P-VECTORFIELDS ON TWO-MANIFOLDS

CHEN YIYUAN (陈一元)*

Abstract

The concept of P-vectorfields on two-manifolds is introduced and some properties of P-vectorfields are proved. Particularly, it is shown that some P-vectorfields on the torus have no nontrivial recurrent orbits. Also, the absence of closed orbits for the left invariant vectorfields on two-dimensional Lie group is discussed.

§ 1. Introduction

The concept of P-vectorfields on the plane was introduced in [1]. In this paper we generalize the concept of P-vectorfields to two-dimensional manifolds.

First we set out the definition and properties of P-vectorfields on the plane^[1,2] needed for understanding later sections and give simpler proofs for some theorems in [1] and [2].

Let
$$X = X_1 \frac{\partial}{\partial x_1} + X_2 \frac{\partial}{\partial x_2}$$
 and $D = D_1 \frac{\partial}{\partial x_1} + D_2 \frac{\partial}{\partial x_2}$, $x = (x_1, x_2) \in \mathbb{R}^2$, be C^1 vectorfields on the x_1x_2 -plane. We define functions

$$\Delta = X_1[X, D]_2 - X_2[X, D]_1, B = X_1D_2 - X_2D_1, \tag{1.1}$$

and sets

$$W = \{x \mid \Delta = 0, \ x \in \mathbb{R}^2\}, \ H = \{x \mid B = 0, \ x \in \mathbb{R}^2\}, \tag{1.2}$$

where $[X, D] = [X, D]_1 \frac{\partial}{\partial x_1} + [X, D]_2 \frac{\partial}{\partial x_2}$ is the Lie bracket of X and D (see [7, p. 212]).

Definition 1.1. Let X be a C^1 vector field on the x_1x_2 -plane. If there exists a C^1 vector field D such that

$$(1) \ \Delta \geqslant 0, \tag{1.3}$$

(2) the set W has no two-dimensional subset, then X is called a P-vector field with aid D.

Remark 1.2. This definition of P-vectorfields is slightly different from that in [1]. It weakens the conditions in [1]. Hence some conclusions in [1] and [2] may be changed a little.

Manuscript received October 9, 1989.

^{*} Department of Mathematics, Nanjing University, Nanjing, Jiangsu, 210008, China.

Taking $\omega = X_1 dx_2 - X_2 dx_1$ in the following formula (17, p.2923)

$$d\omega(X, D) = X(\omega(D)) - D(\omega(X)) - \omega([X, D]),$$

we get

$$\frac{\partial B}{\partial x_1} X_1 + \frac{\partial B}{\partial x_2} X_2 - B(\operatorname{div} X) = \Delta. \tag{1.4}$$

Lemma 1.3. Let X be a P-vector field with aid D. If L is a closed orbit of X and $L \cap H \neq \emptyset$, then $L \subset H \cap W$.

Proof Let L: x=x(t), be a closed orbit with period T, and $L \cap H \neq \emptyset$. Without loss of generality, we suppose that $x(0) \in H$, i. e., B(x(0)) = 0. From (1.4) we have

$$\int_0^T \Delta(x(t)) \exp\left\{-\int_0^t (\operatorname{div} X)(x(t)) dt\right\} dt$$

$$= \int_0^T d\left(B(x(t)) \exp\left\{-\int_0^t (\operatorname{div} X)(x(t)) dt\right\}\right)$$

$$= 0 \quad (B(x(T)) = B(x(0)) = 0).$$

The above equality and (1.3) mean $L \subset W$. On the other hand, for any a>0, $\widetilde{L}=\{x(t),\ 0 \le t \le a\} \subset W$, so

$$0 = \int_0^a \Delta(x(t)) \exp\left\{-\int_0^t (\operatorname{div} X)(x(t)) dt\right\} dt$$
$$= B(x(a)) \exp\left\{-\int_0^a (\operatorname{div} X)(x(t)) dt\right\},$$

i. e., $x(a) \in H$. Hence $L \subset H$ from the arbitrary choice of a. The proof is complete.

Theorem 1.4. Let X be a P-vector field with aid D and L a closed orbit of X.

