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ON CURVATURE PINCHING FOR MINIMAL AND
KAEHLER SUBMANIFOLDSJWITH ISOTROPIC
SECOND FUNDAMENTAL FORM™

SmEx YIiBine  (f—K)*

Abstract.

An isometrically immersed submanifold is said to have isotropic second
fundamental form if the length of the second fundamental form related ito
any normal vector ig the same one. In this note, some curvature pinching theorems for
compact minimal (resp. Kaehler) submanifolds in §"*?(c) (resp. CP"*?(c)) with
isotropic second fundamental form are given.

Inty oductmn

Let M be an n—~dimensional Riemannian manifold isometrically immersed im
an (n+p)—dimensiona Riemannianlmanifold M. We denote by <, the metrio of M
a8 well ag that induced on M. If o is the second fundamental form of the immersion
and A, the Wemgarten endomorphism associated to a normal vector ¢, we define
T: Ty M x TLM—>R by the expression T(¢, n)=trace A.4,, where TiM is the
normal spdoe to M at p€ M and ¢, n€TLM. In [7, 9]it was proposed to study a
speocial olass of submanifolds for which T'=Fk<{,». By taking the trace we have k=
lol?/p. If 0,=<o, £>& is the second fundamental form with respsot to a normal
veotor &, then T'=%<{, > if and only if |o;||?=|o||?/p, which is indepandent of ¢. So,
we give the following

Definition, 4 submanifold M is said to have iésotropic second fundamental form

of T = llaﬂ”(, )/p, 8. e., the length of the sscond fundamental fomm with respect to any

normal vector ¢s the same one. .

Obviously, hypersurfaces (codimension=1) are trivial. In a Euclidvan sphere
8"*?(¢) of constant curvature ¢, a remarkable class of submanifolds with isotropic
second fundamental form is of order {us, u,} for some natural numbers %y, U1, in
which case submanifolds are Binstein (of. [7]). In particular, compact homogeneoms
irreducible spaces and strongly harmonic manifolds all are submanifolds with
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Jsotroplc second fundamental form™. In the complex prOJeotlve space OP**?(¢) of .

constant holomorphlo sectional curvature G a Kaehler submanifold of order {Ial, b}
for Some natural numbers %, and %, is one of this type submanifolds (of. [9]).

Particularly, seven compact Kaehler submanifolds with parallel second
fundamental form in OP**?(¢) are remarkble, which were .exposed by H'. Nakagawa-
R Takagi ({4]), M. Takeuchi ([12]) and A. Ros([S]), respeotively.

* " In this paper, by using the ides introduced by A. Ros, ete. in [3, 9], some
ourvature pinching theorems for eompaot minimal (resp. Kaehler) submanifolds in
.S”'*”(c) (resp. OP™? (¢)) with isotropio seoond fundamental form are given. In the
.case of real mlnlmal Submanlfolds of S’"'”’(c) our pinching oondltlon oharaoterlzes
the compaot Symmetrlo spaoes of rank one (Theorem 1), of whioh the immersions are
. Planar geodesio ([10]). In the case of Kaehler submanifolds of OP™? (¢) a characte-
rization of seven compact Kaehler submanifolds by ‘Ricoi curvature pinching is
shown (Theorem 2), which was studied already by A. Ros in [8, 9].

Unless otherwise stated, manifolds are assumed to be connected and of real

«dimension=>2.

§ 1. Preliminaries

We begin with soms notations and formulas following olosely the expressioné
in [3]. Let M be an n—dimensional compact Riemannian manifold.‘ We denote by
UM the unit tdngent bundle over M and by UM, its fiber at p€M. For any
oontinuous funetion f; UM-—>R, we have |

[ el Jf, poedon.

