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THE PROBABILITY INEQUALITIES FOR THE
SUPREME OF THE EMPIRICAL PROCESSES
AND APPLICATIONS TO THE TESTING

| ~ OF DATA STRUCTURE
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Abstract

This paper extends Huber’s results and achieves the probability inequalities on the
distribution of the Kolmogorov distance in .the worst direction for some distribution
class, including the elliptically symmetric dJstrtbutlon uniform distribution on square.
Combining these results with ohrv1k’s results the a,uthor argues the testlng problem of
da.ta. structure obt&med by pro;]ectmn pursmt techmque

§1. Introduction

Suppose that P i a nonatomio, d—-dlmensmna,l dlstrlbutlon (d>1), and Xy
X are an i. i. d. sa.mple from P. Let P, be the empirical measure determlned by
 this sample. Moreover, let S,= {@:acR?, | [a| | =1} for eaoh aE;S’d and ¢ € R, erte
H(e, t) for {aTX < t}, the open ha.lf spa,oe in R" : :
Define - S
. D@ - |P.(H(a, ) - P(H(a, DI (A1)
- D, ——supD (H(a, H). - (1.9

D,, olea,rly, is the maximum Kolmogorov distance between P and P a,ll possﬂole
one-dimensional projections. And we easily see that

D, ——supsupD (H(a, ), I 1.3)
that is, in definition of D, the oonstramt of aE;S’.; is not necessary.
. ‘f;_vLet S '
o n(n, d, s) P(D >s) L (1.4)
For d 1 we ha,ve tha.t Well—known mequahty 'r]('n, ', s) <2 exp( 2fns”) When

d>1, as a speo1a,1 case of Devroyem, who refined an earher result of Vapmk and'

6ervonenklsf2’ L

9 <4e8<n2/d>dexp< znsz) T aw
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Huber™, under the condition of the spherically symmetrio diéfribution, obtained
a more refined result
- n(n, d, 8) <2(en/d)’exp(-2n(s-d/n)?). S ¢ )

for s>d/n. ' ' T |

In ‘this paper, we aohieve the similar fashion of (1.6) for a more goneral
distribution olass inoluding the elliptically symmetrio distribution, the wniform
distribution on square. Furthermore, combmlng the simulated results of Ohrvik,
we argue the testing problem for the data structure obtained by projection pursuit -
technique. The general inequalities is put in section 2. Section 3 contains two
special cas es of the theorems in Section 2. Finally, we discuss the testing problem
in Section 4. ‘

§ 2. Pfobab’ility_ Inequalities

“For convenience, we first put some notatioxis, For any ﬁ_xed rrpomts h;,i_ o, B,
in R%, let H(Ay, -, A, a, t)___'.{ar% <t}, where @ and # satisfy the constraint
condition: ||e|{=1, € R, and a”h,=i, 1<4<r, namely, the boundary of H(k,,

., h,, @, t) contains By, -, A,. And let the olass of the set
F(Ryy -y h)= {H(kl,_ h,. a, t): acl,, tERY, ahi=1, 4=1, +, r}.
Theorem 1. Suppcse that any one—d‘bmens%nal mwrgfmal d@stmbutfbon of P at
dwecifz/m a, P{H (e, t)}, continues and dnoreases striotly with frespect to 1, and. the
| follow@rmg conditions are ful,ﬁlleol . o |
(1) there exists at least 6+0 and an @€ 8, for which w“‘k&t '@‘—'-1 .,
(11) there ex: sls unigque H (Ry, s By, @oy 1o,) EF (By, +- ,) such that
P{H (hy, -+, By @, o)} = _gupp {H (s, - by @, D), (2.1)

.and H (R, - k,, ko, to) is the unique ewtremum point for funot@onal P(H (hl, k,,
@, t); 7
oo (iii) for every @Sy : L
o . " PH(a, 0)}=1/2.
Then for each &>d/n ‘ AR A :
| n(n, d, 8) <4(en/d)*(2md)~*/2exp( - 2n(s - d/n)?)). T @2
Theorem 2, If there ew@sts (/1 functwn f (@) #0 for 'wk@ch P{ f(a)aTX <?)
depends owl«y on t wnd oorntqmues cmd fmcrewses stmotly fw@th frespect to t then (2 2) also
Proof of Pheorem 1 For the ﬁxed sample X 1 ",’ X we shall show that D,

