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P—VECTORFIELDS ON TWO—-MANHFGLDS

CHEN YIYUAN (l‘l? — 7L) *

Abstract'

The concept of P-vectotfields on two-—manifolcis is introduced and some properties
of P-vectorfields are proved. Particularly, it is shown that some P-vectorflelds on the
torus have no nontrivial recurrent orbits. Also, the absence of .closed orblts for the -left -
‘fnvariant vectorfields on two-dimensional Lie group is discussed.

§1. Introduction

The concept of P—ve‘etorﬁelds on the plane was introduced in [1]. In this
paper we gener ahze the conoept of P-vectorfields to two-dimensional manifolds.
First we set out the deﬁnltlon and properties of P-vectorfields on the

plane™?® needed for understanding later sectlons and give simpler proofs for some
theorems in [1] and [2].

Lot X=X; 9 4+ X, 2 and D= D1T+D2 3 2 4 (oy, @) ER? be O
1

Omy 02
veqtmﬁelds on the zyx.—plane. We define functions -
A=ZX,[X, D];—X:[X, D]y, B=X.D;~X,D;, . . (1.1)
and sets Co B I T ' |
o '-Wé{a;[A'-—-'o s ER?}, H_—_-{m]Béo,,meRZ}, @

where [X, DI=[X, J)]1

mop.212]). .
. Definition1.1. Let X be @ 01 veotoo'ﬁetd on the mia;g—plwne, If tkerre ewists @ O*

+[X D]z

is ‘the Lié‘]di-:a;cket of X and D (see

' _vectorﬁeld D suoh that

0 Az, G (1.3)
(2) the set W has no two~dimensional subset,

then X is called @ P-vectorfield with aid D.

Remark 1.2, This definition of P-veotorfields is shghtly dlﬁ‘erent from
that in [1]. It weakens the conditions in [1] Henoe some conclusions in [1] and
[2] may be ohanged a llttle i
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Taking o= X dw,—~ X sdo, in the following formula @Hp:220 ;' ©
dw(X, D)=X'(¢(D))»+D§@(X)>~@([-X,7D]>, aE

we get ' . _ Lo A

gB X1t 33 X, B(dle) A @

Lemma 1 3 Lot X be @ P—wotorr ﬁeld with aid D. I f. L is a closecl oo*bq,t of X and
LNH+J, then LEHNW, - .

. Proof Let L: o= m(t) Do a olosed orblt with perlod T, and L n H * @ Without

loss of generality, we suppose that m(O) € H i. .y B(m(G))=O From (1 4) We

ha.Ve

J A(w(t))exp{ j (de)(m(t))@t}dt -
-j d(B(ay(t))exp{ j (leX)(w(t))dt})

=0 " (B(a(T))=B(@(0))=0). T g adney

The above equality and (1.3) mean LCW On the other hand, for any a>0,
L={a(®), 0<t<w}cW 80 - e

_ L 'A(:?(;)_)exp {— [: t (aiy .,X) (w(z) )dt} at

- B(a(a) Jexp { j (v X)(a(t) )dt}

i.e., o(a)EH. Henee LéH from the arbitrary chome of @. The proof is complete

Theorem 1.4. Lot X be P—fvecto'rﬁald wwth w@d D wnd L ‘& closed’ orbii of X.
Then

(D Lisa nonhg/perboléo closed orbit if L&H and LW, _

(@ Lis a Fayperbolic ‘stable” (unstabla) closed oo‘bzt @f L,,E_W cmcl LC:{a:lB>O
#€ B’} ({o| B<O, € R*}).

Proof Let L o= m(t), be a olosed orblt Wlth perlod T If L%H NW, then
LNH= (Lemma 1. 3),19 B%OonL '

From (1.4) we get L

[} @ 2 o)ydt=~ [ (A @®)/BG@))d.

- Henoe the proof follows from the Poinoaré oriterion for-stability. - .

Corollary 1.5. Any Pweotorﬁeld ims no pemod cycles zmd @ts campouml cyclss
are in H N W™, C .