‘where dp, dv, and dv stand for, the ocanonieal measures on M, UM, and UM
Tespectively. , : |
Suppose now that M is mmlmally Jmmersed in an (n4-p)- dlmensmnal
TEuolidean sphere S"*‘”(c) of constant curvature ¢. Let o be the second fundamental
form of the minimal immersion and A; the Welnga,rten endomophism for a normal
veotor £. If T'y M and T; LM denote the tangent and normal spaces to M at p, one can
- define . I : S
. T, end T, TéMxT;LM—»R,
‘by the expressions | | ‘

Lo= EA,«,,e‘)e; and T4, n)= 2<A;e‘, 4,05, )

Where {6:}1<i<n i8-20 orthonormal bas:s of T, M By a modlﬁed version of Slmons
formula given, in[3]}, we:have . _ g



~ $hen M s aither. totally geodesic or @ compact symmetrio spacs of rank one.
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_n—4

JQUM,. (VO‘) ‘('vr ?7 ‘v) 12‘1’0"{_ (9‘&+4) jUM1 0(0 v)'vl d'v jUM<Lvr c(mo)'v>d”

-2j T(o(w, v), oy 'v))d.fv+2c ((Lfv, 'v>—- oo, v) [®dv; 1.2)

Let § and p be the Ricoi tensor and the soalar curvature of M It follows from:
the Gauss equation that | | |
8w, )= (-n'—1)0<u, @>,- <Lu, &) o (1.8)
and o I R o )
| p=n(n-1)o- nen*’,' : o (L.4y
where [o? is the length squere of ¢, ‘ ’ '
Some useful formulas glven in [3] are a8 follows ([3] Lemma 1)

f (Lfv, ,,(,,,,,yv) d'v, —12—2 L ‘qul“’do,, CO (15)
e @>¢zv,=—-j L
[ ilo@ Dl oo, @D

Now, at any point pE M, let f(v) = 4o, for v€EUM,. By oonmdermg UM ag
a unit (n —-1)-sphere, we have(of. [3], p. 543)

- jUM {4yf, frdvy=> ('"‘— D .[UM | [Pdoy
end |

. (A”f) (fv) - 3(n+1)f(fv) +4Lo -
where A stands for the Laplaolan of UM ‘Hence, it follows that

2 -
JU IA-o-(vyv)’vl d’Up/ P J <T’U, (,(,,,,,)'v>dv,,, ' ' (.f.. 8)3‘
where the equality holds if and only 1f fis the ﬁrst elgenfunotlon of A,, i e,

-Ao(v,v)'v“ L’I)

o + 2
TFor detaals for the geometry of Kaehler submanlfolds see [5]

§’2'.,_j Minimal s_’,ubfganiqus_vin a Sphere ',

In this section, we prove the following o
Theorem 1. Lot M be an n—dimensional compact minsmal submanifold smmersed

én S0 (0) with isotropic second, fundwmenml fwm If the Riccs oufrrvwmre Roo (M) of
M satisfies !

' Rle(M)>{n-—1-

(1.2)

Proof Let Q be the function which assigns to each Point of M  the  infimuny ‘of
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the Ricoi curVature of M at that point, Then, from (1 3) it follows tha.t ,

ST _ 0<<{Iw, vd<n-1Le-Q - (2.2)
for all v€UM. If ¢4, -+, e, i9 an orthonormal basis of T,,M , pEM, such.that Le;=
Aie;, we have 7\.;—<Le,, é;>=0 a,nd

[Tl =30, "< [0 -Do- Qv ad'= (o~ Do~ Q<o o, (2.8

where the equahty implies that A;= (n 1)0 Q for all =1, +, n, i. e., the Ricci
curvature of M is equal o Q at p. -

By (1 5), (1.6), (1. 8) and (2. 3)we have .
ool do-4] T, dgardis

P

> n+2j {Lw, o'(%v)'v>d'v (ig)sz[l}v[%v .

‘where the equa.hty. 1mplles that the Rwor curvature of M 1s 1sotroplc a.lmost.

everywhere, so that M is Emstemmn beoause of the conneetedness and compactness.
of M.

Since M hag isotropio second fundamental form, one Gan'see 1eesi1:y that
:,. o R : . «="0'"2{I Sl 9 } R
| T(o(v, o), oo, 0)dv= J D 600 205 il
_ oy : :

R 4 I '\'
- (n; = jwuan v (2.5)
aeeordmg to (1.7). ‘

, Now, mtroduomg (2 4) and (2 5) to (1 2) and usmg (1. 6)and (1 7), we cany
A‘get : . .

0> n+4j I(Va)(fv, v, fv)|2d'v+ ( +2)2J (20~ (n~4)al ol
<n+2> LM" Jdo e
= n;4J I(VO')(’Uy , ”)Izd‘v—{- +2J "2{2Q_rrf“")'ji;4:).0.‘____2')(2_)%Hc,_‘llz}d,v'a~
- L (2.6):
On the other hand, from . 4) we have L DR .