Then

- (1) L is a nonhyperbolic closed orbit if $L \subseteq H$ and $L \subset W$,
- (2) L is a hyperbolic stable (unstable) closed orbit if $L \subseteq W$ and $L \subset \{x \mid B > 0, x \in \mathbb{R}^2\}$ ($\{x \mid B < 0, x \in \mathbb{R}^2\}$).

Proof Let L: x=x(t), be a closed orbit with period T. If $L \subseteq H \cap W$, then $L \cap H = \emptyset$ (Lemma 1.3), i.e., $B \neq 0$ on L.

From (1.4) we get

$$\int_0^T (\operatorname{div} X)(x(t))dt = -\int_0^T (\Delta(x(t))/B(x(t)))dt.$$

Hence the proof follows from the Poincaré criterion for stability.

Corollary 1.5. Any P-vector field has no period cycles and its compound cycles are in $H \cap W^{[1]}$.

Theorem 1.6. If X is a P-vector field, then its homoclinic orbits connecting a hyperbolic saddle point and heteroclinic orbits connecting two hyperbolic saddle points are in W ([1]).

Remark 1.7. (1) If for X there is a O^1 vectorfield D such that $\Delta \leq 0$, then we take (-D) instead of D to satisfy the condition (1) in Definition 1.1.

(2) Instead of (1.1), we define

$$\Delta = g(X_1[X, D]_2 - X_2[X, D]_1)$$
 and $B = g(X_1D_2 - X_2D_1)$,

where g is a C^1 function with constant sign which does not vanish at any regular point of X. Then the above results are all right. (Replacing Δ and B in the above proofs by Δ/g and B/g respectively.) Hence such a factor g is not essential to the definition of P-vectorfield.

Other interesting conclusions and applications of P-vectorfield can be found in [1] and [2].

In Section 2 we define the P-vectorfield on two-manifolds and give its properties.

Section 3 is devoted to the P-vectorfield on the torus, which have more striking behavior.

Finally, we discuss the absence of closed orbits for the left invariant vectorfields on two-dimensional Lie groups in Section 4.

§ 2. Definition and Basic Theorems

We now introduce the concept of P-vectorfields on two-manifolds. For simplicity, we only consider the two-dimensional differentiable manifolds of class C^{∞} .

Let X and D be C^1 vectorfields and ω a C^1 differential 1-form on two-manifold M. We define functions

$$\Delta = \omega([X, D]), B = \omega(D), \tag{2.1}$$

and sets

$$W = \{m \mid \Delta = 0, \ m \in M\}, \ H = \{m \mid B = 0, \ m \in M\}. \tag{2.2}$$

Definition 2.1. Let X be a C^1 vector field on two-manifold M. If there exists a C^1 vector field D and a C^1 differential 1-form ω on M such that

- (1) $\omega(X) = 0$, {singular points of ω } = {singular points of X},
- (2) $\Delta \geqslant 0$,
- (3) the set W has no two-dimensional subsets,

then X is called a P-vector field on M with aid D and differential ω .

Remark 2.2. (1) If $M=R^2$ —the x_1x_2 —plane, then we write $X=X_1$ $\frac{\partial}{\partial x_1}+X_2$ $\frac{\partial}{\partial x_2}$ and the ω satisfying the condition (1) of Definition 2.1 must be $g(X_1dx_2-X_2dx_1)$, where g is a C^1 function with constant sign which does not vanish at any regular point of X. Hence Definition 2.1 coincides with Definition 1.1 in this case (cf. Remark 1.7(2)).

(2) If M is a symplectic manifold with the non-degenerate closed differential 2-form Ω , then we can take $\omega = \Omega(X, \cdot)$ to satisfy the condition (1) of

9

Definition 2.1.

Let $F: M \to N$ be a diffeomorphism of class C^2 between two-manifolds M and N. Let X be a P-vectorfield on M with aid D and differential 1-form ω . Then F_*X is a C^1 vectorfield on N, where $F_*: TM \to TN$ is the tangent bundle map induced by F, and $(F^{-1})^*$ ω is a C^1 differential 1-form on N, where $(F^{-1})^*$: $T^*M \to T^*N$ is the cotangent bundle map induced by F^{-1} .

