A RESULT ON THE BIRATIONAL MAP BETWEEN TWO NORMAL 3-FOLDS

CHEN MENG (陈 猛)*

Abstract

This paper tries to study crepant morphism of algebraic 3-folds. For certain birational map f between normal 3-folds, when is f an isomorphism in codimension one? The author gives one sufficient condition.

§ 1. Definition and Introduction

The research in algebraic 3-fold is very brisk recent years. Here, all the terminologies and results remain the same as that in [1], [2] and [3].

The main object considered here is normal algebraic 3-fold. Let X denote a normal 3-fold. Generally speaking, Weil divisor and Cartier divisor on X need not be the same thing. You can know in [4].

1. Canonical divisor on X

Suppose $X = \sum n_r \Gamma$, a Weil divisor on X. We define a heaf $O_X(D) \subset K(X)$, $\Gamma(U, O_X(D)) = \{f \in K(X) | v_\Gamma(f) \ge -n_\Gamma \text{ for all prime divisors } \in U\}$.

Definition 1.1. Let L be a sheaf on X. If it satisfies $L=L^{**}$, $L^*=\text{Hom}(L, O_X)$, then we say L is a divisorial sheaf.

According to [1], $L=L^{**}$ is equivalent to the following condition: If $X^0 \subset X$ is a non-singular open subvariety such that $X \setminus X^0$ has codimension ≥ 2 , then $L|_{X^0}$ is invertible and $L=j_*(L|_{X^0})$, where j denotes the inclusion.

Actually the sheaf $O_X(D)$ is a divisorial sheaf. Futhermore, there exists a bijective correspondence $D \mapsto O_X(D)$.

{Weil divisors on X} $\stackrel{1-1}{\longleftrightarrow}$ {divisorial subsheaves $L \subset K(X)$ }/ $\Gamma(X, O_X)^*$. For $X \subset P^N$, define $\omega_X = Ext_{PN}^{N-3}(O_X, \omega_{PN})$. Let X^0 be non-singular locus on X. Because of the normality of X, we have codim $X \setminus X^0 \geqslant 2$, $\omega_X \mid_{X^0} = \Omega_{X^0}^3$, ω_X is a divisorial sheaf. Hence ω_X corresponds to a Weil divisor K_X and then $O_X(K_X) = (\Omega_X^3)^{**} = j_* \omega_{X^0}$, $j: X^0 \to X_0$

Manuscript received April 17, 1989.

^{*} Department of Basic Course, Shanghai Institute of Building Material, Shanghai, China.

2. Partial Resolution

Definition 1.2. Let X, Y be normal varieties. If there exists a birational morphism $f: Y \mapsto X$, we say f is a partial resolution.

We always suppose X to be a variety with slightly good singularities (terminal or canonical).

Definition 1.3. X is said to have only terminal (resp. canonical) singularities, if the following two conditions are satisfied:

- (1) \exists positive integer r, $\ni rK_x$ is a Cartier divisor;
- (2) \exists a resolution of singularities $f: Y \mapsto X$, $\ni rK_Y = f^* (rK_X) + \Delta$, $\Delta = \sum r_i E_i$ is a Cartier divisor with $r_i > 0$ (resp. $r_i \geqslant 0$) where E_i run hrough all the prime divisors on Y contracted by f.

Remark. (1) Condition (2) of Definition 1.3 is equivalent to saying $rK_Y = f^*(rK_X) + \Delta$ for every partial resolution $f, Y \mapsto X$. [3] has accounted for it.

(2) X has canonical singularities $\Rightarrow X$ is Cohen-Macaulay. The case of dimension 3 has been solved by Shephered Barron. High dimensional cases have also been solved.

Definition 1.5. Suppose X have only canonical singularities. If $f: Y \mapsto X$ is a partial resolution, then $K_Y = f^*K_X + \Delta$, $\Delta \geqslant 0$ is made up of some divisors. Δ is said to be the discrepancy of f.

We say f is crepant if $\Delta = 0$.

Definition 1.6. $f: X_1 \rightarrow X_2$ is an isomorphism in codimension one, which means that f is a birational map and by deleting subsets of X_1 and X_2 of codimension ≥ 2 , f becomes an isomorphism.

§ 2. Use of Discrepancy

At first, we introduce two results of Miles Reid.

Theorem 1. (Weak Index Theorem) Let $f: Y \mapsto X$ be a proper birational morphism between normal varieties, of which Y is supposed to be Cohen-Macaulay. Let Δ be a Cartier divisor made up of exceptional prime divisors. Then there exists a component F of Δ such that

- (1) $C \triangle \leq 0$ for all curves $C \subseteq F$ contracted by f and not lying in a proper closed subvariety of F;
 - (2) the curves $C \subset F$ contracted by f, such that $C \preceq 0$, fill up a dense subset of F.