Theorem 1.6. If X is.a P—-fuactoo'ﬁeltl ‘then Gtg: homoolinde orbits connecting
,hgpm:bolfw $addle. pomt and heterdelinic or bits conneot/my Two. hype¢boho saddle pomts
are ’l/’)’b ’W’ ([1]) . . . o

- Remark 1.7.* (1) If for X there is & 01 ‘Vectorﬁeld D such that A<O thén we
take(—D) ingtead of D to. satasfy the condition (1) in Definition 1.1, ‘
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(2) Instead of (1 1), we deﬁne .
A=g(X41[X, D],—X,[X, D]1) and B g(X1D2 Xle),

where'g is a O* function with constant sign whioh does not vanish at any regular
~point of X, Then the above results are all right, (Replacing A and B in the above
proofs by A/ g and B/g respeotlvely ) Henoe such a factor g is not essentlal to the
definition of P-vectorfield. '

Other interesting oonolusmns a.nd a,pplloatlons of P—veotorﬁeld can be found
in'[1] and [2] ' ' '
' In Section 2 we define the P-vectorfield on two-manifolds and give its
properties, '

Seotion 8 is devoted to the P—veotorﬁeld on the torus, which have more
| stukmg behavior, -

Fma,lly, we dlsouss the a.bsenoe of OIOSed orbits for the loft invariant
véetorﬁelds on two-dimensional Lie groups in Section 4. '

§ 2 Deflmtlon and Basm Thaorems

We now intr oduee the oonoept of P—veotmﬁelds on two—-mamfolds For simpli-
city, we only consider the. two—dlmensmnal dlffeL entiable manifolds of class 0.

. Lot X and D_be ot veotorﬁelds a,nd ® a 01 dlﬂ’erentla,l 1- form on two—
manlfold M We deﬁne funotlons L : o '

A= o([X, D]) ‘B= co(D), o ' (2_,1)

and sets o
_ {mIA =0, mGM},H {mlB 0, mEM} S (2.2)

Deﬁmtlon 2.1. Lot X be a 0" vestor field on two-manifold M. If thafre onists @
O vector field D and o O* d@ﬁerentwl 1~ form « on M such that

1) o(X)=0, {smgulwr poinis o f co} {smgulwr points of X},

(2) A0, .

3) the set W has no two—d’&mensfbonwl subsets,
then X és called a. P-vactor ﬁeld on-M with aid D and d@ﬁerentwl a),

g

Remark 22 (1) If M Rz-the mizvz—-pla.ne, thén we erte X = X 1 -5?-—+X 2
3 Ty

63; a,nd the ® satlsfylng the condltlon (1) of Deﬁmtmn 2.1 must be g(X'ydws
2

=~ X ,d»,), whete ¢ is a' O funotion with donstant sign - swhioh ‘does not vanish at

~ any regularpoint of X. Henoé Definition 2.1 comcldes ‘with Deﬁnltlon 1.11in
. this case (of. Romark 1., 7(2)) ' e

- (2) If M is a.sympleotio manifold ‘with "the non—degenerate olos«ad dlﬂ‘elen-

tial 2-form Q;: then wa can take cq-.Q(X , ») to satisfy the condition” (1) of
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Deﬁmtmn 2.1.

Lot F': M—>N be a diffeomorphism of class 0? between two-manifolds M and |

N. Let X be a P-veotorfield on M with aid D and dlﬂ‘erentlal 1—-form . Then

F.X isa O veotorfield on N, where F,: TM->TN is the tangent bundle map
induced by F, and (F*)* wisa O* differential 1-form on N, where (If"i)“ Vi g

—>T*N is the cotangent bundle map induced by F~1 1,
Now we. conmder the veotorfields F,X, F,D and the diﬁ'ereniua.l 1-form
(F~*)*» on N. Define functions

Ay=((F7)'o )([F X, FD]), B =((F'1)“w)(F D) | (2.8
and -sets o
W*=={fn.|A..=0, nGN},' H*={n[B“==O, -n;EN}.« (24
We have L .
((F"l)*w)(f" X)—w((F'i) F X)-w(X)» S (28)
: B,=w(D), ‘ S (2.8)
: A,=o((FPY,[F.X, FD])=co([X D]) e (z 7)‘
(2. 7) and (2 6) mean that . ° A =
W.=F(W) and H,=F(H). . S (2 8) .