Now we consider the vectorfields F_*X , F_*D and the differential 1-form $(F^{-1})^*\omega$ on N. Define functions

$$\Delta_{s} = ((F^{-1})^{*}\omega)([F_{s}X, F_{s}D]), B_{s} = ((F^{-1})^{*}\omega)(F_{s}D)$$
(2.3)

and sets

$$W_* = \{ n \mid \Delta_* = 0, \ n \in \mathbb{N} \}, \ H_* = \{ n \mid B_* = 0, \ n \in \mathbb{N} \}. \tag{2.4}$$

We have

$$((F^{-1})^*\omega)(F_*X) = \omega((F^{-1})_*F_*X) = \omega(X), \tag{2.5}$$

$$B_* = \omega(D), \tag{2.6}$$

$$\Delta_* = \omega((F^{-1})_* [F_* X, F_* D]) = \omega([X, D]). \tag{2.7}$$

(2.7) and (2.6) mean that

$$W_* = F(W)$$
 and $H_* = F(H)$. (2.8)

From (2.5), (2.7) and (2.8) we obtain the following lemma.

Lemma 2.3. Let $F: M \rightarrow N$ be a O^2 diffeomorphism between two-manifolds M and N. If X is a P-vector field on M, then F_*X is a P-vector field on N.

We know that a closed curve L on M is one-sided (two-sided) if there exists a neighborhood of L on M which is homeomorphic to a Möbius band (an annular region on plane) [4].

Let L be a two-sided closed orbit of P-vectorfield X. Then there is an open neighborhood U of L which is diffeomorphic to an open annular region V on the x_1x_2 -plane ^[4]. Hence U and V are also C^2 diffeomorphic ([5, Chapter 2, Theorem 2.7]). Let $F: U \rightarrow V$ be a C^2 diffeomorphism. Then F_*X is a P-vectorfield on $V \subset R^2$ (Lemma 2.3) and F(L) is its closed orbit. Hence we come to the following conclusions from Remark 2.2 (1), Lemma 1.3, Theorem 1.4, Corollary 1.5 and (2.8).

Theorem 2.4. Let X be a P-vector field on M with aid D and differential 1-form ω . If L is a two-sided closed orbit of X, then

- (1) $L \subset H \cap W \text{ if } L \cap H \neq \emptyset$;
- (2) L is a nonhyperbolic closed orbit if $L \subseteq H$ and $L \subset W$;
- (3) L is a hyperbolic stable (unstable) closed orbit if $L \subseteq W$ and $L \subset \{m \mid B>0, m \in M\}(\{m \mid B<0, m \in M\})$.

Corollary 2.5. Any P-vector field on M has no period cycles and its compound cycles are in $H \cap W$.

Theorem 2.6. Let X be a P-vector field on M with aid D and differential 1-form ω . Then the one-sided closed orbits of X intersect H and W.

Proof If L: m=m(t) is a one-sided closed orbit of P-vectorfield X and $L \cap H = \emptyset$, then $\omega(D) \neq 0$ on L. On the other hand, $\omega(X) = 0$. Hence $\{X(m(t)), D(m(t))\}$ at each point m(t) is a tangent 2-frame to M and it is a C^1 frame field on L. It is impossible for one-sided closed orbit L. (It is a well-known fact in topology.) So we have $L \cap H \neq \emptyset$. Similarly we can obtain $L \cap W \neq \emptyset$.

Let $F: N \to M$ be a covering map. (The definition of covering map is that in [3].) If there exists, around each point $m \in M$, a neighborhood $U_j \subset M$ whose complete inverse image $F^{-1}(U_j)$ is the union $V_{1j} \cup V_{2j} \cup \cdots$ of a set of pairwise disjoint regions V_{kj} , $k=1, 2, \cdots$, with the property that the restriction $F|_{V_{kj}}: V_{kj} \to U_j$, of F to each region V_{kj} is a C^2 diffeomorphism between V_{kj} and U_j , and moreover M is covered by finitely or countably many such regions, then for P-vectorfield X on M with aid D and differential 1-form ω , we can define C^1 vectorfields $(F^{-1})_*X_{j,j}(F^{-1})_*D$ (F is a local diffeomorphism) and C^1 differential 1-form $F^*\omega$ on N. We define functions

$$\Delta^* = (F^*\omega)([(F^{-1})_*X, (F^{-1})_*D]), B^* = (F^*\omega)((F^{-1})_*D), \tag{2.9}$$

and sets

$$W^* = \{n \mid \Delta^* = 0, \ n \in \mathbb{N}\}, \ H^* = \{n \mid B^* = 0, \ n \in \mathbb{N}\}. \tag{2.10}$$

