dh we take X =8+ ga
:ln Rema.rk 2 1 and obtann . :

» un+2gu12+g u22>u11+2gu12+g u22>0>0 ) ,
for some p081t1ve oonstant (6] under oontrol Asa eonsequenee, the mequahty

u11>0 ' O, on 6.9[']61);,
follows immediately from (2.14) and the O?- boundary estlma.tes 'I‘heref01 u11>(}

on 2QN 8D, if k is chosen small enough
Suppose that W -attains its mmlmum at pED,, Then we have

LW =0, t1=0 and wizp= —2a72 at p. o A (2.17)
Substltutlng them into (2.16) we can arrive . | o ‘ |
80+ K11 (p) +2u11(1o)>0 B (2.18)
On the other ha,nd observing K =0'on 8Q we havo - |
Ku(p) <X°K-§K(p)+ONE.  ~ ~  (2.19)

From (1. 4)(2. 14) and the continuity of K3, (2.18) (2 19) enable us to derlve )

| W (p) = (o} - 4% lp+un(p>>y(0>K 2(0)/2>0
if h is chesen small enough “So far we have. proved W=0 on D, namely

u11>(h —w2)>_3_h on Dm o (2.19)

The ﬁlst assertlon in the present lemma is proved if we observe the compaotness of
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D2 and the faoct that duz>uy, everywhere.
- To prove the second assertion in Lemma 2.3 we fix h in (2.19"5. Under the
present ciroumstance X =6,,1+ja'¢a=bi6- from Remark 2.1 it follows that -

H=25 b’ub,—un +29u12+g 'M22/—'-h '\/_01 on D

if p<h/2 for some posmve constant Oy 1ndep ndent of h and‘s, and hence H >h?/ 2
on D, if'po is small enough. . h | ; k'
~ We now prooeed to. verlfy the required assortion for any 0 tangentlal vectror
"ﬁeld X= l‘a,. Write N =~ g0, +8,, which is perpendloula,r to X. It is eaSy to
-exprass Xin terms of X and N

X = (uy+ (@a - 9),"/2)“"" (‘Uz Q)MSN

where w;(4=1, 2, 8) are smooth functions deﬁned in D, and M is strlotly posutlve.. ‘

”’I‘hen o \
p: = '5‘5’u;3>uibib’w ~ |ea-g]0y -
Win?/2 — Opo on D,,,
Choosing a small po one can at onoe complete the proof of the present lemma

§3. Existen_ce.of C- Solutions

This section ig concerned with the existencs of Sme'oth‘ solutions to Problem
«(1.1)(1.2). To do so we shall give the estimates of modulus of eontinuity for the

pacond derivatives of the solutions u.to (1.1"). Let X = .b9; be a smooth vector field -

deﬁned in a nelghhoul hood of 22. Dlﬁ‘erentlatlon of the both mdes of (1 1) ylelds
"((Xu)i,—G;,(u)) XK +2K, dvX, (8.1)
‘where G;(u) = b’f,,@kua.nd K.,=(K+s). Furtherm01 0, :
- a¥(X %) 5= K i (X ) o - st(u)) ( (Xu),; Gy ()
a8 (X G () — Gy (K ) 4B Gha () -+ G (1))
|  +KX(XK/K)+2KdivX. (3.2)
From (8.1) we have ' .
K; Y (XK +2K, dle)2 o
T =Kt ((Xuw)y - ,,(u))((Xu)s,—ng(u))
=K " ((Xu) s~ (@) (Xw)es — () -
- =2 [((Xu)1s - Giz('w))"' ((Xu)n"Gii(’“))((Xu)zz- Gea(u))]. - (3.8)
fSolvmg (Xu)g— G”(u) from the followmg system : ‘
’ b"((Xu)m (u)) (qu) +h=D, @ -1, 2 . (3.4)

a”((Xu)u—Gu(u))=XK+2K divX = .D° ' (3.5)
“where W= —Db*Gy (u) b ,kus b’“;b usk(e 1, 2) are bounded ’oerms, one oan get,
‘with H =84 | - o

