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' RESAMPLING METHOD UNDER
DEPENDENT MODELS
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Abstract
As well known, the jackknife and the bootstrap methods fail for the ‘mean of the
dependent observations. Recently, the moving blocks' jackknife and bootstrap have -
been _proposed in the case of the dependent observations. For the mean of the strictly T
stationary and m-dependent obse;ﬁvatiens, it has been proved that the proposed
distribution and variance estimators are weakly consistent. This paper proves that the
' distribution and variance estimators are 'strdng:l.y"eensmtent' for the mean (and tlie
" regular functions of mean) of the stnctly statmnary ‘and m—dependent or ¢p—-m1x.mg
- observations. - .

§ 1. Introduction

As two main methods in resampling themy, Quenoullle—Tukey 8 jackknife
and Efron’s bootstra.p have mgnlﬁca.nt epphca.tlons in modern statlstms We can
use these methods to estlmate the dlstnbutlon of statlstws atid obtain the
confidence interval of parameters the oonsustent estlmator of the asymptotlc
varla.noe eto. Unfor tunately, even for smaple statlstlos such ag Sample mean, ‘the
ordinary J:eSa.mphng methods may fail when the observations are dependent In
1981, Singh 111ustra,ted this problem with the example under m—-dependent model.
The practiocal data such as from meteorology, hydrology, oto. aTe usua,lly dependent
eaeh other. How to use the resampling methods under dependent models is a very
interesting topio with wide applications. N ’ '

Many statistioians explored various methods to solve this problem. In general
they noted:the. followmg faot: ‘the resamples are drawn 1ndependent1y from the
emplrlca.l distribution. So it can not simulate the dependent models. Usually there

exist two methods to solve this dlﬂ:iculty One is to make the resa.mphng proeedure
- resemble the sampling pr ooedure So we must know the original random sampllng .
. model and it is very restrletlve Sometime it is even 1mp0531ble The another'
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method is to split the whole observations into several groups. The elements in each
gloup must be succesive and keep their orders as in the original samples., So each
group can be viewed as a random miniature of the original model. The resampling °
groups are drawn Jndependently from these groups Basing on this idea, Kiinsch
and others proposed the movingblooks method, whioch has attracted considerabe
attention recently. | | L

Let Xy, -+, X; be str iotly stationary random variables with the common
distribution F . Let B, be the block consisting of b consecutive observations
starting from X, Thus we have (n—b+1) blocks, i. ., By, By, *++, By_ss1. For the
moving block jackknife (MBJ), each block is delsted once to generate “pseudo-
values; for the moving blook bootstrap (MBB), % blocks are drawn -independently
and with replaoement from By, By, *+, Busez. All elements in & blooks a;e then
regarded as the bootstrap samples, : S

Kre the moving blocks methods reasona ble in statistical theory? In a teohnloe,l
report in 1988 L1u a,nd Smgh made a prellmlna,ly exploration. For-the mean of the
strietly stationary and m—dependent observations, they proved the weak congistenoy
of the MBJ and MBB variance estimators and then obtained the weak consistenoy of
the MBB distribution, Whether it is possible to get better results under this model
and whether the analogous results can be obtamed under general dependent
models are WOl thwhile to study , : .

This paper tries to solve the above. questlons We study two. Weakly dependent
models. In Section 2, the strong consustenoy of the MBJ and MBB variance
estimators is proved for the mean of the stuotly stationary and m—dependent 4
observatlons We a,lso ‘Pprove the strong conmstenoy of MBB dlstubutlon In section
3, analogous results are obtained when the observations are striotly stationary.and
Weak g-mixing, We also study the strong-and weak consistency of MBB. variance

stlma,tor under various eonditions.

