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CHARACTERIZATION OF THE UPPER
SUBDERIVATIVE AND ITS
CONSEQUENCES IN
NONSMOOTH ANALYSIS

WANG Yountong 1@) *

Abstract

It is proved that the upber subderivative of a lower semicontinions function on &
,Bana.ch space is upper semicontinuous for the first variable as #'—>; x, i e., &' ~=, f(a)
~f(z). By takmg account of the work of Treiman. it ig further shown that the upper
subderivative of & 1. s. ¢. function is the upper limit of the contingent directtional
derivatives around the concorned point. This new characterization of the upper
subberivative allows simple derivations and natural extension of many results. in
nonsmooth analysis.

§ 1., Introduction

One of the ob]eotlves of th:s paper is to propose a ohara,oterlza,tlon of the upper
subderivative f* (=, y) of al. s. o. function f on a Banach space in terms of the
contingent directional derivatives f¥(z, y) of f, that'is,

Fi (@, y)= l]m Squ#(w ¥) @

and we shall use this formula to generahze in a very snnple Way some 1mportant
results in nonsmooth analysis. v

"Wo shall develop our result from a very geometrlc pomt of view by using the
recent characterization of the Olarke's tangent oone duc te Treiman £e1,

Before we establish the announced characterization (1), Let us take a few Words
to review some related results in the carly da,ys of nonsmooth analysis. '

We could date back to Olarke’s orlglna,l generahzed notion of dlﬁ"erentla,blllty
for .the olass of lodally Lipschitzian funotlons on R". The startlng point of hig
definition was Rademaocher’s theorem, whioch asserts that these funotlon.s are
differentiable almost everywhele This fact permits him fo deﬁne the. generahzed

gradlent of & looa,lly Lipschitz functlon N R"—>R a.t a pomt wER” as a. compa,ot'

sonvex set in the followmg Way
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8f (a): =oo{lim Vf(a) |a( € dom Vf)->a} ¢))
and he oha,raotemzad ‘the support function to thls get., i. o., o P
fc (@, v)= lim sup (Vf(:v), '”> : L 3
@ GdomVj)-m . . LR
as - - : 4 ”
. f° (@, v)=lim sup flatin) —f(m) L@

t—>0+
which is now known as the Olarke generalized directional derivative: of f at @¢°in

the direction. fvER”

- When
f (w+tv) f(fv)
_ I (m’ v) = Engi
ex1sts for all k2 wER", from (3) we obtain the oha.ra,oterlzatlon

£°(@ o) =lmsupf' (s, 6). T ®

'Several authors extended the Clarke generalized dlrectlona,l demvetrve in  the
similar gpirit as (4) to real functions defined on a general topological vector space.
Meanwhile, fimilar characterizations of () were proposed.

-Recently, Correa in hig Ph. D thesis [8] obtained charaotemzatmn of the type
as (5), which was shown to be Valld for & 1. 8. 0. funotion on a general topologloa,l
veotor space. Na,mely, he proved that o, ») is the upper semicontinuous
regula.rlza,tlon of any D1n1 dlreotlonal derivatives Df (-, ¥) of the funotion f, that
Vis : -
- f%(a, v) =1§m 1 Sup Df(#, v), _ (6)

whero Df(a, 0) denotes one of the followmg four Dini directional derivatives:
DY (g, v) = T f<w+m> “f@
D, f(a, v)= 11m1nf ! (a+ t"’) ~f@, @
‘f(w, v)= hmsup f(w+t'v) f(a) | )
D_f(a, 0)= hm1nf f<“+*”) @ (10)