and
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(X u) 11— G (u) =H" [D°( b"’)"’ +a? (D“b1 D*?) - 2@1"’.D1b"’]
(Xu©)1s - G45(u) = H*[a**D'd? - D°b*%+ a2 D?],
(X w) 90~ GQoo(u) = H 1 [a"(b2D? - bLD) - 2b'a*2D? 4 (51)2D"] ., (8.6)
Suppose that X is & O™ vector fleld which is tangential to dQ and defined on 2\ Qs
for some positive constant 3. Then.Lemma 2.3 shows H>0>0 on Q\ Q;. Inser’omg
(8.8)(3.6) into (3.2) we have : ' ;-
L(x? ) 2H"! [w" (X u) (X 2’&6);-!—2@” (X );h’ ,D°b‘(X %u).] +bounded term,

(8. ()%
Snmlarly, solvmg u,ﬂ, from the followmg system “ :
Uy Uigos = (AM) y o -l T
: o= 1:-’ 2, . o - (3.8
' ; L . {“uu!s"‘Ks) . * ’ (3.8)
" and substitubing them into | : - - .
L(4u) ..=, “ﬁ(‘]?ﬁ) iifz 2(“21,% - 'l__{ps%zs) + 4K, | o (3.9

- we can derive, near the boundary,
L(Au) 2Au( ( Au)“’ 4K)™1 [w" (du)i( Au) +B,(Au) +B] +bounded term
v e, : _ DR . - (8.10)
for some continuous funotlons B,, B whose maximal norms are under oon’ﬁrol since
Lemma 2.3 enables us o choose d o small that(du)?-4K>0>0 on o\,
Lemma 8.1, Let Q be a O2** convex.boundsd domain. Supposs that. fDEO"‘(Q)
~ satisfies T e ‘ C
Lv=a,"v¢,+a.‘@,-+qv='f in Q with fv——-'O on a.Q, o ;(3,.11):
where I ig elliptic in @ and ¥, &', ‘@, f are continuous and ¢<0, and a“{yf; is
striotly positive near the boundary for a defining function y of 92. Then
. : : lo(p) | <O dis(p, 82) - : (8.12)
~ for some congtant O depending only on “the maximal norms of a¥, o, w, fr o,
(Za")~* and(aPaps) . | S
- Lemma 3.2, suppose that f =Ff1+ha* v, fwhefre k, f1 are. contimuous tn 2 and
h=0. - 6t the assumption in Lomma 2.3 be fulﬁued Then (3. 12) o8’ contmuously valid:
%fmaw |f] s replwced by maw|f| +max|h]. R
Proof Let us first claim that under the a,ssumptlon of the present lemma. for-
any defining function $, 1. e., =0y where o is a 02+ positive function, there is
a constant §>>0 such that a"-,bp,b, is positive on @\f,. In fact w‘ﬁ[: b= aiflo? -
2a'o 3o +aVe,0 2> (aiPalo?) /2 - O || 2>0,>0 on - O\Q; :if 3 i chosen small
enough. Thig proves this claim. Now we proceed to prove Lemwmsa 3.1. Let us
consider any point pEé 20 Which is taken. to e the origin and let the: interior
normal at point p be ohosen as the axis V. Suppose that near the .point p, the
bounda.ry oQ may ‘e éxpressed in the form .’ L :
y Y- b2?[2+0 (@)= 1.[1==0 on;0Q wﬂ:h b>0
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Evidently, we have -
0<w"¢u¢v a2+ 0( [a:[)

in the intersection of the disk B,= [(:v, y) € R?| 2 +¢?<d] a.nd Q. Wlthout loss of -

generahty, we may assume, if nesessary, taking smaller §, .
o ¢*?>0/2in By, . SRR (3.13)
Let us study the following aux:.hary funotion e S
o - W=ba?/2+My* -2y,
vhere the constant Mis to be determined. A. direct computation gives at onoce
LW = o™ + 2421 = 24 +w9(2My) +atbo+aW .
If M is chosen so big that a®2M>2|a?|+ |a*bs|+1 and & so small that 3>
: 0(4max|w2|)"1and W<0 in BsN 2 we have L(W)>1. Hence L(vin) =0 if 7 is
big enough. On the boundary B; 192, the inequalities
o vi7W='}'(=Fbm"’/2+O(a;3))<O
and, on the boundary 8B,N Q, :
CokyWe= :]:'}'[(b:vz/2+Myz) 2] +ovs
hold if & is suitably small and ¢ is chosen hig enough From the maximum
‘prmmple it 1s not difficult to get - '
| | v(0,y) | <7]W(0 .e/) I <0y,
which completes the proof of Lemma 8.1. " .