i t: l l‘ d
is the maximum value over D ( H (a‘, m’ = 1 . 2; ) -
r= :-'- Lo

et o
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It 1s eaSy to see that for some @ € 8;, 1€ R?
e D, Pu(H (@0 1) - P(H (@0 ) (2.3)
or : ‘ S
D,=P(H (@, t) - P (E (o 1. @.4)
We ﬁrst do some preliminary work to simplify the proof. In the following we assume
that the boundary of H (a,," to) {afX =1} contains at least. one sampls point and
H (@, %) contains the origin point. Here we give some illustrations for the reason
of the assumptions. Since P(H (@,, ¢) is continuous and strictly increasing with
respeot to ¢, and P(H (@, t) takes constant values piecewise, if {a’fsg =t} would not
contains any sample point X '(1<?3<«n),' ‘then_the euclidean .distances between
{at X ==to} and X/’s would be larger than zero due to the compaotness of {aoX toF o
In this case we can find #,<f,<<i, for which . o v
P{H (@, t1)} =P, {H (@, t)}=P »{H (am 52)}
and
P{H (ao, t)}<P{H (a,, to>}<P{(ao, ta)}. (2.5)
This is a contradiction with (2.8) or (2.4). On the other hand, since for any fixed
open. half space H, and the completement, H’ say, the conbinuity of P 1mp11es
D,(H)=D,(H’) in distribution, we can only mvestlgate the cage that H(a, t)
contains the origin point. ' S g
Furthermore, by the continuity of P{H (a, t) with respect to ¢ for any @ €8y, it
is easy to see that the probability value of two sample points being the sams is zero.
Henoe in probability one any ¢ sample Point determines uniquely a superplane in
R? space. Meanwhile, we have in probability one #>0 due to P{a® ' =0} =0.
~ If r(>>d) sample points are contained in {afX =145}, then {afX =t} can be
determ'ined uniquely by any d sample points ameng7 r ‘sa,mpl'e points;’ on _'1:,he other
hand, when r<d, we can show that tho open half space H (aq, to) ‘satisfies the
condition (2.1) in Theorem 1. Indeed, if (2.1) were not satisfied, for the same
Teagon as above by the compacthess of the superplane arid the condition (ii), there’
would exist other two open half spaces H (ay, ;) and H (a@,, £,) for Which o
n{H (@, 51)} =P.{H (ao’ I70)} P W{H (@, 1)}
and
P{H (ai, t1)} P{H (a,, to)}=P{H (az, tz)},
Whlch raises a contradiction with (2.8) and (2 4). Henoe H (ao, to) must satlsfyn
2 1). Furthermore. in the oase of fr<d w1th the dlﬁ‘erent eombinatlons {X o oy,

X ,,}, 1he number of H sahsfymg . 1) is at most; equal to (n) Then thh varying’

o=l

r ( <d), we see that H (ao, to) must be one of N ( Ed] ('fr )) ha.lf spaees H
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We now investigate the probabrhty value of H (a, t) whose boundary {wTX t}
contains ¢ sample pointd Xy, o, Xy Denote by D, (H|Xy, -+, Xy the
conditional distribubion given these r sample points, it is eagy to see .that
D,(H|Xy -+ Xi) can.be expressed by a random  variable ¥ with binomial
~ distribution B(n~r, p), where p=P(H (@, #)). If (2.8) holds, then .

" D(H | X+ X,,)'=Y/njf¢/(n ‘_’P)=[Y,—: (n-r)l/ntr@d-p)/m
if (2.4) bolds, then

D, (H| Xy, = -Xlr) =p- Y/'W ’I‘P/'W [Y (n— q')p]/n
We have in this two cages : R
Do (H|Xn, - Xir)<|[y (n r)p]/%l+r/n | - (2.6)

By Hoeﬁ’dmg inequalrty, for each r<d e
P{D(,,H|2§;1, . Xir)>6+d/n}<P{D (H|Xn; %w)>8+¢/n}

<2exp(-2&°n*/(n—-1)) | .