Throughout the paper, D(t) stands f01 the. standald normal dlstmbutlon o
denotes a constant which may depend on ¥ .,but not on n and b,

§ 2 Strlctly Statlonary and m—Dependent Case

Let {X ,};,1 be a sequenee of 1andom Vallables {x i}t=1 are oalled strlotly
statlonaly if for any k..% and (84, -, fx), (X; o o+ Xy) and (X4, ooy Xiype) have
the same dlstllbutlon {X}1 are called m-dependent if f01 any. By (X o0y X3
and (X bimats °°0) Are 1ndependent ‘

In the followmg We asgume HX,=0 for oonvenlence. We have the followmg

conclusions,
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Lemnaa 2. 1. Lot Xy, - . X, be.a sequence of strictly stwmomq*y cmd m—dependent
random variables. If B|X|?<oco(p>=2), then : : '

B 2X5| <On?/’mp/, - (2.1)

§=1

Proof It is easy to see that we can only consider the n="Fkm case, Write

ZX¢ = {X1+Xm+1+ voot X ptymss} + {X2+Xm+2+ +X(k—1)m+2}

l=1
. +{x,.+x2m+ o Xm} = 23; I (2.2)

Glearly B | R;|?<<co. Note that each R; is the sum of % i. i, d. random Va,rmbles By
Maroinkewioz-Zygmund inequality, we have

B EX‘I <m"E|R1|9<Om%P/2E|X1|D__ n”/ 9/2.
! $==1

This pi-ows Lemma 2.1,
Remark. In general, m is a .fixed positive integer, and yet we know the
Iemma still holds if m=n* (0<a<1) from the above proof.
At first, we disouss the jackknife oase. Let X denote the average of

>

observations exeept ‘B;. Define the pSeudo~va1ues
T X = (n=5) X, ] =5 Xy(im1, ey nboHD) (2.3)
_afnd the jackknife variance estimé,tor of ni/2X, L

17,, (X)) = b{(«n b+1)'1 2 b~1'+§ix, f,,)z}
=<n—b+1)-1”"§‘[ (”ﬁ X,) J+ox

i=1
T e o n—b+1 +0-1 PV s
— 952 (i b+1)—1 > [ p2 2 X,]AA +B,+0,  (2.4)
=
- Theorem 2. 1. Let Xl, X =+ X be @ sequence of strictly statwncm"y wnd m~
depandent fvamables If EIX1I4+°<oo and . brn® fm" any 8>0 cmd O<a<s/(4+s),
then -

?Jb(?n)»Var(X1)+2 200v<x1, Xip) a8 (2.5)

Proof Smoe m is fixed, uSmg (2.2). and lc'iR O(E“l/z(log logla)””) a. §.
whloh is the property of the sum of i. i. d. random variables, we geﬁ
S X, =0(n"Y2(log log #)*?) "a, 5.
Henoce 5Y/2z,—>0 a. s, So D,~>0 a. s. Olearly

Var(b lfzvx, —Var(X1)+22( 4 Yoov(xy, Xw)
] —>Var(X1)+2200v(X1, Tu) (@sbertren). @)

”,_.'N_th--:.that< S x, )~ Var (b g %) G= 1,9,y noBL)

=3 J=1
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are strictltl stationary and (b+m)-dependent. The applications of the remark of
Lemma 2.1 and Markov inequality yield that for any >0

P { ',(b—l/z ﬁ:X’) r_>6}N0n—(;+s/4)(1—a)ﬂ (2_.8)

=
Hence by the Borel-Cantelli Lemma, we have

A—-)Va.r(’Xﬂ—FZ%OﬁV(X‘i, Xus) a8 - (2.9)

The results of 4, and D, imply that 0,—>0 a. 8, This completes the proof
. The moving blooks Jackknlfe estlmator of X is the a.vera.ge of (n—b+1)
pseudo-values, that is, - ' :

1 n—bt1 . : ‘
Jo(X,) = "—(——3———)- P2 (Xc+"‘+X¢+b-1)
X+ iU
1
m{[b 1)X1+(b 2)X2+ +2Xb—2+Xb_1]

| +[(b 1)X - +2X',._(z,_3,+X,._a,_2)]} _ (2.10)
Lemma 2. 2. Under the cond@tmms of Theorem 2.1, for 0<B<ﬁ%—5—, we have
: - wBT (X )0 a. $. : o (2.11)

- Proof Followmg the proof of (2 8), for >0, we have . . .
P{I nfJ ;,(X | >5}<0n"(2+s/ 2)”(4*"”/ - (2.12)

Thus \ ZP{InBJb(X,.) | >8}<oo o (2.13)

~ 8o (2.2) follows.