Tﬁe ma;l'nwtoi)l he used is the following Dini mean value theorem % For a I. s.
o f: X—>R and for all @ yE€X, there exists a& [, y) such tha.t

i (y) ~f@)<D.f(a, y- -a). (11)
When X is ﬁnlte—dlmensmnal Rocka.fellar @ and Ioﬂ'e e have already proposed '

the followmg 1esu1t o

Iﬂy

f*(w,y) hmsupmff*(w y) o o (12)

where
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ff (w ?/) hlt:’j-a%up;]jff(w +Z"/') f(w’) h (13)

is known as the upper subderivative of f at @ in the direotion y,which is introduced
by Rockafellar ™ and

f#(a; y) = hm1nf f(w'*‘t?/,) f(‘v) o | (14)

t->0+

is oalled the contingent directional derivative of f at & in the direction y [7 ] or the
lower ‘Hddamard derivative. ' ' _ :

In fact, formula (12) is an analytio consequence.of (mdeed equivalent to)
the following importat geometrio rela.tlon between the Olarke tangent cone ™! and

the contmgent cones %% ‘ ;
To(o)= lJm 1nf K o(e ) - (15)

In what follows, we shall dlscuss the rela.tlonshlps ‘between Varlous gen—
eralized dneotlonal derivatives and their corresponding geometric counterpart,
tangent bones from the point of view of the epigarph. We shall use Treimans new
ohara:terization of the Olarke tangent cone ! and prove that for a i. 8. o. funotlon

on a Banach space the following characterization holds:

f1(@, y)=limsup f*(a', y). | | '(16)_

We devo’ue the rest of the paper to developlng SOme extensmns of 1mporta.nt results
in nonsmooth a.na,lyms '

§ 2. Tangent Cones and Their Properties

Assume fhé,t X is a Banaoch spa,ne, O is a olosed set of X, " and €0, Denote by
N () the set of all nelghborhoods of #. As we known. the following tangent cones
, (to O at ©) are frequently used in nonsmooth analysis.
Definition 2, 1, (a) Olarke tangent congtt ’
- To(@)={y| VN (y) €A"(v), 3N () e./V‘ (v), A>0,
Vw’EN(a;) NO, € (0, A), Iy’ EN(y) such that o'+t EO} o 10
(b) (Bouligand) Contingent tangent cone
Ko(cv) {ylvzv(y) €N (), >0, T€ (o A). y’EN(y) such that w+iy’€0}
(18)
(o) Ag(w) {y[V?\.>0 EtE(O 7\.) suck thwt m+tg/€0} N
(D) Ho(o)={y| ax>0 Vte (0, ) such thwt w+ty6’0} o o
(e) -
‘ (w) {y[‘v’N(y) E./V'(w), ElN(m) E./V'(m), V?»>0 _
Va: GN(w) No, #E(0, 1), ¢’ EN(y) such that o'+t ea} (19)
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;
N

(®
Ho(w)= {ylaN<m)€./V‘(w), A>0 such that Va; EN(z) N0, $€ (0, A), o' +ty€O}.
(20)
(9

-

Hi(o)={y|3N (2) € & (z), VA>O0, V&'EN(2) NO.
- TE (0, A) such that o +ty €0}, . o (21)
Since X is a Banach space, according to Ioffe [4], we have an interpretation of ‘the
limit of sequences’ to these tangent oones as follows:
To(2) =Tya(0, @), Ko(w) =T .53(0, @),
Ao(2) =T.3.(0, 3), Bo(w) =T .4.(0, v),
TZ’(‘”)-"‘*‘TVEE(_O) @), Ho(w) =Ty.(0, ),
He(w) =Ty3.(0, m)', .
where ' " -
Tors(0, &) = {v|Qu,~>c v. Rt —>0+ Sv,~>v such that o, +#,0,E0}, (238)
, Q {¥,3,.}, R={V,3}, 8= {V Es.} '
a.nd « means @,==x Or V,=0.
- As an obvious consequence of the definition. we get the following
Proposition 2. 1. , . | i
Ho(o) CBo(w) S Ao(w) CKo(@),
| Hy(@) CTole) cTh(o) c Ko(o), (2
Ho(z)Hy(w). '
Acoordlng to Treiman “® and Ward ¥ we have further
Proposu:lon 2.2 If X is a Bzmwch space, Ois a closed subset of X and wEO
then .
Too) = To(0). o) =Hio). . - (25)
These two facts are orucial to our argument in the next section.
By the way, the following' important facts about the tangent: cones characterize
the finite-dimengional space and reﬂex:tve space. ’
- Proposition 23,78 4 Bamach spacs X és ﬁmie-dmenswml @f and only 5f forr
any closed OcX and any €0, g
oo ]Jm1nf Ko(m') Tg(:v) : (26)