Evidently,

$$(F^*\omega)((F^{-1})_*X) = \omega(F_*(F^{-1})_*X) = \omega(X), \tag{2.11}$$

$$B^* = \omega(D), \tag{2.12}$$

$$\Delta^* = \omega([X, D]). \tag{2.13}$$

From (2.13) and (2.12) we get

$$W^* = F^{-1}(W)$$
 (complete inverse image of W), (2.14)

$$H^* = F^{-1}(H)$$
 (complete inverse image of H). (2.15)

From (2.11), (2.13) and (2.14) we have the following lemma.

Lemma 2.7. Let $F: N \rightarrow M$ be a covering map satisfying the above assumption. If X is a P-vector field on M, then $(F^{-1})_*X$ is a P-vector field on N.

Theorem 2.8. let $F: \mathbb{R}^2 \to M$ be a covering map satisfying the above assumption. If X is a P-vector field on M, then its homoclinic orbits connecting a hyperbolic saddle point and heteroclinic orbits connecting two hyperbolic saddle points are in W.

Proof If X is a P-vectorfield on M, then $(F^{-1})_*X$ is a P-vectorfield on \mathbb{R}^2 (Lemma 2.7). We note that any homoclinic orbit or heteroclinic orbit of X is lifted as homoclinic or heteroclinic orbits of $(F^{-1})_*X$ and the homoclinic orbits connecting a hyperbolic saddle point or the heteroclinic orbits connecting two hyperbolic saddle points of $(F^{-1})_*X$ are in W^* . Hence the conclusion of Theorem 2.8 follows from (2.14).

Corollary 2.9. If X is a P-vectorfield on the torus T^2 (the sphere S^2 , the projective plane RP^2 , the Klein bottle K^2), then its homoclinic orbits connecting a hyperbolic saddle point and heteroclinic orbits connecting two hyperbolic saddle points are in W.

Proof It is known that R^2 is a covering space of the torus T^2 and the covering map $F: R^2 \to T^2$ is a C^{∞} local diffeomorphism^([6], p.181]). So the corollary is proved for T^2 (Theorem 2.8).

An example in [3] ([3, Part II, example (e), p. 151]) shows that the torus T^2 is a 2-sheeted covering space of the Klein bottle K^2 . We can choose a covering map $F: T^2 \rightarrow K^2$ which is a C^{∞} local diffeomorphism (using Proposition 2.7, Proposition 0.12 of Chapter 1 in [6] and Theorem 18.3.1 in [3, Part II]). If X is a P-vectorfield on K^2 , then $(F^{-1})_*X$ is a P-vectorfield on T^2 and any homoclinic orbit or heteroclinic orbit of X is lifted as homoclinic orbits or heteroclinic orbits of $(F^{-1})_*X$. Hence Corollary 2.9 is true for K^2 from (2.14) and what we have just proved.

If X is a P-vectorfield on the sphere S^2 , we choose points A and B, a pair of diametrically opposite points of S^2 which are not on the homoclinic orbits and heteroclinic orbits of X. Taking A as the north pole of S^2 , we consider the stereographic projection of S^2 onto the plane $F: S^2 \rightarrow R^2$ (see [3, Part I, p. 87]). It is easy to verify that F is a C^∞ diffeomorphism between $S^2 - \{A, B\}$ and $R^2 - \{(0, 0)\}$. Hence F_*X is a P-vectorfield on $R^2 - \{(0, 0)\}$ and the conclusion of Corollary 2.9 for S^2 follows from Theorem 1.6 and (2.8).