<2exp( -2ns?). , 2.7
' P{D,,(H)>s+d/n}<2 exp( ~ 2ng?). - - (2.8)

Therefore by [2] we have 2( ><2(en/d)d(2wd) ~/2 oompletrng the proof

Pfroof of Theorem 2 By (1.8) and D,(H)=D,(H’),
<« Dy=supsup | P,(H (@, 1)) ~P(H(a, 1))

a€Sz

‘- —supsuPan(H(f(@w 1)) - P(H(f(a)a, t))l
. v<supsup[P (H(a t)) P(H(w t})|~

The. soeomi equanﬁlon invokes D,(H) =D, (H ") for the case of I (a) <0 LeJa 33' (kl,
k)= {H(f(a) @, b): aESdr t€ R, f(a) a’hy=1t, i=1, .+, r}. For any H(f(@)a,
t). €F ' (hy, -+, k), define b as the intersestion point between {f(@)a”X =1} and
its vertical veotor orossiggjt‘he origin point ‘0,.and et M be the affine manifold
gpanned by the r points Ay; «-, h,. @ is defined ag the point on. M ologest to the
origin O in the. euolldean nor m. Since Ok ig perpendicular to H ( f (a)a t) and M
lies in H(f(a)ea, ), Oh and.Qh are the orthogonal vectors.,Hence
||Ok|1=110g|| - | IQR||. . (2:9).
Moreover | |QR| | is the sfrictly increasing function with respect o the angle
‘40(O<0<w/2) between 0Q and Ok, | [QR||=0, for 6 -0; =| [OQ[ | for 0—:;1:/2 and
that { f(a) aTX t} perpendroular to OQ is umque L. :
~ On the other hand the condition of P{ f(a@) X <t} not dependmg on @ 1mp—
Lies that P{f(a)a’X. <t} is nothing but the sirictly i 1norea31ng funo’oron with res-
peoct to the' dlstance between the, orlgln pomt 0 and { f (a) X ==t} Therefore, the
" angle between OQ and Oh equals that between the superplanes perpendleula.r to,
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respectively, 0Q and Ok. Oensequently, - S
wsf=|f (@) (@) awal/|f (@)f (@) llwoll Alal|=loml, @10

where {f (a) aTX £} is the superplane perpendmular to 0Q. Since each {f(@)a™X

=14} congidered containg &y, -+, Ry, the direotion corresponding to { f(@)a"X =t}

Possesses d— ¢ freedom Varlables erte (@1, ** md) for X*. We assume wﬁ:hout Togs

of generality that {f (ao) @i X =t} is parallel %o {a;i—O}, that is, @=(1, .0, -, 0),
{f (a,) a%'X £} ={m=|]|0Q] |}. (Obherwwe, we can.-Totatbe ’ohe coordinate system )

Therefore, the @ can: be expressed as (cos 03, 81n01 1c08 @, ieee, Hsm 0;, G- )

where —w/2<01<-m;/2, O<0;<2av, j= =2, «o, d=1 Se S . A

cos f = [00801| oo FEEE (2115

Then for eaoh H(f(a)a D EF' (hy, -, A sueh that 90, wWe can , find 0<0’<9

<0"<x/2 by changing ;. Consequently, it is eaSy to o0 that (11) in| 'I‘heorem 1'is
fulfilled. The proof is completed.

) § 3. Two Examples

We. here check two usual dis;cributioes éa,tisfying the conditions of the
theorems: the elliptically symmetrio distribution and the tmiform distribution on
square S . - -
Ezample 1.  Suppose that P isa nonatomm, elllptmally Symme’ﬁme We know
that P is sald to be an elllptlea,lly symmetrio if there existy & dx1 vector .
d-or der nonnega.tlve definite matrix 2 and a real fune’ulon D for which the
oharaotenstle funoction of P is of the form ' '

oxp (44°1) @(tTEt) o (3 1y

~ . A

In pa.rtloula,r if ,u,—-O and 2=1I" we say. that P ig sphermally symmetrlo thhout
Toss of generahty, assume ﬁha,‘o p=0. By the nonatomicity of P we know that 2 24
A AT 1s posutlve deﬁnlte So there exists a spherically Symmetrlo random veobor Y

such that X— AY, where $he notation ' Lo means that two sides have ‘the same
dlstrlbutlon Moreover by:the spheriocal symmetry of Y, the distribution of aTY is
* ithe same for.each @ €S,, s0 wo have . SRS :

02X =arAY = | |a"4| [a?AT/| la“'AI | = | la"AIIYz, (8. 2)

Where Y, is the first component:of: Y To check: the conditions in Theorem 1 wo
first show the followingfacts: .. = ... ui L 0 U by