A Bamach spwce X s reflextve @f wvwl only &f for any closed OcX and any mEO
) ll.gllolil,f WK o(iv’) To(w), - ' ' : . (27)

Awhem WK o(a;) is the fwewla oontmgenﬁ "cone, _ wh/wh fbs the set of wll weak lQﬂm’bts of .

- sequences {t"1 [e. — ] 1 fwwth s,,-—>0 +amcl 0. € 0 , ,
. In genera,l for any closed set O in a Ba.na.oh spaoe X and wEO we ha.ve
onlyE15J
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lirlnoinf Ko(a") T (@). : . (28)

It O is epi:Lipsohitzia,n, oT even oompa,otly epi-Lipschitzian at #™%, we get
‘ lim inf Ko(a")=To(x). ’ (29)

For more details about these properties and applications, we are referred to
5, 15, 18]. ’ _ .

" In the next seton, we shall translate the above geometrio facts, by using the
epigraph of a function, into various genoralized directional derivatives and
obtain our new echaracterization by proving a very useful property about the
upper semicontinuity of the upper subderivative.

§ 3. Gene»ralized Directional Derivatives
and Their Properties

‘Lst f: X—>R be 1. 8. 0." Denote the epigraph of f by :
epi f: ={(w, r) €X X B| f(w)<'r} (30)
which is olosed - '
Lot € X hea point at which f ig finite and let y€X. The upper
subderivative of f at » in the direction y is defined by 17
_ Fw, y):=inf {rER|(y, r) Eeqps(@. F(2))}s I, (81)
whioh is equivalent to :
' opi 1 (@, y) =Tepir(w, .f(a’)> . (32)
Since Tepie(w, f(x)) is a olosed convex cone, f*(w,y) is a l. 8. o. positive
homogeneous convex function. We have the following definition.
Definition 3. 1 Let f: X >R and s X suoh that f (@) ds ﬁmte The
subgmdwnt of of f at x is the set

of (#): = {a" EX'*IQ/’ ‘w*><f'-"(w, fl/_)‘, VyEX:}. L (33)
Rockafellar ™ provided the following direct characterization of f*(w, y):
f* (@, y)=1lm sup inf f@ +t?/’) ~f (@) e

il 1/"’1!
0+

int L@+) f(w’)

= sup 1nf sup
N E//(y) N (w) E./f(av) o ('-Z N (Aa) Y ENW
J‘(a:’)s.f(:c)+n

In the same way, for the ta,ngent ones K g(w), Ao(2), Eo(w), Ho(w), H5()

and T'; (v), we can define

fE(a, y) =f* (‘”’ y) '"1nf{'rl (y; 7) EKemf(m’ f(‘v))}’ o , (8?)
: fE(a” y)- f-’ﬁ'(w’ y): "1nf{”"| (?/r ’r) € Hepyr (2, f(‘”))}r ' _. E ‘ (36)
fA(m; y) "f Qe (@, y): 'lnf{'rl (o, T) EAeplf(a’r f(m))}» _ R (37)