The example (c) in [3] ([3, Part II, p. 150]) shows that the sphere S^2 is a 2-sheeted covering space of the projective plane RP^2 . It is easy to choose a covering map $F: S^2 \rightarrow RP^2$ which is a C^{∞} local diffeomorphism. Hence Corollary 2.9 is true for RP^2 from that for S^2 .

§ 3. P-Vectorfields on the Torus

We are interested in vectorfields on the torus T^2 because of the existence of the nontrivial recurrent orbits. (Singular points and closed orbits are trivial recurrent.)

The torus T^2 can be obtained from the square $I = [0, a] \times [0, a]$ on the x_1x_2 plane by identifying points $(0, x_2)$ and $(x_1, 0)$ with (a, x_2) and (x_1, a) respectively. We call points $(0, x_2)$ and (a, x_2) (or $(x_1, 0)$ and (x_1, a)) a pair of identical points.

A vectorfield (or differential 1-form) on I is a vectorfield (or differential 1-form) on T^2 if it takes the same value at each pair of idential points. A vectorfield

X (or differential 1-form ω) on I is a C^1 vectorfield (or C^1 differential 1-form) on T^2 if it is a C^1 vectorfield (or C^1 differential 1-form) on I and X, $\partial X/\partial x_1$, $\partial X/\partial x_2$ (or ω , $\partial \omega/\partial x_1$, $\partial \omega/\partial x_2$) take the same value at each pair of identical points respectively. Hence any vectorfield X (or differential 1-form ω) on T^2 can be written in the form $X = X_1 \frac{\partial}{\partial x_1} + X_2 \frac{\partial}{\partial x_2}$ (or $\omega = A_1 dx_1 + A_2 dx_2$), and the ω satisfying the condition (1) of Definition 2.1 must be $g(X_1 dx_2 - X_2 dx_1)$, where g is a C^1 function on C^2 with constant sign which does not vanish at any regular point of X. So we always take $\omega = X_1 dx_2 - X_2 dx_1$ in Definition 2.1 for C^2 as in Definition 1.1. (of. Remark 2.2 (1) and Remark 1.7 (2))

Theorem 3.1. If X is a P-vector field without singular points on T^2 , then the nontrivial recurrent orbits of X are in W.

Proof Suppose that X is a P-vectorfield without singular points on T^2 and its aid is $D(\omega = X_1 dx_2 - X_2 dx_1)$. Then

$$\triangle = X_1[X, D]_2 - X_2[X, D]_1 \geqslant 0. \tag{3.1}$$

If X has a nontrivial recurrent orbit $L \subsetneq W$, then we can choose $p \in L$ and a neighborhood U of p such that $\overline{U} \cap W = \emptyset$ (because W is a closed subset of T^2 and it has no other two-dimensional subset) and \overline{U} does not intersect any closed orbit of X (as the number of closed orbits of X is finite near point p (Corollary 2.5).) So $\min\{\Delta \mid x \in \overline{U}\} > 0$.

We consider the flow box F constructed in the proof of Lemma 2.4 in [6] (cf. [6, pp. 146—147]) and suppose that $F \subset U$. From there we know there exists a family of vectorfields $Z(u) = X + \varepsilon uY$, $\varepsilon > 0$, $0 \le u \le 1$, (where Y vanishes outside F), and for some $0 < u_1 < 1$, $Z(u_1)$ has a closed orbit $L(u_1)$ through F.

Since $\min\{\Delta | x \in \overline{U}\} > 0$, we can choose s > 0 so small that

$$\Delta(u) = Z(u)_1[Z(u), D]_2 - Z(u)_2[Z(u), D]_1 > 0 \text{ on } \overline{U}.$$
 (3.2)

Hence Z(u), $0 \le u \le 1$, is a family of P-vectorfields with the aid of X (Note that Z(u) = X outside F) and every vectorfield in the family has no nonhyperbolic closed orbits through F ((3.2) and Theorem 2.4).

On the other hand, if u tends to zero from u_1 , the closed orbit $L(u_1)$ of $Z(u_1)$ must disappear. (\overline{U} does not intersect any closed orbit of X). Hence there is u_2 such that $0 < u_2 \le u_1$ and $L(u_2)$ is a nonhyperbolic closed orbit of $Z(u_2)$ which intersects F. It contradicts the above conclusion. So the nontrivial recurrent orbits of X are in W.