1) For Xy, «, X, i.4. d. with P there emst Yi, sos Y,. i. 1. d. Wlth the same
d,lstnbumon a8 tha.t of ¥ such that - : R
{a*Xy, - aTX ) aESd}d{aTAYi, e, aTAY,.) weﬁ’d} : (3%;3)

L To show (3.8), it ;s.eneugh to show that any finite dimensional dlstribﬁtions
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in two sides are the same,‘tha;t is, for any @, *:, @, €8y . -
(@K1, @5 K o, ALK, GEX ) (@AY g, -, GEAT o, GLAYy, +ov, GLAY).
_ a SR e
Since X ==AZ , for any Borel set B in R® we have :
| . P{XEB}=P{4Y€B}. | (3.5)
'On thé other hand : i B . '
B P{a1X1<tl o, ALX 1 <tn} =P{N {@] X:<t}}
: =P{X1E NH(a, )} ‘P{AY1€H(¢1;, t)}
=P{n {a{AY 1<t )= P {a{AY1<t1; amAY1<tm},
from which together with 1ndependence we derive (3.4).
2)PlatAY/ [ [a“‘AI <Sth= P{Y 1<t} depends only on #.and is continuous and
stmotly monotone Wlth respeot to 1. This is an easy assertlon since P has no any
“atomio and Z‘ is a poeltvle definite matrix.
By (3.3) and 2), we have _
D=supsup| P, H(a, ) - PH (a £) |

acS; 1eR?

~ =supsup ——ZI [Ha®4] 2aTAYf< Ha"A!I"t] —P{Ilal'll‘iaTAY<lIaTAll"t}

aESa teR'l

. =supsup |-~
acly teR?

which together with Theorem 2 concludes the proof,

2I[||aTAu—1aTAY,<t] P{aTAII'laTAY<t}

Ezmmple 2. The uniform dlstrlbutlon ol squafe

Assume, without loss of generahty, that the dlstrlbutlon is on [ 1 1]2 Now
‘we check: (i) and (if) in Theorem 1. 00n91der the area of mterSeot set of [ 1, 1]2
and H (@, t) (#>0) whose boundary orosses some pomt in [ 1, 1]2 Write the
orossed point as (1—c5 1-¢y), 0<01<02<1 Oalculafbe the area of [ -1, 117N {aTX >
t¥, where the notatlon “(” means the intersection of bwo sots. We first rotate the
~stra1ght line a“’X 7 counter olookwwe D1V1de the 1nves‘b1gat10n 1nto five' cases
R 1) The area S has the form §=¢b/2, 0<c<2 0<b<2, where ¢ is the distance
between the point (1, 1) and the intersect point of Y=1and "X = =t and b stands
for that betweeri the point (1, 1) and the irteriect point of X =1and @”X =¢. It is
tasy to see that o= 02+ci/tg 0 b 01+02 tg g, Where 0 is the angle between atX =t
and ¥V=1. 8o : : ' :
e _ o-—-cb/2 (2oloz+c¥/tg9+cgtg9)/2 e e (8.6)
and a.retgc1/ (2 - ¢p) <O<arctg (2 —¢y) /es. Differentiating Sy Wlth respect 0 0 '

4 (86) = (=e6l/sin®0+c3/cos®0) /2 .~ e (8. T
we have (S,)’>0, for 6>0, Aarotg 01/01,<0 for 0<00 Hence So 13 & strwtly ‘_

- (convex function, and §4,=min.- - .. : D
- 2):The vertioal ocordinate of: the interseot pomt of X --‘--1 and a“’X ¢ is
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(1 t;;)(l 01<1 t1<1 t1>0)
The ares 15 .

St o 2t1+ [2 <01 ~t1) e+ (01 - 51) @- 02) +02 (01 t:l)] / 2
and 1ncreases stmotly with respeot o % and
(1)> [20102+04 (2 - 03) +olos (2 02) 1)/ 9= Sarctgo:(z—cﬂ)“ (3 8)
';. 3) The Vel'bloal eoordinabe of interseot pomt of X =1 and a'—"X -4 is 1 01<Y

i<1 Leﬁ 04 be the angle between y= 1—e¢ a.nd aTX t We have

P=20t [@-o)igh-diga]/2 - (3.9)
So »S'@’ increases. stuotly with respeot to 6, and A
S("”>S<2>—-S<1)—-201. s - (310)