Ko )= =0t O €Haulo S@DL T (3)
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fH“<w y)= fva (@ g):=int{r|(y, r) EHepb‘ (@ f(@)} - o (38)
T™ (@, y) =fyaa(®, 9) i=1inf{r| (y, r) € Top,(z, f (a’) )} (40)
From the definitions, we have exactly]
epi f*(®, y) = Kepis (@, f (@), | (41)
epi f¥ (@, y) = ol Hepy () f(‘v))r (42)
epi f4 (@, y) = olAeps (e, f(2)), 4 (43)
epi f* (@, y) =o0lH (s, f(2)), (44)
epL £ (3, §) = ol Has (@, £ @), - (45)
epi S (‘vr y) =T (9’) F®). (46)

There are also direot cshara.cterlza,tlons of these generalized directional
derivatives, i. e., -

i (m y) = h_m 1nf f (w‘{‘ty;)» i (w) | (47)
Fo (=, y) ~11msup f<“’+“’) f<”) o | (48)
fA (=, y) h}mo‘lnf f <‘”+t?/) f (‘U) (49)
F5(@, ) =1° (@, y) = limsup LX) - @, 50)
| S (a;, ?J) llmsupmf f <m +t?/> ~f (a;’) .‘ : »: o (1)
a:-—>f¢ -0+
fT’(w, y) ~lim supinf TACA Hy) =i CON I )

yl_)y vl
Recall the relation (25) of Propos:Ltlon 2 2 and (50) (51) (52), and then we havs
the following lemma,

. Lemma 3. 1. Let f: X—>R bel s. ¢.. Then
7' 9)=f"(@ )= limsupint f@ ”?” ~f@) ©(53)

'@ 1/’-»31
t-»O'iI-

! " =limsup inf S ’Hy') -f (m')

L t—90+
Yoy

and

fo(‘” y) fH(ny y) ‘—fH*(w y) = hm  sup f("’ +ty) -f (@)

t—;0+

=11m supmf f +ty) f@,)

&g 04 A (54)

The a,bove m;xed limit operatlons are assoomted With the epl-hmlt convergenoe

of 1. 8. o. funotmns whloh allows us to transpose our results about sequences of

closed sets and of set~va1ued maps to saquences of 1. s o. functlons We recall the
followingsRookafellar and Wets's result™. - . = N
Lemma 8. 2. Suppose that. { f.,, vE(N, x‘)} ws @ ﬁltered fwmloly cf l..s. 0.
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JSunctions on X. Then ! S ,
opi(epi f — Tim sup fo) =lim infepify (55)
VEN vEeN - : :

and o : :
' opi(epi f - ]jrrzinf fo)=Ilim sup epi fo (56)
PEN VEN : .
where "
' (epi-— hm sup fo) (w) sup lim sup 1nf fo(2")
‘ Fl\« @) VEN '€
and

(ep1 - 11m 1nf fo) (m) = gup llm 1nf :mf f.,(m') .

VEN(@) veN e '
In view of (28) (81), (32) (86) and of the above lemma we get the following
propomtlon
o Prop031t10n3 1. Let f X—>R bel s. c. amd sEX suoh that f(x) ts findte.
Then

\ hmsupmff#(m,y')>f @9, 6D

@'~ y'—n

If edther X is findte-démensional or f ds do«rectrbomuy L'bpsch’bﬁz at z*.we hawe fuwrther
| lim sup inf f#(a!, y) =f" (%, 9. | (58)

'@ -
We shall strengthen the above resu]ts after a number of lemmas are proved.,
Lemma 8. 8. Let f: X—>Rbel.s c.. Then

| lim sup f*(«, y) <f’(w, o), - (59)
‘o é., f1(+, y) is upper semwontomaous for f,he ﬁo’st mmwble as o'—>.
‘Proof - From the very deﬁnltlon, we have only to prove that for all >0,