Proof of Lemma 8.2 By means of the same argument as in proving Lemma A

3.1 and the fact that Lvz>fi, without difficulty, one can get |
- Cw(p)<O dis(p, 09) o .(3.18)
for some constant O. It remaing only to present another side estimaite. Withoub
loss of generatlty, we may assums’ |v,|<i/2 in the domain under @nsideration.
‘Qonsider a function V= (1+V)~?-1 which satisfies
LV =V y+a'Vi+aV ' .
=g+ 0) " H{((g+1) ~ (14w)R)atv fz}, o (3.14)
whete f; is only -involved in g, 9, and:fi.. After taking ¢ as an integer>>
lmax(l—l-v)h[ +1, (3.14) is reduced to the cage proved prev1ously So we ha,ve
‘ (1+'v)‘1 1>- (1+/u)‘10d1s(p, Q) '
- ' = 01d18<_p, &Q) '
This implies. : Coa A
- " > 02[(1+v)“'1+m+1] 1dls(p, 69) S
Do > _Oydis(p, 82). . o T (3.15)
=" Lemmia 83. Let the assumption in: Lemma 3.2 bo fulﬁlled e:wept fo'r the
Jzypothes@s =0 on 8Q. Then we have - Pt
‘ ~0-Y(dis(w, 0Q))Y?<w(w) = v(Pz) <O (dis(w, 3[2))1/9 :(3-.16-)
where O depends only on- madimal worms of a¥; &, f, v, (Za*)*(a*Pufs;)™* and
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maztmum of |0v| over 8Q and PX € Q, dis(X, 0Q) = |z — Pa|.

Proof For any point pE€ Q, take the coordinates as done in proving Lemma
3.1. Furthermore, without loss of generality, we assume v(0)=0. Let us write &= |
2y — ba?/2 - My®. Then from the argument in pfoving Lemma 3.1, we have £>0
and LE< ~1 in B; Q2 for some positive constant 8. Now ingtead of the harrier
function used before, we take W= —£Y2. A caloulation provides |

W £k, E L~ 6255 6 (3.17)

Thus we have L{(vtyW)=0 in B;N Q2 and v+7W<O on 0B, N Q if v is big enough.
Now let us check the situation on the rest bouhdary. Indeed, on B, 102,
vEYWS £0,| 0| Fy(be?/2+0(|2]3)V2<S0
if <y is big enough. So the maximum principle tells us
|00, 1) | <y [W (0, )| <Oy f (3.18)
The remainder of the proof is the same and need not be repeated. This
completes the proof of the present lemma. '
The equicontinuity of 8%, || =2. Weo first disouss the both sided bounds on
9Q of all third derivatives of u. From the fac" that u=0 on 80 it turns out
| X 5u] =0 there for any tangential vector ﬁeld X = b"@ Now we take X =110, —
Y10, and henoe Lemma 2.3 tells us a“y;=0"b'u;; strictly positive near the
boundary. An a,pplloatlon of Lemma 8.2 to (8.7 ) provides at once , _
‘ | X %u| <0y dis(w, 02), = near 9. (3.19)
Oonsequensly, | | | o S
' ' |a(x® )/3n|<02 on. 90, (8.20)
The fact that Q2 is noncharacteristio guarantees &°u/0°n can be expressed in terms
of other second derivatives. So the ‘bounds on 8Q of all the rest third derivatives
can be controlled. » _ '
Now we are in & position to prove the equlcontmulty of all the second
derwatlves. As done before, by means of Lemma 8.3 to (8.10) one can get
| du(e) - du(Pw) | <O(dis(s, 82))V% - (3.21)
Under the coordinate system we worked Wlth in (2.14), with X = =8, 4980, We
have, if = (0, ;) and Ps= {0}, '
!W;(_fl’) — U1 (Pw)|= [ X% — 2911612 - 9"226_22 — gua— (X “'.9'“2) lﬁ:ol
= | X%u - (X%) | x=0| +|§(0) | |z ~ux(0) |

