THE CONNES SPECTRUM OF FIRITE DIMENSIONAL HOPF ALGEBRA

CHEN CAOYU (陈操宇)*

Abstract

Let H be a finite-dimensional Hopf algebra and A an H-module algebra. Criteria for the smash product A # H to be prime are obtained. In particular, a correct statement of S. Montgomery's question is given.

The Arveson-Connes theory of the spectrum of actions of an abelian group was very successful and played a vital role in the structure analysis of a factor of type III [6]. When A is a ring graded by a finite group G, in [4], S. Montgomery and D. Passman introduced and studied the Connes subgroup of G, and obtained oriteria for $A \# G^*$ to be prime or simple. If G is a finite abelian subgroup of automorrphisms group of the k-algebra A and the field k contains $|G|^{-1}$ and all $|G|^{th}$ roots of unity, then the skew group ring AG has a natural smash product structure A # k $[\hat{G}]^*$, where \hat{G} is the dual group of G. The Connes subgroup of G determines when AG is prime. S. Montgomery conjectured that when A is a prime k-algebra with a finite group of automorphisms and $|G|^{-1} \in k$, AG is prime if and only if Irr(G) = F, where $Irr(G) = \{$ all irreducible repersentations of G and $F = \{ \rho \in Irr(G) / B_{\rho} \neq 0 \}$, for all G-hereditary subalgebras B.

In [2]. the author obtained a criterion for the skew group ring AG to be prime for certain finite non-abelian groups G. This result gives a negative answer for the sufficiency of Montgomery's question. The positive answer for the necessity was obtained by D. Passman[5]. The Corollary 5 will give a correct statement of the question.

Let H be a Hopf algebra over a field k, with comultiplication $\Delta \colon H \to H \otimes H$, $\Delta(h) = \sum_{(k)} h_1 \otimes h_2$, counit: s: $H \to k$. Let A be a k-algebra with identity 1_A . For readers unfamiliar with Hopf algebra, the basic referece is Sweedler's book [9]. We say that A is an H-module algebra if

- i) A is an H-module, the action of H on A is denoted by $h \cdot a$,
- ii) $h \cdot (ab) = \sum_{(h)} (h_1 \cdot a) (h_2 \cdot b)$, where $\Delta(h) = \sum_{(h)} h_1 \otimes h_2$:

Manuscript received September 11, 1989.

[·] Department of Mathematics, Shanghai, Normal University, Shanghai, China.

iii) $h \cdot 1_A = \varepsilon(h) 1_A$.

Given a Hopf algebra H and an H-module algebra A, we can form the smash product A # H which is a k-algebra defined as follows:

- i) As a vector space, $A \# H = A \otimes H$, $\alpha \otimes h$ will be written $\alpha \# h$;
- ii) Multiplication is defined by

$$(a + h) (b + g) = \sum_{(h)} a(h_1 \cdot b) + h_2 g, \ \Delta(h) = \sum_{(ij)} h_1 \otimes h_2.$$

It is easy to verify that A and H can be algebraically embedded in A # H via $a \to a \# 1$ and $h \to 1 \# h$ respectively. So we can identify A with A # 1 and H with 1 # H.

Given an H-module algebra A, A is a left A # H-module via:

$$(\sum_{n} a_{n} + h) - b = \sum_{h} a_{h}(h \cdot b)$$
 for any $b \in A$.

The H-invariants subalgebra A^H of A is defined as follows:

$$A^H = \{a \in A/h \cdot a = s(h)a, \text{ for all } h \in H\}.$$

A subset S of A is called H-stable if $h \cdot S \sqsubseteq S$ for all $h \in H$. A subalgebra (without 1_A) B of A is called a hereditary subalgebra if B = RL where R is a non-zero H-stable right ideal of A and L is a non-zero H-stable left ideal of A.

We denote $Irr(H) = \{all \text{ irreducible repersentations of } H\}$. Since every finite-dimensional Hopf algebra is Frobenius ^[8, p,78], any irreducible H-module is isomorphic to a minimal left ideal of H. For any hereditary subalgebra B, B can be decomposed as a direct sum, $B = \bigoplus_{\tau \in Irr(H)} B_{\tau}$, where B_{τ} are the homogeneous components of B corresponding irreducible reperestations τ . We define the Conness spectrum $\Gamma_A(H)$ as follows:

 $\Gamma_A(H) = \{ \rho \in \operatorname{Irr}(H) / B_\rho \neq 0, \text{ for all hereditary subalgebras } B \}.$

If $H = k[G]^*$ for finite group G, then kp_x , $x \in G$, are all minimal left ideals of $k[G]^*$ and Irr $(k[G]^*) = \{\rho_x/x \in G\}$, where $\rho_x(p_y)1_k = \delta_{x,y} = p_y(x)$. Thus, we identify Irr $(k[G]^*) = G$, and then Γ is the Connes subgroup of G when A is G-graded semiprime.