Fy(8) = W E.X |10/ —0l <. [ ) ~F@)| <3} (6
such that ' _ i P :
| Vo' €V (). f1 (o, ) <f'(a, y) +s.
Set ' B Lo
ot N _ f
g(a;”,_t, gl)# f(w +tyt) f(‘v ) .
Since : ' R
? - 77 N
11z, y) 11m0 sup inf g(a", t, v = @GN et o :}gg o ,,'ie%ﬁ, 9", 4, )

where N (@) is the set of nelghborhoods of the same type as (60), which defines the
topology mduoed by the convergenoe a;'—»,m, We soe that for all N (y) E./V' (y)
" inf  gup inf g(m" t y’) <f T(w, y)+s B

1 : R V;(Q(E.A’;(w) o;’ee(l(;,(m) y’GN( )]
and then there exwts Vf(w) €N ;(2) and A>0 such that
TR . sup:’ inf g(@”, 8, y) <f* (w,y) +8&.

@EV @) ¥ €N,
recony ¥ Y@
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For any o' €Vy(2) €N ¢(2). we can find a V (¢) € A;(s’) such that

Vf (.’D') cVy (:v) o
Hence,
j. f 174 t 4 4 ) '8
%,,se(gg)w,) ot y(w y)<f (2, y) +
-~ and
. inf sup 1nf g(a;” t, ) <f* (=, y)+s.
V;(@') FU" @) " EVJ("U’) Y ENY)
Therefore, o
sup inf gsup. inf g(a;” 5 ) <f*(w, v) +so
N ENW) V;(w’) E-A;(z') w"EV({(r') Y'ENG)
Tt follows that _ ‘
, Vo' €V (o), fH (&) v)<f*(@ 9)+8, -
and then o o
’ lim sup f* (o, y)<f* (o, ) - v
. 1 : ST : .
‘holds. _ -

,As an eagy consequence, the following corollary is interegting in its.own right.

Corollary 8. 1. Let f: X—>R be l. s.o.. Then the set-valued map 9f(+) Srom.
X to X* has a closed graph fom the norm topology of X and the weakstar topology of

X, ) : .
Proof Let 4. €0f (a), aE A, Wthh is a dlreoted set, v—>w and Yo g Y. By the
-definition we have =~ '
‘_v’fveX, P EA, <g/,,, 'v_>§f? (aa.,,}v)
and so, L R
ll:zm tfy m><1imasup f1 (a:a, V)< f (@, v).

‘Thereforé,

V'UEX <?/! 'U><ft<w) Q))’
and thus yeaf (m) The eorollary is proved.
In order to. molude Oorrea’s characterization about the OIarke dn'eotlona.l

derivative in terms of Dlm dnectlonal derlvatlves, we state the followmg 1emma :

which is obvmus from the defifiition.

Lemma 3.4. Let f: X —Ebel. s e. Then the Clarke directional derivative

S (@, g) is upper sem%contmuous Sfor the ﬁfrst fva,frwble as m’-—>f:v, boe, .
‘ llm sup f°(w’, y)<f °(w, e . (61)
Now we can give the main results of our paper as follows

- Theorem 3. 1. Lot f: X~>R bel.s. co..Then - P
| hgljgpf‘*(w D =F@ry)e e i(62)
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Prosf B}; Lemma 3. 1, we have
f1(», y) =limsup inf i (w—{—ty’) f (‘U)

-—),wb tq—;’0+
<lm sup(hm inf L <t+t?/'> ~f(®) )
e /

“=lim sup f*(o/, ),
_ g )
where we use lim sup inf <lim sup (lim inf),
On the other hand gince
| Ve, ?/Ex f*(wy y)<f’(w, ¥
we have _ | :
lim sup f* (o, g/)<1iﬂs;1pf’ (@, y) <f'(e'y) (Lemma 3.3),

and then we ooﬁoludce_ the theorem.
Theorem 8.2, Lot f: X—>R be l. ... Then . ,,
f°(@, y) =Hm  Sup D, v, (63
whére Df (m, y) fA(a:, y) or fE (fv ), 6. e, the Dfmw upper or Zower dwrect@onal

derivative.
. o P'rOOf By TLemms 3. 1 a,nd the deﬁnltlon we have .