- o lofP=nln- 1)0 p<n(n 1)0 nQ, S e
which together Wlth (2 6) ylelds : o '
I "”'§4J OO g ot

4(niept2) [y e g p(n+2> :
* qun+2)2 "{ ( 1 (ntpt2 )}d” o (2 8)

‘..Thus, unedr the hypothesw (2 1) (2 8) must be an, equallty, Whlch 1mp11es that.
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(2.6) und (2.4)are equalities. Henoce, M is Einsteinian and the equality in (2.7)
holds, from which and (2.8) it follows. that either |o*=0, i. e, M is fotally
geodeses, or )

e np(n+2) 9
fo]*~ e (2.9)

Smce M is Einsteinian, from (1.8) and (1.4) it follows $hat
Ly=|o|%/n for all ycUM. ~ (2.10)

Substltutmg (2 5) and (2.10) into (1. 2) and using (1.6) and (1.7), we > find

= '"'+4f . 2 ' J‘ : a7, _4(2p+4n) 4
0: 3 UM] (Va? (v, v, 9)|%do+ (n+4)‘ quA"(‘_”")vl d i3y UMI[aI] dv
2¢

2 '
+ —3 Hall d'v . (2.11)
Now, ﬁxed any point pEM 1ot o, be the 1—form on UM ,(=8"1)given by

| ay(6) =|o(v, v) [ Ko (v, v), o(v, €)> :
Wlth v€UM, and eET.,( UM ,,) If ey, -+, On-1 is an orthonozmal basis of To(UM,),

then by a stralghtforward oaloulatlon one oan easﬂy sae that the codifferential Sty -

of a, is _
n—1 . ' . )
B "3 Tt = (1+6) (0, 0) =] Aucuon|*~21 e )|l

where V stands for the canonical connection on .S"'l and ey, v, €n-1, 6,=0 I8 an.
orthonormal basis of T,M. Integrating over UM, and using
J Bavclfvp =0,
) UM»
470 ) 2 : ¢ .
wt6)f . 10(0, o) [‘dog=4 - | Aol *duyt o) [ lolttn,  (2.12)
By the Schwarz inequality we have : ‘
' IO‘(’U, 'v) |4 <A¢r(v,v)'v ‘v> < IAa(v,v)'vl P

where the‘equ’ality holds if and only if A.,(,,,,,)fv A, i. e.,- M is isotropio at p (of.

[6]). Thus, (2.12) can be rewritten as = .

I e L L (2.13)

Introducing (2 13) into (2 11), we obtain finally _ "

S PR L M e
. (2.14)

In the case of (2.9)it is obvious that (2. 14) becomes an’ equallty, Whloh implies
. tha'.} M is 1sotrop10 and Vo=0, i. o, M has parallel second fundamental form.
| Usmg [10] we conolude that M isa coxﬁpa.ot symmetno space of ra.nk one, Thus,
! Theorem 1 is proved complotely. L : '

n--2
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“Remark 1. If M is Einsteinian, ‘the condition (2.1) is equivalent to
o _Mp(n+2)
S "G“ TRt pr)
which was shown in [3] So, Theorem 1 may be rega,rded as a generallzatlon o
Lemma b in[3].

Remark 2. For p=2 (1+2/n) the pmohlng oonsta.nt of (2 1) is not. larger than:
(n 2)c obtamed by N. Ejiri in [2]. Of course, we have 1mposxed an addltlona,],”

condition that M hag isotropio second fundamental form.
Rema.rk 8. As is well known, the only compact symmetrio 2—spaees of rank one

are 2—spheres of constant Gauss ourvature Then, Theorem 1 together vnth the
result of J. L. M. Barbosa in [1] ylelds the following ’ '

Corollary 1.1 Let M 2 bea aompwot mindmal swfwae bn QFF? (c) with @sota"opw_

second, fundamental form. If the Gauss curvature of M? s mot less than (4= p)e/(4+
), then M? is either totally geodesw or an S"’ (K ) 4n %" (c) with.K = 2o/m (m+1) for.

" some natural number m>1."