<Os|ws| =0sdis(w, 8Q) | (3.22)
.since g(O) 0. Therefore, the mequahty 4 o
L l’wzz(o ) —uza(0, 0)|<O|w211/2 - - (3.23)

follows 1mmed1ately if we comblne (3. 21) with (3 22). Now we prooeed to estimate
|22(0,:2) — us2(0, 0) . Dlstmgulsh two cases.
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| Oase (1), u12(0, wp)and us3(0, 0) have the same sign. From (1.1) it is easy to
gee |

' 1/2
Uto — U O’ 0 < ‘ (u11u22 — K) (u:u‘wzg K) ly_.ol
‘ 12 12( ) l \/26112622 K ‘+"\/('M11’M22 — K) |05— .

_ l (ui:tuzz -K ) - (unuzz -K ) [ @=0 [ 173,
The first factor of the right-hand side is less than or equal to 1. Hence
_ t12(0, @g) —us2(0, 0) | <O|wq| 4. , (8.24)
Oase(z), #12(0, w5) and u;5(0, 0) have different signs. Then there exists @
= (0, X3) with 15(0, #3)=0. Henoce
' ' {um(O O) [2"‘ } (wisttge — K) I'a::o — (Uaattgo - K) Io}=a°f
<O ] {U* ‘ 1/2
<O|w,| 12,
and analogously '
1t12(0, @) 2= | (“11“22 — K) ~ (vssthos — K) | a=r|
<O|w,) Y2,
So far we have proved ' T
|15 (@) — 115(Pas) | <O dis(w, 8Q) | Y2, (3.25)
Summarizing up all the conclusions obtained we have. |
Lemma 3. 4. Let the assumption in Lemma 2.8 be fulﬁlled Then fm‘ the
solution w to Problem (1 1") the inequalities o
S . 9%} <O on 8Q, |m— ' (8.26)
and . _ | |
| |04 (5) — 0%u (Pu) | <O|w — Py|¥4, XEQ, || =2 (3.27)
hold for some constani O independent of s. o
" ‘Bofore 'eompleting the verification of Theorem 1, we also need & result on
regularity of solutions to Dirichlet problem for degenera.te elliptio Monge—Ampere
- equabion. For the proof gee [T7].
Lemma 8. 5. Arn,y solution w im O2(Q), to the Dirichlet problem: _
B Aot (wis+ Ais(w, u 0u)) =K () f(w, u, du) in QCR? (3.28)
with - . ) '
u=p on 6.(2 . (8.29)
where f is stfrwtly posmfve and K satisfies (1.3)(1.4), és smooth up to the boundaay 4f
f, 4, ¢ and 02 are smooth and 0Q nonchamctemstcs and the mairiz (uu—l—A,;(m, %,
au)) nonnegaiive. ‘
The end of the proof of Theorem ‘1. The uniqueness is the 1mmedmte
consequenoe, of the maximum principle. Therefore it suffices to prove the existence
“of O*=golutions. In view of The Arzela theorem and Lemma 3 .5 we'need only verify
- the equieohtinui_ty of second derivatives of solutions with respeot t0 6. By means of -
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$he mterlor estlmates given by. [9] for elhptlc Monge—Ampere equatlon, we know
) [%u(X) I<(p(d(X 3(2))'1XE.Q and all|B| = 3. 30)
where p(®) is a bounded monotone—lncreasmg, posutlve functlon deﬁned in [0, d*],; .
dlameter of 2, and moreover, p(t)—->0 if #>0. For any point pEOQ; We assume, .
the deﬁnmg funotion satisfies (2. 14). A ochange of variables from (ay, wz)—->
(@, y)= (21, Ba~9(a1)) makes the boundary flatten and the propertles (3 26)
(8.27)(8.80) are invariant for another constant O. Let W(t) be the 1nverse
: fllnotson of = Wp(W“) It is easy to see : . S
: | W(t)—>0 ift—>0. - L --:’(3.'.31)-
Distinguish three cases. ‘ '
Case(a). Let pi(m, y;) Satlsfy y1<yz and | P: pz}<p(y1)W(lp1— P2| ) From
- {3.30) ) _ _ -
| ‘13““(271,)“-3““(1’2)] (P(.%)) -l s o
| o <W (|91~ ps]) for all [a] =2 (3.3
follows at once. ’
- Oase(b). Let pi(w, v:) satisty 23—, AL and Iza - pol=p(g). W( | 21— pzl)
Then by (3. 27) we have. . -
[0u() ~2%(ps) | <OlgH* | forall [ -
which is controlled by 80| ps —pa| V% if yo>2y; or by . :
800~ (/W () | mipemgut) /4 =30W (| p1— ps| )if Us<2 ya.
Orse(o). Let p;(w, y:) satisfy |ps— p2l>p(y1)W(|P1—102|) and ¥y <ys. Then
With p*(e y1), for all |a| =2, it is easy to seo
() ~u() | < 0uCps) ~ 0us?) |+ [0 Cp") —uCp) |
- <Owax(W(|p~p1]), |p2—p' *[14) 4201+ |0%u (2, 0) ~&u(an, 0) |
4 <Omax(W(|p1—ps|), |21~ pa| V4. B -
In getting the last meqahty, we have used (8.26). This oomple‘oes the proof of
Theorem 1, s : : . AR