J° (w, y)=lim sup inf f <“’ ”M"/) f <"7)

Ty’ 7 150

<lim sup lim inf £ (o 'M?/) -f (“")

@' . t—»0+

= 11m sup fA (@, y) <11m sup fE (a: 0.
" Binoe ' : o
. Yw,'yEX, JZ (a0, Q/)<f°<“” ¥).
we have o - :
Lo sui)f" @, y) <lim supf°(«', g/) <f°(2 y) (Lemma 3. 4).
w’-»,w A L . -l

Therefore, (63) fo]lows :

 The a.bove two oharactenza,tmns a,llow sumple derlvatlons and extensions of”
-many important results in nonsmootha,na,lyms These topios are dascussed in thes

next seotlon

§ 4. Apphcatlons of the Charactemzatlon of
the Upper Subderlvatlve

- 4.1 On the Generalized Gradlent of & Nonsmooth Funotlon on'a Banaoh spa,oev ’

The purpose of thls part ds to generahze the oha.raotenzatmn of the generalized
gradient of a looa.lly Lipschitz function in terms of gra.dient limits into a wider
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olass of ‘fu.notiovns' The breakthrough along this line wa#'due to Shih Shu-Ohung®#,
_ whioh provided necessary and sufficient conditions for the characterization of this

type

" Let us come baok to the mtroduotmn of our paper As a beginning of

nonsmooth analysis, Olarke gave the definition of generahzed gradient of a locally-
L:lpschltz function defined on R" in the form '

8 (@) = coflima Vf(g) |y € dom Vf}- (64)’
-He. oharactenzed it with its: support function . | : o
Je (@ v)= 11m  sup i (w +@) f @) o | (65):
t-»0+

in the followmg relations:

0F () = {EC BI<E, v5<F (3, o), WweRY  (69)

and , |
| - J° (@, v) =max{<§, vy[§€of (w)} . (67)
If we replace Rr by a genera.l topologmal veotor space, X definition (64) is
meaningless bocause Rademacher’s theorem is not valid in general. On the other

.hand. the definition (65) of the. Olarke generalized directional derivative of a

locally Lipsbhitz function is still available. Therefors, we can define. the.
generalized gradient by formula (66) and this technique has been proved to be.
fundamental in the development of nonsmoobh analysis. :

_ Rockafella:r has further gone by mtroduomg the upper Subderavatlve of a 1 8.
"s. funotion on & locally convex 'hopeloglcal ‘veotor space and defined the

subgradient.in the same spirit as: (66). He showed that if f is locally LlpSOhltZ,‘ '

9f (w) coinoides with the Olark generalized gradient, which in turn coincides with:
the ordinary subgradient for a convex function if f is convex .

The generalization 0f(64),when f is defined on an 1nﬁn1te——d1men51ona.1 spaoe,
previously requires a generalization of Rademacher's theorem. In this sense
Ohristengen ™% proved that if X is a separable Banach space and if f is a locally
Lipschitz funotion defined on X, then f is Gateaux-differentiable excePt on a.
Harr-null set. Other similar results have been obtained by Aronszajn @ and
Mignot™®, By taking (66) as the definition of the generalized gradient and using:
the result of (}hnstensen, Thlba,ult 22 obtamed the characterization

8f (@) = oo{w* — lira Vf (3) |92 €dom \Zi . .(68)

In what follows, we shall investingate what ooours to the oharaotenzatmn (68)
when f is merely continuous and defined on a Bansch space x.

. Theorem4 1, Let It X->R be 1. s. e., DEX és 3 subset of X wﬁefre f g
" Hiiamard de.ﬁea‘enmwble, i 6. \-/meD avms) €X*. VyE€X sich that~
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f(a"*‘t?/) f(m) —'(Vf(m) 9>

o 27’-?:?'
Then ,
Vo€ X, of (v) = oo{fw - 11m Vf (y1) [y1 € D}. - (69)
]wldswfandonlyfbf PR S | L , :
Ve, y€X. f1(a, y) =lim ;uP(Vf(‘”')’ ¥y , (70)

gs 'ucwoi where w’-—>,a: means that o (GD)-—):v, and f (@) —>F ().