From (2 B), (2.7) and (2.8) we obtain the following lemma.

Lemma 2.3. Lot F: M—>N be a O diffeomorphism between two—mand, folds M wnd

N. If X is a P-vectorfield on M, then F, X is @ P-vectorfield on N.

We know that a olosed curve L on M is one-gided- (two—s:Lded) if there exists |

a nelghborhood of I on M whioh is homeomorphlo t0 & Mobius band (an annula,r
region on Pplane) ©I, 4 :

Let I he a two-sided closed orbit of P-veotorfield X. Then there 18 an open
neighborhood U of L whioh is diffeomorphic to an open annular region ¥ on the
wws—plane ™, Hence U and ¥ are ‘also 0? diffeomorphio ([B, Ohapter 2,
Th.eorer@ 2.71). Let F: U-V be a 02 diffeomorphism. Then F, X is a P-
veotorfield on. V' R? (Leinma 2.3) and 7 (L) is it olosed orbit. Henoé we come
to the following -conclusions from Remark 2 2 (1), Lemma 1 3 Theorem 1.4,
Corollary 1.5 and (2.8). ‘

‘Theorem 2.4. Let X be o P—vectorrﬁeld on M w@th aid D amd d@ﬁ&ffentwl 1—-f0frm '

o. I f L is a two-sided closed orbit of X, then *:
() LcHNW if LNH+J; S
(2) L is @ nonkyperbolic dlosed orbit if LEH and LEW
(3) Lisa hg/pefrbohc stable (unstable) closed orbit if LEW and
' Lc:{m[B>0 mEM}({m|B<0, mc M}).

Gorolla.ry R.5. Any P-vectorfield on M has no period cycles and; dis compound'

cycles are in HN W
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Theorem 2.8. Let X be a P-vector, ﬁeld on M with a@d‘ D and d@ﬁerentwl 1~form’
o, Theii the one-sided closed orbits of X interseot- H and W. ‘

- Proof If It m=m(%) is a one-gided olosed oibit of P-vectorfield X and LnH
=, then w(D)+0 on L; Qn the other -hand, @(X)=0. Henoe {X(m(s)),
D(m(4))}at each point m(t) is a tangent 2-firame to' M and it is a G* frame field
on L, It is 1mposmble for one-sided: closed orbit L. (It is"a well-known fact in -
topology.) So we have LN H+ @. Simila,‘riy- We can oht@i;n LN W% D...

Let F: N—M be a covering map. (The definition: of covering map is that in
[81.): If there exists, around each point m& M, & meighborhood U;CM whose
complete inverse image F71(U;) is the union ViUV yU-+ of a set of pairwise
disjoint regions Vi, k=1, 2, ---; with the propert_y that the restriction F [ vast V>
Uy, of F to each region Vy; is a O® diffeomorphism between V3 and U, and
moreover M is covered.by finitely or countably many Slg.‘éh regions, then for P-
veotorfield X on M with aid D and differential 1-form o, we ocan define O
vectorfields (F‘l) X, (F7),D (F is a local diffeomorphism) and O* differential
1-form F*» on N. We define funotions

L —(F*w)([(F"i) >4 (F 1)*1)]), B*~(F*w)((F'1) -D)r - (2.9)
and sets ' - ; S
ST LI {ntA” 0; nGN}, H*={n|B*=0, nEN} C(2.10)
Evidently, a : . o
= "‘(;F DY (D) —a(F Ky ma(X),  (@t1)
- B*=o(D), -. . (2.12).
A*=o([X, DJ). ST (2.13)
- From (2.18) and (2. 12) we gob - et S
CWr=F1W) . (oomplete mvelse image of W), o (2.14)