In view of the classioal Jackkmfe, the Jaokknlfe variance estimator of n'?X,
can also be deﬁned as : ' . :

1 n—b+1 $+b— = \2 '

Poa(Zy=b{—L "3 ( > X7, >) L ew

It can be seen that the difference between J b(X ) and X, yields the d1ﬁ'erenoe
between ?,, »(X.) and ¥V, 5(X.). Since »

. ‘m {(b— 1)X1+(b 2) Xyt 2Xb_z+Xb-1}l

b1 [Xy[ 4ot | Xoue| o
iy, I e | o (2.15)

and since | v
[ X4] +b~——§. [-%”_‘1 '——)EI/Xﬂ o

<

8, 5. (as. b#’oé)

which can be obtained under the condition E(X 1[2'<oo,_w._e arrive at
Lemma 2. 3. Under the conditions of Theorem 2.1, -
Jo(X o) =Xy 0(6/%) a. 8. R - (2.18)
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_Using the above reéult and the central limit theorem for the striotly stationary
and m—-dependent sequences, we have
Theorem 2. 2. Lot Xy, e, X, be strictly stomonwry and m—dependent random

wmwbles IfE[X1|§+°<°° and bN Sor amy 8>0 cmd 0<a<mm [4+ ; %],f
then * | o o
1. V;,b(f”>;éVdr(X1) +2 jﬁldov(xx, X1+J) a. 8, | | ..:Z - (2'18) |

N chb(X‘,.) ~BX,)

~—> (0, 1), - . ' (2'.19)»

wkaa"ea' "?J.b(yn) or Vsi(Xn). ' : :
We continue to. study the bootstrap beha,vmr Let 51, €ay oov, £ be i, 1. d.
sampled blocks from Bi, By, +++, Bapiz, Where &= (£u, £ia) ++Ew) (6=1, =, k). Let
(Y4, Yy = ¥) = (&4, ¢+, &) stand for the W-hovle. 1=>bk resamples. Let F; be the -
‘empirioal distribution based on these 7 resa.ndples Following the idea of the
hootstrap, we ‘use the dmgla,m of 12 (Y,— ,,) to estimate the d1str1but1on of
(X, ~EX) and the variance of Zl/ %Y, to estlmate the variance of n /2X,. The
followmg two theorems show the a. 8. convergence of the bootstlap estimators.
Notations such as Var* and P* refer 1o probablllty ealoula,tlons under the Te-
sampling model. ' - ' '
" Theorem 2. 3. Lot Xy, X, -+, X, be & sequonce of stricily siationary and m~
dependent random variables. If B IX 1[‘““’<oo and, b~n‘” for any fized 8>0 and 0<os

4+ ,wehame ' | /

| Var'(l”zY,)—aVar(Xl)+22‘,00v(X1, Xip) 8.8, (219,)
Pa‘oof Let §‘=(§¢1+ +§.b)/bi’2('z, =1, 2, .-+, k). Noting that & oo, & are i,
i, d. under the MBB scheme, we get 12Y =k 1/22& and Var*(1#2Y,) = Va.l*(fi)
~ Let E,_b V2( X Xyt X,+,,_1) ‘Then '

Va;*(f;)— b+1 Z; (E "E"fi)z L

n—-b+1 =1 ‘ %“b"l“l " =1 o
=4, —(bl/sz(Y )% e (2 20)
‘Note that 5Y/2~p/2 and 0<a/ 2< = Cas By Lemma 2.2 and Theorem

2(4+ ) 2(4+ )R
2.1, we get n""’Jb(.?,.)AOa. s, a.ndA-—>Var(X1)+2Z Oov(Xi, X1+,) a. 8. Th1s

completes the pr oof,
‘Theorem 2. 4. Undefr the oondwt@ons of Theomm 2.3, as k and -0, We have
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'SEP!P*{WZ(?:"E*?:)g’t}—'P{ﬁ.l/_zfn<t}]—'->.0 a8, (2 21)

. . B o - ~ U .
- Proof Qlearly 1V*(Y,— E*Y ;) =k™Y? E; (€;—E*€,). Recall the result of Katz™:

Let Z, «»+, Z, be 1. i. d. random variables with BZ,=0 and Var Z1=1, Let g(z)
satisfy: (1) it is a nonnegative, even and nondecreasing function and lim g(z) =