§4. The Proof of Theorem2

In this sectlon we sha,ll use a snmlar argument to prove Theorem 2. .
The first step is to truncate the functi op f in such a way that f"’ '
o~ (.Q X 31 X R?), m=i, 2, PRI are subJeot 0 the followmg eondltlons

o<f'”<0m, F=0, and (s, 0, p)~<0(1+1o“’)2 T Besale
with O,—>00 if m—>c0, Co ‘_"' SRNCEY

and
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freorfm -uniforrnly approximate to f, 9%f in any compact set

| " of Ox R X R? for each a € Z. | (4.3)
Here the constants N, O and the function A (p)are mentioned in Theorem 2 and Oy,
are sothe constants depending only on m. To construch such f™ we first truncate f°
by multiplying a outoff funoction ¢(p) | '

f=so(B)+m(1-0(%)).
Where 0<p<1 and p=1 if [p|<l, p=0if |p|>2. Therefore, f™ satisfies (4.1)(4.2)
if 0(1+m?)%2=1. Now we truncabe f™ with respect to u. Write -
| m fm ' | l <m,
("=
f™(», £m, p) if u>m or u< —m. . :
If is a.pparent that [ f™],, still satisfies (4 1)(4.2) almost everywhere in u. Let

y(t)EO""(Ri)be a kernel of a molllﬁer operator, namely, J g(t)dt 1, §(&)=0.
Deﬁne ' '

\ | fm—-mj:mm(u D)l & Pl (44

It is easy to check that f™ defined in (4.4) aTe the desired funotlons
The second step is to study the following reg.ula,rlzed Diriohlet problem
det(uy) = (K (@) +1/0p)f™ in @ with =000 8Q. (1.5
“From [8, Theorem 2.12] it follows that Problem (1.5), admits a uniqlie COnvex
" golution u™ in 02*“([)) for some 0<a<<1. The regularlty theorem for solutions to
nonlinear elliptio boundary value problem tells us u™ € O‘”(Q) '

The third step, which is the orucial one of our proof, is to esbimate the O and
O*-hounds- of 4™, and the modulus of oon’olnulty of its all second derivabives. These.
estimates can be accomplished with only minor modification to the method presented
in [4]. We insert the outline of these estimetsons ‘here for oompleteness most- of
which are quoted from-[8]. The convexity of  guarantees u™<0 in Q. For the lower
bound of »™, we chooss R so large that '

1(2) a;1+jg Kiv< J ., 7vdp for suffiently largo m. (1.10)
R Bx

This is possible from (1.10). The gradient mapping »Du"’:} Q—>R? is one to0 one with
det(u) >0. We obtain =~ - o - o

| i, M= (K + 1/0man< | i,

‘where Qy= {r € Q|u(a) <N}. So there is 4 pEBR(O) \Du’"(QN) Wee then ;have, by
the convexity of u™, e L
infy™=inf uf".>inf'u.".‘~— |Z’ lfdi.am' Q
.2 Oy, Wy »

>min (0, N) —Rdiam Q
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: fox suffieiently large m. This is just the lower bound We Tequire.