S H*=F-(H) (complete inverse image of H), . . (2.15)_
Flom (2 11), (2.18) and (2.14) we hsve the following lemma., " :
Lemma 2.%. Let F: N—>M be: a covering map satisfying the ﬂbove assumpt@on
If X isa P-veotor field on M, then (F7 1), X és a P-vectorfield on N.-
~ Theorem 2.8. lot F: R>~>M be a covering map satisfying the abow wsswmpt@on
If X is a P-vector field on M, then its homoolinic orbits comnéoting o hyperbolio saddla
poimt and heteroclinge orbits conneot@ng fwo_fiyperbolic saddle points are in W’ .
 Proof If X is a P-vectorfield on M, then (F"l) X is a  P—vectorfield on R2
(Lemma 2.7). We note:that “any homoolinic orbit or heteroclinio orbit of X is-
lifted ag homoolinio or heteroolinie orbits of (F~*),X and the homoolinio orbits
~ conneoting a hyperbolie saddle- pomt or, the heteroolinio orblts eonnecting two
‘hyperbolic saddle pomts of (F~*)X are in w*. ‘"Hence the . conolusion of Theorem
2.8 follows from (2.14). L
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_. Corollary .‘39 If X 4s a P-vectorfield on the torus I' (the sphere 82, the
p'rojebt@'we plane "RP? the Klein bottle K?), then its homoelinie orbits connecting o
hyperbolic saddle poimt "and heteroclinic orbits conmecting two hyperbolic saddle points
are in W. ‘ - B .

- Proo, f It is known that R"’ is a ooveung space of the torus T and the oovering
map F: B2—>T? ig a O~ Tocal dlﬁ'eomorphlsm(f"'l’ 81 8o the oorolla,ly is ploved for
T2 (Theorem 2.8). ' ' '

An example in [3] ([8, Part II example (), p. 151]) shows that the torus 7'

i8 8 2-sheeted covering space of the Klein bottle K2, We oan ohoose a oovermg
"map F: T?>K? which is a O~ local diffeomorphism’ (uSmg Ploposutmn 2.7,
Proposition 0. 12 of Ohapter 1in [6] and Theorem 18.3.1 in 8, Palt II]) It X
is a P-veotorfield on K2, then (F-1), X isa P-veotorfield on T and any homo-
Slinio orbit-ox hetelochmc orbit of X islifted as homoolmle oibits or hetel 00111110
- orbits of (#71),X. Henoce 001011a,1y 2 9 is tlue f01 K2 from (2. 14) and what we
‘have just proved. - S o
* If X is a P-veotorfield on the sphere 82, we choose points 4 and B, a pair of
diametrically opposite points of 8% which are not on the homoelinic: orbits and
theteroolinic orbits of X. Taking A as the- north: pole of 82, we consider ‘the
stereographio projection of §2 onto the plane F: §*>R? (see[3, Part I, p. 87]) It
is easy to verify that F is a 0= diffeomorphism between §2—{4; B} and R*—{(0,
0)}. Hence 7, X isa. P—veetmﬁeld on R?—{(0, O)} ‘and the conolusmn of 001011a15(
2.9 for §? follows from Theorem 1.6 and: (2.8). e *

The example (o) in [3] ([3, PartII, p. 180]) shows that the sphere 82 is a
| 2-sheeted covering space of the projective plane RP?, Tt is.easy to 0hooss a covering
map F: §°—>RP? which is a 0= local dlﬂ’eomorphlsm Hence Oorollary 2.9 is true
for RP? from that for §2,

L § 3 P—-Vectorflelds on the Torus

- We are. 1n‘uelested in. vectmﬁelds on the t01us T2 beoa,uSe of the existence of
the nontrivial recurrent. orbits.: (Smgulal pmnts and olosed orbits are trivial
reourrent, ) - . - . o ‘ c

~The torus T2 ean be obtamed f1 om the square I [O @] % [O @) on the’ W15~
plane by 1dent1fymg points (0, ;) and (2, 0) with (@, @;) and (@, @) respeo—
tively, ‘We call pomts (0, wz) and . (w, @3) (01 (wi, 0) -and’ (aa, w)) a palr of
ddentical points, R G e v S P
" A. veotorfield (or dlﬁ'erentz.a,l 1e—f01m) on I isa veot01ﬁeld (or d1ﬁ‘e1ent1a1 1—-
form) on T2 if it takes the same value at eaoch:pair of identiacl points. A vectorfield
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X (or differential 1-form w) on I is a O vectorfield (or O* differential 1—'form) o

