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GLOBAL SHOCK SOLUTIONS TO A CLASS OF
PISTON PROBLEMS FOR THE SYSTEM OF
ONE DIMENSIONAL ISENTROPIC FLOW
Lz TATsIEN (?’,J;,”gé)*s ZHAO YAﬁCHU—"N REF)*

Abstract

The autors apply the result obtamed in [1] to consider & class of discontinuous piston
problems for the system of one dimensional isentropic flow and prove that this problem
a_‘.dmits a unique global olassical dis»eont_;inﬁo,tisf solution only containing one shoek.

“The system of igentropic How can be written'in Lagrangla,n representatlon as

aq,- 6u . :
Bu, 32@) o N LW
3t or

where v is the specific volume, u is ‘the ‘velovity’ and p=p(r) is the pressure .For
polytropio gases o

. p=p(x) =A™ @)
where y>>1 is the adiabatio exponent and 4 is a posltlve eonstant _

Introducing the. Riemann mva,mants L

a'2< fx/ p(n)dn)

_ Bk @)
s ——2—(u+J =g ) (n) dn)
as new unknown functlons gystem (1) can e reduced to be of the form o
| M) =0 |
. 63 + ({r, s) ; | ' | 4
with : | o
~A(r, 8). =u(r, s) \/ p ('b‘(s q')) —-w(s r) @*D/r-D), (5):,

‘where @ i8 a positive oonstant ,.-’

In terms of the Rlemann 1nvar1a.nts, the Rankme—Hugomot condltlon a.nd the.-
entropy oondltlon on a forwald shook = mz (t) ean be Wr.tten as h o
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vy _ [ TG )~ p(e(es = 15) @
Cd Vs w(smr) —w(se-Ts)
and B T
| §-r>s.Ere>0, oy T (8)

where (74, $;) denotes the state Just on the right gide of the shock s=w,(#) and (r,
§), a8 a state on tha left side, can be connsoted with (fr+, s,) by this forward shook.
It follows from (6)~-(8) that on a forward shook o= mz (¥), we have

p
dﬁ” >,U'('l”+, s+) >A(ry, 84),

©®
L S)> >7t(r, s)

and

moreover, the sign of equality in (10) holds if and only if (fr, 8) = (rg; 84, namely,
\no dlsoontmulty (of. [81). :
Rewu'te oondltton (6)—(7) on a forward shook z=u,(¢) as follows:

0=

“re=g(r4, $3, 8), : (1)

Cl G, @2
By (10) .we have " e
<P

and the sign of equallty holds if and only if (7, ) = (r4 84)-

We turn now to the piston problem. Suppose that a piston orlgmally located at

the origin at #==0 moves with the speed =@ (%) in a tube, we want to determine the

state of the gas on the right gide of this piston. In Lagrangian representation this
problem asks us to solye the following mlxed initial-boundary value problem for

Syetem (1) with the conditions: * .
§=0; u= <y (@), r=1r} (a;), m>0 - (14)

o=0 u=p(8), t=0. S (15)
Suppose that . : .
‘P(O) >ug (0), : (16)

then the motlon of the plston must produoe a forwa.rd ehook w=, )] passmg_ :

through the origin at least for & short time. . .
| Usmg the Rlemann 1nvar1a.nts, the pl eoedmg problem reduoes equlva,lently to

the following mmed mltla,l—boundary Value problem for. system (4) (together Wlth.

® )

&=0; g= ~—a~+q>(t),t>0 - NG T:)

$=0; r= rro(a:),s so(w),m>0 o (17)
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moreover, (16) becomes

| e(0)>ritss S 9
where " ' .
rs=13(0), s.=53(0) | (20)
and we suppose that o ' L .
Se—r>0. o | 1)
By (18), it is easy to see that the system P -~
' {r=y(f+, S4r 8)y (@)
s=—r+p(0)

poséesses & unique solution (r, §) = (v, 8o) which as a left state, can be connected
with (ry, s.) by a forward shock, then we have

mres-re>0. (@9
Remark 1, In the special cage : BEL
| 1§ @) =ry, st @) =3y, pt)=p(0), (24)
the solution of the prevmus problem is the followmg forward typiocal shook (of. [4])
0 <
ro={ow i TE
('I‘+, 3-{-)7 £U>V‘ﬁ, '

where ¥ is the speed of propagation of the shook:
| | V=G(ry, s0s 10 80) S (@8)
and Ty (9) it holds that | PR | | ‘
" " { V>p(rs s >A(ry, $4)) (27).
w(ro, S0) >V >A(ro, 80)- « :
The piston problem under consideration can he regarded as a-perturbation of
the simplest problem in Remark 1 and.we have '
. Theorem 1. Suppose that r§ (), st (@) and p(8) €O and (19) (21) hold. I f
4% holds for. suitably smzz >0 and >0 that -