Pfroof The “only if” part is obvious. Now we prove the “if” pa.rt From the
definition and Corollary 8. 1 we have

of (w) Deo{w" - 11m Vf () ly; € D}
For the inclusion “c:”, we have only to pr0ve that
o f1(@ ) <Um supdVf (@), 9.
By assumption,
(@ y)= hm sup <Vf (w’) y) <hm sup<Vf (). 4,

and thus the theorem is proved ; . : :
Theorem 4. 2. “®'Lei fi X—>R be contfmuous cmd DCX is the some as m
‘.’I’lzearemét 1. Then - : :
S Ve€X; 3f<w)—co{w - lim Vf(y)IyGD}
leds ef and Only @f . ‘
Vo, hEX, Dy f(o((B) :=1im int f <‘”+“‘) f @ _1im sup(Vf(y) h> (71)

Pfroof The neoesmty is obv1ous ‘We prove the sufﬁolenoy If (71) holds then
D+f (@) (h) <lim sup f*(y, b)<f (a;, h)
Since - A
| - li_r;gggp:D,«f(w'.) By =1 (Theorem 3 z#),'j
‘Weha\re B ' o o
3 | £ (@ BY<F (@ b).
_But___yfre‘hé.ve alwﬁ_ays?, o S
o ffaR<f@h).
‘Hence, o . o |
o VAEE, f'(@ B ——-f°<w, M,
“ and then A |
EE f’(a:, h) hm supf*(a;’ h) 11m Sup (Vf(w’ ) k)
By Theorem 4 1 We prOVe tne theorem : :
' Remarks We only assume tha.t f is- eontmuous mstead of looa.lly Lipschitz
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property as in [12]. But X is a Banach epace here other than a gerxera.l topologibal
veotor space in[12] due to the fact tha.t in this case the Hadamard dlﬂ‘erentlabrhty
can be deﬁned in the form ™ -

lim f(‘v'l‘t?!) —f(@) ~<Vf(a;) 9.
10+
Ry
4.2 COharaoterization of Subdlﬂ‘erentmbly Regular Funetlons
Definition 4. 2. 1.7 The functwn f: X——>R és said to be subdeﬁea‘entwbly

régulwr qt cp € dom f if

V?/GX T#(@, y) =ft(w’ ?/)
and f is subd@ﬁerentwbly regular if it is so at every € X.
The following theorem gives a characterization of subdlﬂ'erentia.bly regula,r
functions in terms of the’ contlnurty property of f*(=, y). ‘ ' '
.~ 'Theorem 4.3. Lot f: X—>R bo continous. Then f is subdiferentiably regular wt
o &f and only 6f the funciion f *(+, y). is upper se')mcontfmuous (u s. o.) for all: yEX
Proof By Theorem 3. 1 we have L
(s, y)= hm Supf#(w y Y)= llm supf"*(w , y)

Iff#( , y) 1s u. s o. ab a, then we get . . ,
- e VyEX. f1(a, y) f‘“*(fv, y),
and g0 f 15 subdrﬂ"erentla.bly regular at @.

v On the other hand, if f 1e subdlﬁ'elentlably regular ada @, we ea.sﬂy know that '

_f**( y ¥) is u. 8. o. atb w Hence, the theorem is proved. | '

' Definition 4. 2. 2. 4 loally Lipschitz function f: X—>B s said to be
subregular at o provided f (@, ¥) ewfbsts and f° (o, ) f’ (z, y) for all y€X and f s
subregular of 4t is so at every € X.