- Lt £(64) mean “the digtanoce from the houzontal coordmate ‘of #he 1ntelseot

~point of aTX tapd V=1 to the pomt @, 1) We easﬂy gee tha.t t(01) 1n01eases

striotly with respeoh to 0y, where 0 is' the sams as ‘that in'the case 3)
- 4) Thé vertical coordinate of the intersect point of w-"'.X s and X 1 “and 'bhat

“of the intersect point of aTX ; and X = ~1ar e, 1espeo131ve1y, la,rger tha,n 1 a,nd 1

It is eaSy 130 see thab

S =20+ (20 g 01— obtg 0.+ # (00)1g 01]/2 o ’§3.11>
and S inoreases stllctly with respect to f1. IR |
89 =8 Bhigorsor =8 Brtgonsor =P, ' (8.12)

5) The horizontal ooordlna,te of the 1nbelseot pomt of a“‘X t and Y— -1, tz 1
Say, ig larger than -1. ' '
‘Since the origin poxnt (o, O) hes in the half plane {aTX <t}, “the a.ngle
between @’ X =t and Y =1—¢, is less than or equal to alo’ﬁg (1- 01) /(1—e5); and —1
—-1i<-(1- 02) / (1 01) Then the ares is’
8(4)—201+{[(2 02)2-t2 02+t2(01)]tg91}/2 : (3 13)

Furthelmore it is easy to see tha.t t2 (01) >t2 Thus S“) inoreages stnoﬁly with

e . S8 (814
. 8o fax, we have derived the fact that the area considered inoreases striotly with
counter ¢lockwise rétation for that line of {a-’”X .t} orossing (1= 63, 1~ ¢i) from the

“0ase 2) o -the case 5). Similar to the. the ocases 2) ~ 5), when . rotating: {a"X =1}
clockwise, the area of {aTX >t} N [—1, 1]? also inoreases shrigtly. Together with the

case 1), we have showed that the area of {@¢"X=#}N[-1, 1]° achieves uniquely

‘maximum at f@=arctg ci/c.. So the condifions (1) and (11) in Theomm 1 are
“¢heckéd,. Moreover, the condition .(iii) is:-clearly satisfieds: " - w=i oo &
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§$ 4. The Discussion for the Testing of the Data'StructUre

Projection pursuit is one of the most promising approaches toward discovering
and extlaotlng unspecified = struchure from a hlgh—dlmen.smnal data set: the
?concmte way is to search through all low—dlmenmonal linear plO]@OthDS of the set
and pick the interesting ones. This can be done either 1nforma11y by visual search
or more objectively by maximizing some numerical projection index. Olearly, the
‘interpretation of the apparent structure must remain ‘subjective, that is, whether
found by visual search or by numerical optimization, the perdeived structure may
‘be spurious. So to make statistical test is necessary. In our case the null hypobhesis
-to be tested corresponds to the assumption thab there is no structure at all. The
testing purpose is to decide whether it is worth to follow up on a promising, bub
possibly spurious lead. We ought to know whether we are werking above. or below
-the .general noise level. If we dip below that level, that is, the random noise is
h1gh our chance of picking non-spurious leads beoomes dim, Henoe it is an
interesting problem how to test the degree of the random noise. v
Utilizing the Kolmmogorov statistic as the testing statls’olc, ohrvik (1987,
1988) obtained bwo empirical formulag via simulating'_ experiments
n(n, d, s) ~2exp{ - 2ne?+(d—1) log (2en/d) /w3, (4.1)
and : _ .
. (n, d, &) ~2exp{ - 2ns?+2. 464(d —1)}. L (4.2)
(4. 1) is olose $0 our inequality (2. 2) |
If the empirical formulas above. hold and 1f we le’o d, m->co such that p= n/ a
is kept conﬂtant ﬁhen lettmg o A
= (log(2ev) Jow T W)i/z or D= (1 232/1;)1/2 ' (_4._3)
|Dy=D.| =0,(1/d), (4.4)
namely, D, can be congiderd as a .convenient central value. Huber (1988)
ISﬁgges{-}e'd ﬁSing this value as a tosting level. If the statistio observed is less than
this value, we probably are gazing at more random noise and it hardly will be
worth our time and effort to follow up on. even a conspicuous strusture seen in thatb
projection. This testing procedure differs from a usual $est since the central-part of
the distribution of the statistio is more important than the. tail part of thab. Of
course, we must be careful in applying D.. obtained by simulating results since we
only achieve in theory an mequahty ’ | s
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