T2 if it is a O veotorfield (or OF differential 1-form) on I and X, 8X/dw;, 80X/

0z, (or ©», Ow/0ny, Ow/0ws) take the same value ab each pair of identical points
~ respectively. Hence any veotorfield X (or dif'ferentia,l 1-form w) on T? can he

9
Owy 82...

satisfying the oondltlon (1) of Definition 2.1 must be 9(X1dwe— X oy ), Where gis
a 0" function on T with constant sign whioh does not vanish at any regular point
.of X, So we always take w= X 1055 — X s dws in Definition 2.1 for T as in Deﬁmtlon
1.L (of. Remark 2.2 (1) and Remark 1.7 (2)) ‘ '
. Theorem 3.1. I f X is a P-vectorfield without sw.gulm' points on T? then th@
nontmwal recurrent orbits o f X arein W. . :
Proo f Suppose that X isa P-—Vectorﬁeld without smgulan pomts on T"’ a.nd its
ald is D(w demz Xodwy). Then _ o : ‘
" A=X,[X, D],—-X,[X, D]1>0. S (3.1}
If X has a nontrivial recurrent orbit' LW, then we can: chooss pEL and a

ﬁrriﬁén in the form X -X1 +X 2

heighborh_ood U of p such that UNW=¢J (because W is a closed subset of T? and-

it has no other two-dimensional subset) and U doe‘s‘n‘ot’ intersect. any closed- orbit
of X (as the number of closed orbits of X is finite nesr pomt P (Oomllaly 2.5).)
So min{A|a¢€ U}>0. ‘ Lo :

 We consider the flow: box F constr uoted in the proof of Lemma 2 A in {6] (cf _
(6, pp. 146—147]) and suppose that FU. From there we know there exists & -

family of vestorfields Z(u)=X +su¥, >0, 0<u<1, (where ¥ vanishes outside
F), and for some 0<<uy <1, Z (uy) has a olosed orbit L(u,) through F, . ‘
Smce min{A|s€ U}>0, we oan choose s>>0.50 small that e
A() =7 (w)1[Z (w), D)a—Z(u)s [Z(u), Dl,>0onU. (3.2)
Henoce Z(u) 0<u<l, is a family of P—Veotorﬁelds with the aid of X (Note that
Z(u)=X outside F') and every vectorfield in ‘the family has no nonhyperbolm
~ ¢losed orbits through # ( (3 2) and Theorem 2.4).
On the other hand,,if u tends to zero from u;, the olosed orbit L(uy) of Z (uy)
must disappear. (U does not interseot a;n& olosed. orbit' of X). Henoe there is u;
such that O<u,<uy; and L(ug) is a nonhyperbolio closed orbit of Z(ws) which

intersects F. It contradicts the above oonclusuon So. the nontrzv:xal 1ecuuenh-

orbltsofXa,remW S
. Theorem 3.2. I f X s a.P-vector field on, T“’ and the smgulwfr pomts 0 f X are wll
hypsa bolie, then the nontrivial 1 recurrrent orbits of X arein W. o -
Pfroof If X hasaid .D (differéntial 1~form o= =X By~ X 2dm1), then ’
e CA=X[X, B],, — X 5[ X; 1)31>0 ’

(or w= Aldw1+A2da;2), and the @
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If X has a nontrivial recurrent orbit L&W, then we choose pE L and a neigh- -
. borhood U of p such that U NW=(. Hence min{A|o€ U }>0,
| Weé construct a dow box F as that in the proof of Lemma 2. b in [6] (of. [6,
PPp. 148-‘—150]) and suppose that FU. From there we know that there is a family
of veotorfields. Z (u) =X +eul¥, >0, 0<u<l, (¥ vanishes outside ¥'), and for
some 0<uy<1, Z (uo) has one homoelinio or heteroslinio orbit L, through F,

Smoe min{A|s€ U}>0 we can. choose 8>-0 so small that

A(UO) =Z(uo)1[Z(uo), D]z Z(“O)a[ZWo}» D1:>0 on U . (3.8

Hence Z (uo) is 2 P—Veotorﬁeld w1th aid D (Z (uo) =X outside F) and it has no
homoolinio or heteloohnlo orbit - through ‘F ((3 3) and Theorem 2.8). It
oontra.dlots the ex;stence of L. Therefore the nonthla.l reourrent orblts of X are
W, | v