Ir@-ril, [§@ -sl<e Vom0, (@)

le® -e(O)|<e, Viz0, (29)

» . l'r;)"'(m) I; le"'(d?) I<i’ Vo>, | L (30) |
| l¢@ﬂ< , V820, | (s1)

hen in a class of Mecew%se consonuous and pwce'wwse smooth funct@ons the pision
- problem (4) (17) (18) admits a wn@que globwlly deﬁned olfbsoontmuous solution (r(2,
@), s(3, »)) on the domain S
| Bomih )50, 050 <32>
This solutum aontams only one fafrfwwrd shock m—-wz(t) wnd sat%sﬁes the folla'wmg
es'wmtes. ‘
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on the domain

B,={(t o) [t=0, s=>m: (1)}, (38)
we have - - -
7@, @) —7.]. 3G @) —5.|<s, - A ’84)
or r 0s as Kn \
Heo| e | |[Faal |5 >]<< 0 ()
- on the domain ’ o
R={<t, w) >0, 0<w<w2<t)}, | ~ (36)
we have . _
[ (¢, @) o], |sC3, m)—so|>KoS L (37
o w)l, 26| |26 )[ >l< Ko £50 (38)
~ besides, we hcwe _ : }
k() -V | < Kes, VE=0 | - (39)
|m”(t)]< K‘m  Vi>0, | - (40)

where K and K;(4=0, 1, 2, 3) wre poscbt'we cons’r'wnts Moreover, on the whole ewistence
domain '

s(4, @) — fr(t m)>0
that s, there never exists any vacuum tate. l

Proof Let |
by (27) we'have _ B | | |
V>E&>ulre, s, . (43)

"We now need the followmg Lemma, ths proof of Whloh oan be found 1n [5].
‘Lemma 1. Suppose that (28) and (80) hold forr some- su@twbly small >0 and
>0, then the Oauchy problem for system (4) with the initial date (ri(w), s§ ¢ (@) on
o>0 admits a unique global O% solution (r. (4, @), s, (4, @)) on the domain

B,={(, o) 120, o=>¢,1}. | (44)

Moroover, we have - E | R | |
$:(h @) =ri(t, 2)>0, V(4 0) €R,, @)

7t @) =ral, [s(h @) ~s4| <8, V0, ) €Ryy (46)

6¢+'(t, m)l a“ o l33+ G, )l 3s+ (t, ) ._K{.?.,

V(<t,w>eﬁ+,t>o o S (D

wlw're K is a pos%t'we constant,

Now we prove Theorem 1 , _
Aooordmg to the looal exmtenoe of dlsoontmuous solutlons in 8 o]ass of
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Piecewise continuous and piecewise smooth functions (of. [2]), the piston problem
(4), (17)—(18) admits a drscontinuous solution only containing a forward shock
= 25 (%) passmg through the origin at least on a looal doma.m

Ro(®) ={(t, ©) |0<t<<B, >0} A (48)
where 8\0 is sufficiently small. By (9) and (48), =u.(f) must lie in the interior
of the domain R.,. and then the solution on the .right side of &= wz(t) should be
furnished by (r.(4, o), s,,.(t x)). Thus, notlemg Lemma 1, in order to construct a
globally defined discontinuous solution containing only a forward snock, it is only
necessary to solve the following typical free boundaly problem for system (4):

on o=0, s= —r+@(). I(49)

on v=w,(%), o | '
r=g(re(h @), 5.6 @), 9). | G

2 — G r. 2), s4(t, @), T, D 6D

Moreover, a.ooordlng to the entropy condﬂuon, the solutlon should be asked to satlsfy
the followmg property: ‘

s—1>5:(h 0) =14 (4 8)>00on e ’ (52);
and o=a,(¢) should always lie in the interior of the domam R,.

In this typical free bOundary problem, &= (t) 1s a free boundary Whlle z=0
is & fixed boundary. Since a given boundary can be considered as a special oase of
free boundanes, all the results in § 3 of [1] are still vahd in this case, Thus, using
Theorem 3.1 and Remark 3.3 of [1] and noting Lemma 1, it is easy to see that this
typmal free bOundary problem 4, (49) (51) admlts a unlque global ot solutlon
(r(3, ©), s(4, ®)) on the domain B and (37) (40) hold. Hence by (23) and noting
Lemma 1, we can choose £>0 so small that (52) and (41) hold and, by (43), o=
wz(t) a,lways lies in the interior of the domam RB,. The proof of Theorem 1 is

“ocomplete.
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