§3. Kaehler Submamfolds 1n a Complex Pro,]eetlve Space

Let OP"*”(G) be a oomplex prOJeetlve space,.’ of complex d mension n+ P, Wlth_
the Fubini-Study metrio of constant holomorphic sectional ourvature e, Suppose that.
M* is a compact Kaehler submanifold, of complex dimengion n, 1mmersed in Pt
(). We denote by J the complex structure of OP"*2(c) as well ag-that ‘induced on.

M*. Chooge a local field of orthonormal frames ei, :*, nim G1s=J01, *r*, Etrinpe=

Jop4p in CP™?(¢) such that, ;egt;-ioted- to M*, €1y ) Ony Giny **%) Cpe are tangent to

Mr. Throughout this section we use the following convention on the range of

indi.egs L . : e
o, B=n+1, «, n+p; A, ,w "n-}-l' oy P, (L)% e (,n,-i—p)*

If we write A, for the Weingarien’ endomorphlsm Ag) and § for the Riooi tensor of”

M then(of[5]) _ - . o
S(fw, v)———(n+1)0<u, v> 2E<Aav, N . R0}

for o, Q)EUM It follows ‘that the soalar ourvature e 01 M 1s o P
p=n(etDo-lol, . (3.9)

where ' R R
o= EtrA"’ 221;1' Az” B ®.9)

We now prove the followmg ' .
Theorem 2. Let M" bea: compwot Kaehlefr submamfold én OP”“’(l) with.
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gsotropic second fundamental form. Lf the Rioct ourvature Rio(M) of M" satis fies

| Rio(M) =n(n+p+1)/2(2p+n), (3.4)
then M" is either totally geodesic or am imbedded submwmfold congruent o the standard
@mbeddmg of one of the following submwmfolds : ' o

Submanifclds - | o P I Ricu)
, R

M;=CPa(1/2) ‘ o a(ntl)/2 (nt1)/4
My=@r n , 1, ' v n/2
My=CPs (1) x OPs(1) _ 2s e  (s+1)/2
My=U (s+2) /T (s) X 2 . s(s=1)/2 (s+2)/2

U@, s=>3 - L :
M=80(10) /U (5) 10 1 5 . _
M5=E5/Spin 410) ><1_' 6 10 ! 6

awhagre n 48 the complew. dimension, p the: full compluz; codgmension and Ric (M) .the

Rieci ourvature of M*, -
Proof Let 4 be the Laplaomn on M". In 5] a formula of Slmons type for

Kaehler Submamfolds of OP+#(1) says that
' ~—Auan2—uvna - 8r(342)2 - SY(tr A»Au>2+ (n+2) ol (3.5)

' Smoe M " hag isotropio second fundamental form, we have
2 (tr 4,4,)* =2 T (s, 04) |2= IIOII“/ 2p,

from whioh (3 5) ma.y be reduced \to

L llolt=1vol -8t D - Llol + H2jel. @.6)

On puttlng : '
‘ep= n(n+p+1)/2(2p+n), o (3.7)

one can seé from (3.1) and (8:4) that e S
—(n+1)<u vy -2<X Aau, RELACH v) (3.8)

Thus, —-(fn+1)I 2 2 A"’ is positively deﬁnlte, where I stands for the identity.
Moreover, since 4.8 are symmetrio lmear transformatlons, 2 A2 is poautlvely gemi-
deﬁnlte So, 2 AZ and ;A (n+1)I - 2 E A2 can be transformed 81mu1taneously

by an orthogonal matrix mto dlagonal forms at ea.oh dointof 3", Henoe, (3:8)

lmphes tha.t
{( (n+1)1' 2 2 42 (2 4 )}>GR (b 37 43

i. 0., by (3.3),

(et __cn).nf_c;né.»t@f@: s @)
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where the equality holds if and only if the Rioi curvatuae of M" is equal to cx ab
that point. ’ -
Substltutmg (3 7) and (3.9) into (3. 6),we have

3 dlolr> Vol +Flof{ 22D _po 2 jol),

2p+
which together with the compaoctness of M" ylelds . _
2 _I_J {n(n+2) 2} ' L
| e>fM IVolp+ 5 2ot?) - ot*jap. (3.10)
From (8.2) and (8.4) one sees easily that _ - '
- 2= p —n( ' — ‘ == - M
lo)?=p - n(n+1)>2nc - n(n+1) SpEn (3.11)

which implies that the right-hand sude of (8.10) is nonnegative. Henoe, it follows
from (3.10) and (8.11) that Vo=0 and M is either totally geodesic or an Einstein—
- Kashler submanifold with Ricoi ourvature cz. Now, the conclusion of Theorem 2
follows directly from the olassification of Kaehler submanifolds in OP™?(1) with.
parallel second fundamenta.l form glven in [4] (see also Table 1 in’ [9]) Theorem
2 ig proved. ' o

Remark 4. If M* ig ‘Binstein-Kaehler, the condition (3.4) is eqﬁivaient to
ﬂa||2<np(n+2)/(2p+n), which was shown i[9, Lemma 4.3].