Theorem 2. Let $P \in X$ be a canonical singularity. Let $f: Y \mapsto X$ be a crepant morphism. Then Y has canonical singularities on $f^{-1}P$. If X has only terminal singularities, then Y has terminal singularities too.

M. Reid thinks it is probably true that a birational map $f: X \rightarrow Y$ between two

3-folds with terminal singularities, such that K_X and K_Y are both nef, is necessarily an isomorphism in codimension one. He did not give the proof.

I do not want to answer this problem directly. Now I give one sufficient condition in below. Let us see the following simple corollary.

Corollary 1. Assume that X has only canonical singularities. Let $f: Y \mapsto X$ be a partial resolution. Then f is crepant if and only if Y is Cohon-Macaulay and K_Y is relatively nef (that means $K_Y \cap X \cap Y$) for every curve $C \cap Y$ contracted by f).

Proof Theorem 2 implys that Y has canonical singularities. We know from Remark (2) that Y is Cohen-Macauly. We can write $K_Y = f^*K_X + \Delta$, Δ is Q-Cartier. Because f is crepant, $\Delta = 0$, $K_Y = f^*K_X$. For any curve contracted by f, we have $CK_Y = Cf^*K_X = 0$. K_Y is certainly relatively nef.

Conversely, Y is Cohen-Macauly, K_Y is relatively nef. We have $K_Y = f^*K_X + \Delta$. K_Y is relatively nef $\Rightarrow \Delta = K_Y - f^*K_X$ is relatively nef too. Theorem 1 implies $\Delta = 0$, and hence f is crepant.

Theorem 3. Let X, Y be normal 3-folds. Let $f: X \rightarrow Y$ be a birational map. X has only canonical singularities. Y has only terminal singularities. K_Y is nef. If there exists partial resolutions g, h such that h = fg and h is ore pant, then g is also crepant.

Proof $g: Z \mapsto X$, $h: Z \mapsto Y$, they are both partial resolutions. Because X and Y both have canonical singularities, we have

$$K_z = g^* K_x + \Delta(g),$$

$$K_z = h^* K_y + \Delta(h) = h^* K_y,$$

 $\Delta(h) = 0$ because n is crepant.

From Theorem 2, we know that Y has only terminal singularities $\Rightarrow Z$ has only canonical singularities $\Rightarrow Z$ is Cohen-Macaulay. If g is not crepant, that is to say $\Delta(g) \neq 0$, then according to Theorem 1, there exists a component $F \subset \Delta(g)$, such that the curves $C \subset F$ contracted by f and satisfying $C\Delta(g) < 0$ fill up a dense subset of F.

$$C\Delta(g) = C(g^*K_X + \Delta(g)) = CK_Z = Ch^*K_Y < 0.$$

This means that C can not be contracted by h. Because Y has terminal singularities and h is crepant, you can see obviously that h is an isomorphism in codimension one.

Now F is a two dimensional prime divisor, there exists an irreducible curve $\overline{C} \subset F$ and g contracts \overline{C} . Let $C' = h(\overline{C})$, C' is an irreducible curve in Y.

We see that C is birationally equivalent to C'. $h: Z \mapsto Y$ is an isomorphism except for a part whose dimension ≤ 1 . K_Y is nef and according to projective formula,

$$\overline{C}h^*K_Y = C'K_Y \geqslant 0$$

which is contradictory to $\bar{C}h^*K_Y<0$. Hence g is crepant.

in in the factor of the sale of a nor M.

Corollary 2. Under the above conditions, if X has terminal singularities, then $f: X \rightarrow Y$ is an isomorphism in codimension one.

I greatly appreciate Professor Chen Zijie and Professor Xiao Gang's instruction. They have given me much encouragement.

References

- [1] Reid, M., Canonical 3-folds, Algebraic Geometry Angers, 1971, edited by Arnaud Beauville.
- [2] Reid, M., Minimal models of canonical 3-folds, Advanced studies in pure Mathematics 1, 1983, Algebraic Varieties and Analysis Varieties, 131—180.
- [3] Kawamata, Y., Elementary contractions of algebraic 3-folds, Annals of Mathematics, 119 (1984), 95-110.
- [4] Hartshorne, Robin, Algebraic Geometry, GTM52, Springer-Verlag.
- [5] Fulton, W., Introduction to intersection theory in algebraic geometry, Conference board of the Mathematical Sciences, number 54.