Theorem 3.2. If X is a P-vector field on T^2 and the singular points of X are all hyperbolic, then the nontrivial recurrent orbits of X are in W.

Proof If X has aid D (differential 1-form $\omega = X_1 dx_2 - X_2 dx_1$), then

For the property
$$\Delta$$
 , which is given $\Delta = X_1[X,D]_2 - X_2[X,D]_1 \geqslant 0$, where Δ

If X has a nontrivial recurrent orbit $L \subsetneq W$, then we choose $p \in L$ and a neighborhood U of p such that $\overline{U} \cap W = \emptyset$. Hence $\min \{ \Delta | x \in \overline{U} \} > 0$.

We construct a flow box F as that in the proof of Lemma 2.5 in [6] (cf. [6, pp. 148—150]) and suppose that $F \subset U$. From there we know that there is a family of vectorfields $Z(u) = X + \varepsilon uY$, $\varepsilon > 0$, $0 \le u \le 1$, (Y vanishes outside F), and for some $0 < u_0 \le 1$, $Z(u_0)$ has one homoclinic or heteroclinic orbit L_0 through F.

Since min $\{\Delta | x \in \overline{U}\} > 0$, we can choose s > 0 so small that

$$\Delta(u_0) = Z(u_0)_1 [Z(u_0), D]_2 - Z(u_0)_2 [Z(u_0), D]_1 > 0 \text{ on } \overline{U}.$$
 (3.3)

Hence $Z(u_0)$ is a P-vectorfield with aid $D(Z(u_0)=X)$ outside F) and it has no homoclinic or heteroclinic orbit through F(3.3) and Theorem 2.8). It contradicts the existence of L_0 . Therefore the nontrivial recurrent orbits of X are in W.

The above theorems can be used to deny the existence of nontrivial recurrent orbits. We give two simple examples on T^2 obtained from $[0, 2\pi] \times [0, 2\pi] \subset \mathbb{R}^2$.

Example 1. Consider vectorfield

$$X = \left(\sin\left(x_1 + x_2\right) + b\left(x_2\right)\cos\left(x_1 + x_2\right)\right) \frac{\partial}{\partial x_1} + \sin\left(x_1 + x_2\right) \frac{\partial}{\partial x_2},$$

where $b(x_2) > 0$ is a C^1 function with period 2π . We take $D = -\frac{\partial}{\partial x_1}$ Then

$$\Delta = b(x_2) > 0$$
, $B = \sin(x_1 + x_2)$.

Hence X is a P-vectorfield without singular points on T^2 and it has no nontrivial recurrent orbits (Theorem 3.1).

In fact, $H = \{(x_1, x_2) | \sin(x_1 + x_2) = 0, (x_1, x_2) \in T^2\}$ contains two closed curves which divide T^2 into two regions, and X has exactly one closed orbit in each region (cf. [2, Theorem 2]).

Example 2. Consider vectorfield

$$X = -(\cos x_1 + \sin x_1)(\cos x_1 \cos x_2 - \sin x_1 \sin x_2) \frac{\partial}{\partial x_1} + (\sin x_1 \cos x_2 + \cos x_1 \sin x_2) \frac{\partial}{\partial x_2}.$$

Let

$$D = (\cos x_1 + \sin x_1) \frac{\partial}{\partial x_1}.$$

Then

$$\Delta = (\cos x_1 + \sin x_1)^2 X_2^2 + X_1^2 \geqslant 0,$$

and X is a P-vectorfield on T^2 . X has four singular points:

$$(3\pi/4, \pi/4), (3\pi/4, 5\pi/4), (7\pi/4, \pi/4), (7\pi/4, 5\pi/4)$$

which are all hyperbolic. The set W contains two closed curves consisting of orbits of X. Therefore X has no nontrivial recurrent orbits (Theorem 3.2).

§ 4. An Application to Lie Group

We now consider the left invariant vectorfields on a two-dimensional Liegroup G, which are C^{∞} vectorfields ([7, Proposition 2, Chapter 10]).