The above theorems oan be used to deny the ex1stence of nontrwml Yeourrent
orblts We' give two mmple examples on T2 obtamed f1 omm [0 2m;] X [O 295] CR2

Brample 1. Oonsider Veot01field B ‘

X =(sin ($1+£U2) +b(a;2) cos (m1+w2)) +s1n (a;1+m2)

where b(wy) >0 isa O* funotlon w1th peuod 201: We take D— ——3%1— Then

. A=b(s;)>0, B= sm(w1+w2)
Hénce X is a P-vectorfield without singular points on I and it has no nontrivial
yeourrent orbits (Theorem 3.1). . SV SR S SRS
In fact, H={(21, x3) !sm(a:1+a:2) =0, (01, ¥2) ETz} contains two olosed ourves:
-whioh divide T into two regmns, and- X has exactly one olosed orbit in eaoh
region (of..[2, Theorem 2]). ' : A _
Ezmmple 2. Consider Veot01ﬁeld

X—- — (cos a;1+smw1) (cosw1 cosmz—smm sin mz)

4+ (smmioosa;z+oos @ sm wz)

Lot R
‘.Dé(coswl—hsinaa)—é%.-,: ’
Then o S
| - A=(cosojtsing;) Xi+XI>0,
.and X is a P-veotorfield on T2, X has four singular points:
(8ov/4, av/4), (3m/4 50::/4), (70::/4 w/4), (Tw/4, b /4)
whmh are all hyperboho. The sef. w oontams two olosed ourves oonsrstmg of orblts
of X. Therefore X has no nontrivial recu1rent orbits (Theorem 3. 2. '

N
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§4.An Ap'plication to Lie Group

We now consider the left 1nva,11a,nt vectorfields on a. two—dlmensmnal Lie
group &, which are O vectorfields ([7, Proposition 2, Chapter 10]). - '
Let X, and X be linearly independent left invariant vestor fields, Then

[Xb Xl] = Eocjzku 1<7/y .7<2 (4'1)

v_#here 0O} are the eonstants of structure G ( [7 p. 537]) .
X 1 2} is & basis of left invariant vectmﬁelds on G‘ its dual bas:xs is {0) o}
oonsistlng of loft 1nvar1a,nt 1-forms, So we ha,ve

(X)) =8, 1<, j<2. - o (4.2)
Every loft 1nva,11a,nt veotorfield X ig & linear oombma,tlon of X 1 and X,
.'f Olf +02X 2 O a,nd O; are constants. (4.3)

Theorem 4.1, I f constants Oy and 02 Sat’bey 020}2 —-0,0% 270, then the left
énwma_nt vector field X-0,X,+0,%, has no closed orb'bts
Proof If 0,0%—0,0%>0, by taking

o D=—0,X,+0:X;, 0=0;0"-0i?, (4.4)

‘we have (<42)) o . A o : . . _
Co(X)=0, o -

© o([X, D)= (01+03)(0,05~0:0%)>0. - . (4:B)

Henoe X is a P-veotorfield on G- If 020 01012<0 ‘We oanl come to the same- -

conclusuon by taking D=0,%X,~0.X, in (4.4). e

- 'If X has'a olosed orbit L&, then aL={ab|b€ L}, ¢€ G, is alsoa olosed orbit.
of X (because X is a left 1nvar1ant vectorfield), i. e., L is o pemod oyole It
contradiots Oorollary 2.5. The proof is-complete. - :

If G is a two~dimensional ‘compaot Lie group, then @ is a torus 1° (G is-
orientable ([Y, Gomllary 3, P. 507]) and any nontrivial left invariant.
vectorfield has no singular points). v |

Corollary 4.2. If Lie group G is @ torus T, then 012-012=0. :

Proof If O1;#0, then we ta,ke‘ O,=1, 0;=0 in (4.3). Fi'om Theorem 4.1 wo-
know that X has no closed mbité So X has a. nontrivial recurrent orbit (it is a-
well-known fact in the theory of dyna,mlca,l systems), whioh contradiots Theomm .
4.1, Therefore we have 013=0.: Slml].al ly We can. prove 012-—0
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