(2) z/9(z) is nondeoreasmg on (0 o0), If E’z1g(z1) <oo, then there exists a eonstani
O such that ' ‘ o S

up |P {3 z-/nlf“’ﬁ}"% |-<aEz§g<z‘1>/y<W>’. R
Lot z=(,— E*§1)/ (Va1*§1)1/2 and g(z) [zl‘/”,"whei'-e ﬁ}max‘(s, 2) .and is a
constarit. Then - ' T o
- sup IP“{ZW(Y: BY)/ (Val*§1)1’2<t} gli(ﬂ)l
o B lft E*E B , (222)
]Gs/2p(Va’1*§ >1+s/2p ) . L
By Or-mequahty, E* lfi—E*&[2*‘3/"<0(E*l§1!2"“”’+[E*é’xl"’*“”’) Using the same
method as in Themem 2.1, we can plove that for any >0 :

o i -
P Bl | B [05] >0y O S, @29
In view of the conditions on «, p and the Borel-Cantelli Lemma, we have o

) B § | 2+e/p — El ‘E1[2+s/p—->0 a. 8 o . (224)
By Lemma 2. 1 we ha,ve E|B|2*/*<0. Thus L
B &4 |2P<0 a. s ‘ A (2 25) :

It has been proved that Var* (§ 1)——>Va1 (X 1) +2 2 Oov(X 1y, X 1+,) a. 8. and E*§1->0
. So - " :
suplP*{ll/z(Y;—E"Y,)<t} P{nl/zf,.<t}[-——>0 a. 8 " (2.20)

The theorem follows from the above result and the oentra.l hmlt theorem for the
strictly stationar y and m-dependent sequences.

§ 3. Strictly Stationary and rp—MiXihg Case

X oms alled p-miing i there exits a Sequenoe e {p(m)} suoh that 1>p (1)
=p(2)>-+, lim p(n) =0 and NULURIRT

Sup sup . sup
ka1 BeM% Aeugm
p(B)>0

where M > denotes the a;ﬁeld geriereted by {X ‘ (a<e< b)}

P(ZA)-I <p(n)

Throughout thls section, we assume EX 1=0, EX 2<oo Ky —-EX +22 EX 1X -
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converges absolutely and o> 0.

We start Wlth two - lemmas Whloh oan be found in Blllmgsley [b] and
Sohnelder (6] 1espeot1Ve1y o -

Lemma 3. 1. Lot Xy, X, ---be a sequence of stréotly stat@onwfry and’ (p-'mfbw'bfng
random variables. Let £ and. m be two mrndom variables . measurable with respect to the
o-fields MY and M,n respect@wly I f E[f [* <0 and B|n|* <oo, whers 1, s>1 and
;Jfb'lrk‘s';él,.then L
T - EéEnl<2¢"’(n>E1"{lél'}E”*{lnI’} o <3 1)
Lemma 3 2 Lst X 1 X 9, °o« DB q)—m?/.%ng randoin wmwbles ’w'bth E'X 0 (n—-l

. ,) amd 2{¢(n)}1/2<oo Ifsup ElX [°<N for some s>2 and N>1 then forr

«ve[z,s],rwehawe »
'whe're O(v) depends Orn,ly on @, fv, s cmd N i

The following theorems present the sonditions undel Whlch ‘the wesk and
gtirong convergenoe of MBJ.and. MBB yaiiandce estlmators are obtained. Like the
disoussion in Section 2, the proofs of the two variance estlma,tors are similar. In
order to save space, we only prove. the weak con.yergence of MBJ variance estlmator
and the str ong conver genee of MBB variance estlma.tor e o

Theorem 3 1. Let X v X . ,X | be @ sequence of stmctly smt@cmry amal

o-mibzing mndom mmwbles with 2 Y 2(rm) <oo amd EX} <oo, as. b—>oo and b/n—>0,
We have . e - | o - .
e AP U (3.3)
Proof Following (2.4), we write TR
. vJ.b('X?;ﬂ)-::\An—FBn_*_Ong
.For any >0, by Lemma 3.2 and Markov_ ineguality, . -
PpX, |>a}<al’--—>o - (3.4)

So b" 2X,~0. That means D, ———->0 Tt remains to show A ~———->a2 ‘We use the same
ISymbles as in seotion 2. Let n= 52 E§2 (@-—1 2 . ~, n— b+1) Olea,rly {'m} are