Now we are ready to prove the following

Theorem 1. Let H be a finite-dimensional H opf algebra over a field k, and let A be an H-module algebra. Then the smash product A # H is prime if and only if

- i) A is a faithful left A#H-module and
- ii) $f \cdot B \neq 0$ for all hereditary subalgebras B, where f is a non-zero integral for H (i. e. hf = s(h)f for all $h \in H$).

Proof (\Rightarrow) If $0 \neq \sum_{h} a_h + h$, $\in A + H$, then $(\sum a_h + h)(A + f) \neq 0$ since A + H is prime and A + f is a non-zero leftideal. But

$$(\Sigma a_n + h) (A + f) = \{\sum_{k} a_k (h \cdot r) + f/r \in A\}.$$

Thus, there exists $r \in A$ with

$$(\Sigma a_h \# h) \rightharpoonup r = \Sigma a_h(h \cdot r) \neq 0.$$

A is a faithful left A#H-module.

Let B=RL be a hereditary subalgebra. Then L#f is a non-zero left ideal of A #H, and

$$0 \neq (fR)(L + f) = f \cdot (RL) + f = f \cdot B + f$$
.

It follows that $f \cdot E \neq 0$ for any hereditary subalgebra B.

(\Leftarrow) Let I be a non-zero ideal of A # H, and let $0 \neq \Sigma$ $a_h \# h \in I$. By i) there exists $r \in A$ with $\sum a_h(h \cdot r) \neq 0$, and then

$$0 \neq (\sum a_h(h \cdot f)) + f = (\sum a_h + h) (r + f) \in I.$$

Denote

$$L = \{r \in A/r \# f \in I\}.$$

We can see that L is a non-zero H-stable left ideal of A. By ii), $f \cdot L \neq 0$. Let $0 \neq a \in f \cdot L$. Then $fa = a \# f \in I$ since $f \cdot L \sqsubseteq A^H \cap L$.

Let J be a non-zero ideal of A # H. Then there exists $0 \neq b \in A^H$ with $Ab \# f \subseteq J$. Therefore.

$$IJ\supseteq (fa)(Ab\#f)=(f\cdot (aAb))\#f.$$

Since aAb is a hereditary subalgebra of A, $f \cdot (aAb) \neq 0$. Thus $IJ \neq 0$. This shows that A # H is prime.

Remark. From the proof of the theorem, we can see that the condition ii) in Theorem 1 can be replaced by the condition ii') $h \cdot B \neq 0$ for all $0 \neq h \in H$ and all hereditary subalgebras B.

When H is a semisimple Hopf algebra, we have the following result.

Corollary 2. Let H be a semisimple Hopf algebra over a field k, and let A be an H-module algebra. Then the smash product A # H is prime if and only if

i) A is a faithful left A#H-module and

ii")
$$\Gamma_A(H) = Irr(H)$$
.

Proof Since H is a Frobenius algebra, every irreducible H-module M is isomorphic to a minimal left ideal Hh of H. If $h \cdot B \neq 0$ for a hereditary subalgebra B, then there exists $b \in B$ with $h \cdot b \neq 0$, and thus we have H-module isomorphisms $M \cong Hh \cong (Hh) \cdot b \subseteq B$. It follows that $I_A(H) = Irr(H)$ by Theorem 1 and the above Remark. We have proved the necessity.

Conversely, let B be any hereditary subaglebra. For $s \in Irr(H)$, $B_s \neq 0$ by the condition ii"). Since H is semisimple, by the result of Sweedler [7,p,329] we see that H contains an integral f with s(f)=1. For any $a \in A^H$, $f \cdot a = s(f)a = a$. Thus, $B_s = f \cdot B$. By Theorem 1, A # H is prime.

When $H = k[G]^*$ for a finite group G and A is G-graded k-algebra, $A = \bigoplus_{x \in G} A(x), A(y) \subseteq A(xy)$ for all $x, y \in G$, then $p_x \cdot B \neq 0$ for all $x \in G$ and all hereditary

subalgebras B implies that A is a faithful $A \# k[G]^*$ -module. Indeed, for any $0 \neq a \in A(x)$, aA is a hdreditary subalgebra of A. Then $aA(y) = p_{xy} \cdot (aA) \neq 0$. By [4, Lemma 2.5(2)], A is a faithful left $A \# k[G]^*$ -module.

Also, we can see that ii') and ii'') are equivalent, since, for any $x \in G$, $p_x \cdot B = B \cap A(x) = B_\rho$ for all hereditary subalgebras B.

Therefore, we have the following result.

Corollary 3 ([4, Corollary 2.8]). Let A be a G-graded k-algebra for a finite group G. Then $A \# k[G]^*$ is prime if and only if $\Gamma_A(k[G]^*) = \operatorname{Irr}(k[G]^*)$.