Let \widetilde{X}_1 and \widetilde{X}_2 be linearly independent left invariant vectorfields. Then

$$[\widetilde{X}_i, \ \widetilde{X}_j] = \sum_{k=1}^2 O_{ij}^k \widetilde{X}_k, \ 1 \leqslant i, \ j \leqslant 2, \tag{4.1}$$

where C_{ij}^k are the constants of structure G ([7, p. 537]).

 $\{X_1 \widetilde{X}_2\}$ is a basis of left invariant vectorfields on G, its dual basis is $\{\omega^1, \omega^2\}$ consisting of left invariant 1-forms. So we have

$$\omega^{i}(\widetilde{X}_{j}) = \delta_{j}^{i}, \ 1 \leq i, \ j \leq 2. \tag{4.2}$$

Every left invariant vectorfield \widetilde{X} is a linear combination of \widetilde{X}_1 and \widetilde{X}_2 :

$$\widetilde{X} = C_1 \widetilde{X}_1 + C_2 \widetilde{X}_2$$
, C_1 and C_2 are constants. (4.3)

Theorem 4.1. If constants C_1 and C_2 satisfy $C_2C_{12}^1-C_1C_{12}^2\neq 0$, then the left-invariant vector field $\widetilde{X}=C_1\widetilde{X}_1+C_2\widetilde{X}_2$ has no closed orbits.

Proof If $C_2C_{12}^1 - C_1C_{12}^2 > 0$, by taking

$$D = -C_2 \widetilde{X}_1 + C_1 \widetilde{X}_2, \ \omega = C_2 \omega^1 - C_1 \omega^2, \tag{4.4}$$

we have ((4.2))

$$\omega(\widetilde{X}) = 0,$$

$$\omega([\widetilde{X}, D]) = (C_1^2 + C_2^2)(C_2C_{12}^1 - C_1C_{12}^2) > 0.$$
(4.5)

Hence \widetilde{X} is a P-vectorfield on G. If $C_2C_{12}^1-C_1C_{12}^2<0$, we can come to the same conclusion by taking $D=C_2\widetilde{X}_1-C_1\widetilde{X}_2$ in (4.4).

If \widetilde{X} has a closed orbit $L \subset G$, then $aL = \{ab \mid b \in L\}$, $a \in G$, is also a closed orbit of \widetilde{X} (because \widetilde{X} is a left invariant vectorfield), i. e., L is a period cycle. It contradicts Corollary 2.5. The proof is complete.

If G is a two-dimensional compact Lie group, then G is a torus T^2 (G is orientable ([7, Corollary 3, p. 507]) and any nontrivial left invariant vectorfield has no singular points).

Corollary 4.2. If Lie group G is a torus T^2 , then $C_{12}^1 = C_{12}^2 = 0$.

Proof If $C_{12}^1 \neq 0$, then we take $C_2 = 1$, $C_1 = 0$ in (4.3). From Theorem 4.1 we know that \widetilde{X} has no closed orbits. So \widetilde{X} has a nontrivial recurrent orbit (it is a well-known fact in the theory of dynamical systems), which contradicts Theorem 4.1. Therefore we have $C_{12}^1 = 0$. Similarly we can prove $C_{12}^2 = 0$.

References

^[1] Chen Yiyuan, P-vectorfields on plane, Ann. of Diff. Eqs., 4: 4 (1988), 405-409.

^[2] Chen Yiyuan, The number of limit cycles of the plane autonomous systems, Chin. Ann. of Moth., 10B: 2 (1989), 277-284.

- [3] Dubrovin, B. A., Fomenko, A. T. & Novikov, S. P., Modern geometry-methods and applications, Part I. II, Springer-Verlag, New York, Berlin, 1984.
- [4] Godbillon, C., Dynamical systems on surfaces, Springer-Verlag, New York, Berlin, 1983.
- [5] Hirsch, M., Differential topology, Graduate texts in mathematics, Springer-Verlag, New York, 1976.
- [6] Palis, J. & Melo, W, Geometric theory of dynamical systems, Springer-Verlag, New York, 1982.
- [7] Spivak, M., Differential geometry, Vol. 1, Publish and Perish, Inc., Berkeley, 1979