Theorem 4. 4. A locally Lepsah/otz functeon f: X—>R such that f'(a, y) emsis.
- for all @, yE€ X is subregular:f and only if the function f/(, y) is u. s. o. for all ye
x - .
Proof Since |
f° (@, y) =1im sup Df (', y)=1lim sup f'(', y),
et ST A

" tbe conclusion is obvious. : R L
Subregular funetions of- subdlﬁ'erentra.bly regular funotlone enjoy many good’
‘properties in nonsmooth ana.lysw. For more deta,lle We a.re referred te [3]. '
4.3 . Oharacterization of Ta,ngent Cones ' !
In thls last part we shall genera.hze Trelma.n 8 Theorem 3.8 in [15] by
uSmg our oha.ra.oter;zatlon of the subderlva.tlve We shall see that our poof seems to
be sumple and?elear. L o 4 ST il
As we know from the 1ntroduct10n, 1f 0 iga olosed subqet of X mEO, then we .
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have o |
- To(x) :)llm 1nf K g(w') | (72)
A counter—example was furnished in [15] to show thab (15) is not alwa.ys true
in a Bansaoh space. But the following deﬁmtlon and theorem give an important
~ oase where it i valid.
Definition 4.3.1.™ AsetOis cwlled to be epe—prschwtz at 0 fof for somse
YEX, thefre ewist N(y) e./V' ), N (e N (a:) and A>0 such that _
Vo' €N(o) N0, o+ [0, A]. N(y)=0., (73)
Rookafellart™ has shown that in a finite~dimeénsional space the condition (73)
is equivalent to O being the epigraph of & Lipschitz funetion in a neighborhood of
Theorem 4, 5,767 Lot O X be epi-Lipschttz at ©€ 0. Thon T
| | To(@)=liminf Ko(@). - P (O
~ Theorem 4. 6.1 Lt f be a function on a Banaoh space X and Lépschﬁitm“on ]
qneighborhood of . Then _ ' -
Tony(a, (@) = Hmint Kop(a', f(/)) =lim ot K ou(®, F@. @)

(¢l 06)-)(
75
Now we show that the above theorems are still valid if fisl s 0. on X, i. e,
if a ologed set can be expressed as the epigraph of a l. s. o. function, then the OIa,rke

tangent cone is the regula.tlon of the contingent cones at the nelghborlng pomts
Theorem &, 7. Lét f: X>R be L. s: 0. and o€ dom f. Then o

Teoy (2, f (w)) 11m mf K enit (@5 f. (w’)) o - (78)
Proof. . From (72) 1t is. obv1ous that |
llm inf Kepif(m f(‘v'» CTepif(‘vr f(a’))

@'~z

Now we show that
ele; (@, f(@)) Chm 1nf Koy (@, f (w'))

It is easy to know from Lemma 3. 2 in the Iast seotion that the above inclusion is
squivalent to E : '
FH (o, o) >1im sup inff"*(m’, ¥).

By Theorem 3. 1 in the last section, we observe that
f’ (w, y) 11m sup f**(a; Y) >hm sup 1nff# @, ¢')s

and then the theorem is proved

§ 5 ". Concludlng Rerﬁa;fks .

We ha.ve esta.bhshed a new oha.raetenza.tlon for the upper subdor!vative and

'{"s b
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derived an upper semicon‘tinuify ‘property for the upper subderivative of a 1. s. 0.
funotion on a Banach space. v '
The technique We use is very geometric, i. e,. We start from the epigraph of a
funotion and we frequently come to its analytio counterparts. This .fechnique could
be traced back to the fungtional analyeiéfinethod of Bishop and Phalps [#3-253, whibh
has been proved to be powerful in nonsmooth analysis - from = the Ekeland

Va.ria.tiona.l principle "*~*" to the new charactenzaﬂalon of the Olarke tagent cone of

Treiman ™%, Ij hasg been fully explored in recent yezamrsC28 801,
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