Since a faithful grading is a nondegererate grading, any non-zero one side grading ideal intersects A(1) non-trivially if i) holds. Thus, if the condition i) holds, then the condition ii) is equal to that A(1) is prime. Hence we have

Corollary 4 ([3, Theorem 2.10 (3) \Leftrightarrow (4)]). $A \# k[G]^*$ is prime if and only if A(1) is prime and the grading is faithful.

If H = k[G] for finite group G and $|G|^{-1} \in k$, then H is semi-simple. By Corollary 2, we obtain a correct statement of S. Montgomery's conjecture.

Corollary 5. Let A be a k-algebra with a finite group G of automorphisms and $|G|^{-1} \in k$. Then the skew group ring AG is prime if and only if A is a faithful AG-module and $\Gamma_A(r[G]) = \operatorname{Irr}(k[G])$.

Next, we consider connection between A^H and A # H. If H is a finite-nsional Hopf algebra, then the following properties go down from A # H to A^H : dime being prime, primitive, simple Artinian see ([1, Proposition 2.4 (1), Theorem 3.3(2), Theorem 2.9(1) 1]. Furthermore, if H is semisimple, the simpleness goes down (see [1, Theorem 2.7]). However, these properties do not go up in general, as the following example shows (see [2] for details).

Example 6. Let $A=M_2(k)$, k being the complex number field, and let w be a cube root, n and k the inner automorphisms induced by $\binom{w}{0} \binom{0}{1}$ and $\binom{0}{1} \binom{1}{1}$ respectively. Then $G=\langle n, h \rangle = S_3$. Only A is the hereditary subalgebra of A. $\Gamma_A(k[G]) = \operatorname{Irr}(k[G])$. However,

$$\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \# (1+wn+w^2n^2) \right) \longrightarrow A=0;$$

thus, A is not a faithful AG-module. It follows that AG is not prime, by Theorem 1. But. $A^{H} = k$.

The general going up problem appears intractable. However, something can be said. We close this papar by the following

Proposition 7. Let H be a semisimple H opf algebra over a field k (with an integral f such that s(f)=1), and let A be an H-module algebra. Then enery non-

zero ideal of A # H intersects $A^H \# f$ non-trivially if and only if A is a faithful left A # H-module and $f \cdot L \neq 0$ for all non-zero H-stable left ideals L of A. In particular, if A # H is prime, then every non-zero ideal of A # H intersects $A^H \# f$ non-trivilly.

Proof (\Rightarrow) If $I = \underset{A \neq H}{\text{ann}} (A) \neq 0$, then $I \cap (A^H + f) \neq 0$ by the assumption. Let $0 \neq \alpha + f \in I$. Then

$$a=s(f)a=(a\#f) \longrightarrow 1_A \in (a\#f) \longrightarrow A=0$$
,

a contradiction. Thus A is a faithful A # H-module.

Let L be a non-zero H-stable left ideal of A. Then (L # f)A is a non-zero ideal of A # H, and thus $(L \# f)A \cap A^{H} \# f \neq 0$. Since $f^{2} = f$, $f(A^{H} \# f)f = A^{H} \# f$. It follows that $f(L \# f)Af \neq 0$. But

$$f(L#f)Af = ((f \cdot L)#f)Af = (f \cdot L)A^{H}#f.$$

Thus, $f \cdot L \neq 0$ for all non-zero H-stable left ideal L of A.

(\Leftarrow) Let I be any non-zero ideal of A # H. By the assumption of faithfulness of A # H-module A, $I \supseteq L \# f$ for some non-zero H-stable left ideal of A (it was shown in the proof of Theorem 1). By the assumption of $f \cdot L \neq 0$, $0 \neq f \cdot L \# f \subseteq I \cap (A^H \# f)$. This shows that every non-zero deal of A # H intersects $A^H \# f$ non-trivially.

References

- [1] Bergen, J. & Montgomery, S., Smash products and outer derivations, Isr. J. Mach., 53 (1986), 321—345.
- [2] Chen Caoyu, The Connes spectrum of certain finite non-abelian groups. Comm, Algebra, (1990).
- [3] Cohen, M., & Montgomery, S., Group graded rings, smash products, and group actions, *Trans. Amer. Math. Soc.*, 282 (1984), 237—258.
- [4] Montgomery. S. & Passman, D., Algebraic analogs of the Connes spectrum., J. Algebra, 115 (1988). 92-121.
- [5] Passman. D., Skew group rings and free rings (to appear).
- [6] Pedersen, G. K., C*-algebras and their automorphism groups, Academic Press, New York/London, 1979.
- [7] Sweedler, M. E., Integrals for Hopf algebras, Ann. of Math., 89 (1969), 323-335.
- [8] Sweedler, M. E. & Larson, R., An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math, 91 (1969), 75-94.
- [9] Sweedler, M. E., Hopf agebras, Benjamin, New York, 1969.