Remark 5. Obviously, the pmohlng oonstant of (3. 4)1s not 1a1g91 than, n/ 2,
Wthh was given by K. Oglue in [5] without the addltlonal hypothesus that M has ,
isotropio second fundamental form. ‘

§ 4, On Sectione,l Cuvature and Scalar Curvature

'We return to the case of minimal submanifolds in gt (c)'; |
" By the equation (1.4) of the minimal immersion, usually, one trasforms the
etudy of the scalar curvatuse to that of the length square of second fundamental
form, for which we have : - | |
Theorem 3. Lot M be an n-d@menswml compa,ct mmmwl submani fold @mme’l"Sud
én 8"*9 (o) with isotropio ‘sscond fundamental form. If . C
||a||2<np(n+2)o/2(np+n+2) S C )
everywhere, then M is totally geodesic. o ‘

Proo f As has been done m ‘the proof of Theorem 1 Jet 01, ***5 €n be an -

orthonormal basis of T,M for a pornt pEM suoh that Le;—?»,e; Slnce 2\4>0 by
using (1 8) and (1.4) we have

|1’wl=’=2 Mo, o' <zmk> <2x.<fv, e‘>2>- IIGI|2<Lv, W <42>
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where the equality holds if and only if all &;=0 because of n>>2, -
From (1.5), (1.6), (1.8) and (4.2) it follows that ’

('n’+4) JUM 'Aa(vyv)'u l %do - 4“‘ <L’I),' Aa(o. ,,)’D>(Z'U> - -Tq;%-yfjuxaan2<Lv’ @>d'v :

iyt el - (43

Now, introdueing (4.8) a,nd (2.5) into (1 2)a,nd using (1.6)and (1. 7), wo have

2L () v o e felo- 20220 oyl
3 ol S

where the equaliy 1mplles that (4. 2) becomes an equa.hty, which ylelds lol?=0, i.
e., M is totally geodesic. This proves Theorem 3. TR
’ Remark 6. When p>3 (n+2)/4, the plnohlng constant of (4 1) is not less
than, the well-known Simong’ constant n/(2 ~1/p). - ‘
PFurthermore, erhpldy1ng(4 4), we prove the following .
. Theorem 4. Let M be an n-dimensional compact minimal submwmfold immersed
i ;S‘"*”(c) fwfz,th isotropie second fundamental form. I f the sectional curvature of M is

not less than . _ N
o | | (2np+n+2)c/4(%p+n+2) o C (4.5)
afvea‘yfwhure, then M must be tota,uy g@odesw " _

Pa"oof Let K u be the funotlon Whloh asmgns to each point of M the infimum of
the gectional ourvature of M at that point. Then, the Yau 8 1ntegra1 for mula(lO 1).
in [12] says that

>Jwﬂa|i%{2ﬁKM'+' |o]2 - npo}dn. (4.6)

From (4:4) it follows that ' . |
s np(n-}-é) 2 ‘ ' 7
0ol {———-———-——2<np+n Dso-lotda, @

which together with(4.6)yields * -

R

where the equahty 1mplles that elther [laﬂ"’ 0or Ky=(2np+n+2) 0/4 (rn,p—i—n 2)
In latter case, (4.6) becomes St
0= lol {uouz wgﬁ(ﬁﬁ% ofa, 7
‘whloh makes (4 7) an equahty a8 Well as (4. 4) This proves Theorem 4. - 5
‘ Rema.rk 7. When p>3(n+2) /4, our pmohmg oonstant (4 5) is not Iarger
than the Yau's constant (p- -1) / @p- 1) w2, _
“*For Kachlér submanifolds in O’P”“" (o) there are analogous results which we
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omit here.
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