The next step is the estimation of the gradient of ™. From the convemty of ©™,
and the boundary condition 4™=0 on 8@, it suffices to evaluate the lower bound of
&u™/on for inward normal direction n. Next we shall construct a lower barrier for
Problem (1.5),: Let ¢(#) be a defining funetion of 8Q and let ¢ be siricbly
gonvex with det(y;) >1. Define : '

W=ip— J' (a-+b#) g
‘where d= dlS (a:, 22). Ohoose a suztable b and so small a and £ that
| I (w+bi2) '1/2dt>2maxlu”'|

(a-+be?)V>sup(L-+ [24])

e

and ' .
det (W) >1-+wbd (a-+bd%)™* -
> (K +1/0n)f™(z, W™, 0W™),
Where x 18 the ourvature of Q. An argumont of the maximam prineiple for u”‘ w
-yields at once the lower bound of 8u™/dn and henoe, the O'-estimation since u™ is
;CONVeX. ' | | .
We shall next present the rest esib\imates; Before doing so we should emphasize

~that for Sufﬁelently large m, | | | |

7@, w (@), (@) = g(m(uf"(w) ~)f @, ou" (o)) i
Oonsequently, '
(f3 o, w(0), Bu(2)))0. v
Tet us fecus our attention on (8.1). Raplaomg K (a;) by (K+1/ O,,,) f"" =Knf™ we
Jhave :
| Ly(Xu) =a"(Xu)y~ mf.p.(X‘w) -K, f.u(Xu)
=K ,(bounded term) +a¥ (bounded ferm). (4.5)
We shall next olaim that in B;(1Q, the funotion o=">bs?/2+y%-2y with >0 can
e regarded a8 a lower barrier function for Xu at the origin p. In fact, a direct
scaloulation gives B
Lyo= (" 420%) = K nf 550~ K f5:2(y =1) - Knf 0
! >min{b, 1} du™ - 0K n>0,4u™, in B;N 8,
if d is small enough. This prov:s the roquired olaim, and hence the inequality
L |a(Xum) /oy (0) | <0
« holds from & quite similar dis.tvs ion in secidon 2. As for the estimate of u,(0),
:analogously, .We must first evaluate the lower bound of u,,(0). From (1 B) g it
follows that ' |

Qa2 Tt () > 2/ K @03,
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where 0 =minimum of f(s, u, p) over €@ |u|+ |p[<0"-—=“\sup{[_a'-”|~+]Bu’“[}l
The solition % to Problem (2.9), if necessary, changing the constant O, can be
regarded as an upper barrier funotion of ™ and the fact that ou/on< — 0<0 on
1mplies %,,(0) >0OR~* whore R is the curvature. radius at the point p of 9Q. So
U (03 (0) = R7*..0(u™ —w) /on>0R2, and henoe u? (0) is controlled too.
. We must explain the O-estimate in Q. In faot, a oa.loulatmn yields, with W=

A" 5 -y?, B

I (W) “fWU - mf .qui f

' —22(@5123 uusuzgs) +K m f,,, ,Ju,su,8+24u"'+bounded term

>22 (uos — ‘uns%zzs) + ZAu + bounded term

\

gince f™(w. u. p) is convex in p Repeatmg the a,rgument in proving Lemma 2. 2"
‘provides at once the upper bound of 4y™. If we repeab the same argument as done.
in (2.17)—(2.19) ﬁhere is no d1ﬁi0u1ty 1n gettmg ‘the. lower bounds of du™ and
' H =b0%j; for any given veotor ﬁeld X =b', tangemua.l to 8.{2 The - remamder of’

'_the proof i the same ag before and is left to the readerm B
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