‘striotly’ sta,tlonary ‘Note that

nbHL A2

B 2 775) \(n b“l"l)E')’]l—{— 2(«)‘(, b)ZIE(WﬂhH)I
'b ‘nipt SRAT L S _ :
‘ +2(n b) 2 ‘E(’h‘flu-i)[ . (8.b)
By Lemma 3. 1 we ha.ve, for b+1< y<n b Lo
| B (m271.44) [ <2€"1’ 20 5+1)E'm. - (3:6)
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So ; ,
o mebdl CNR L . ol e : .
B3 ) <{n+2bn+4(n'—-b);zl‘¢1/2(j)}En§<0fw_b B GE
Therefore, for any §>0, - _ |
P{[A Var§1l>6}<8'2E< 2 m) /(n— b+1)2

<Omb/(n—=b+1)?—>0.  ~  (3.8)
Using the Lemma 3 of Bllllngsley [5] (p. 172), we get Var (B¢, Thus

4, —-—-)ov"’ -The proof is oompleted . T ,
I.emma. 3 3. Let X 1 X ) X be ] sequenoe of stfrrwtly smtwnwy cmcl gv-

miain fmndom fvw'rwbles 'w’bth EX1 0 E [X1[3<oo(s>8) and Ecp“”“’”’(n) <oo
Let m=§ EE (=1, ¢+, n— b+1) vaerp , where a € (0, 271), th@n

B § m) <0(n4541)2b” (3.9

Proof _Sinee {ng}iz2+t are striotly sta.tlona,ry, we arrive ;a,t | _~ .
5(3 n) <41 bﬁDELE@mHmH”muwﬂau (3.10)

’Whele pX denotes the sum over o |
o | S {6 g, b0, @+g+k<n o o (%)

We now d1v1de the above sob into
(*) {6, jKb, BLD, (*)} U {6<b, j<b, =D, (#)}
UL, 535, B<h, (£)}U{E<b, §=b, b>D, (%)}
U {é=0, §<b, k<D, (#)}U{i=D, j<b, k=D, (»)}
U {é=d, j>, 70<b (*)}U{@>b j=b, k>0, (%)}

""21-7,, S ’ i ) (3.11)
By Lemma3.2 we have, for any (3, j, k) € (),
| B ("71‘"71&-":"71;4-'1'455"71'4-“-'34-14) | <Emi<oo. . . 1 (8.12)
Hence - :
Z | E (771"7L+¢"71+¢+ﬂ71+¢+4+k) l < b3E771 <O (n—b+1)8? (8.13)

2 | E ('1?1771+c771+¢+ﬂ71+s+i+k> l < b (’"' b + 1) EW <O (WJ b +1) bz . (3 14)

The s:Ltuatlon of I3 and Is is snmla,l 0 that of I 2. And the ploofs of 14, Ie and IT
are similar, so we only take I for example Flom Lemma, 3 1
l b ("71"71+t”71+£ +J”71+c+i+k) | | ‘
<2 D) Bt P
<20/ (k--b+1) [E ln1771+¢771+¢+5| /6]6/8[1’7["714-1-1-:4-74[ Rl
S G-RDIER e
. Hence Sl e
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2' B(MM1eM1etaiMiessn) | <O@=d+L)b (8.16)
Also uging Lemma 3.1, for (4, j, k) EIs, we ha.ve : o
l B (ﬂ1’71+zﬂ1+¢+}n1+w+i+k) l
<2¢(s—4)/8<3 b+1)[E ] MN144 I 8,(8-4)] (6—4)/8 [E l ’71+c+i"71+:+!+kl o4 4/e
<2C e (j—b-+1) [H|n. V1% (3.17)
Combining (8.15) with (3.17), we have | »
Zl B (’71"71+4‘01+f+ﬁ'*?1+¢+f+k) |

< 2, 20 (B~ b 1) [E[ml’ﬂ]sﬂ

(I 0 §<K),

+ 3 2 GBI

(Falo< )

| <2[Elm|*""]8’*{<n*—b+1[2} R b+1>

+(n— b+1) Zb kEgv‘s'”/s(y-b-Fi)
<o<n_b+1)”” kqu@-w(k B-1) - S28(j — b 1)
J=
OBl . (3.18)

The conolusmn follows by substltutmg (8. 13), (3 14), (3 16) a.nd (3 18) mto
the left hand side of (3.10). Lo T R

Theorem 3 2 Let X X 2 ':'~.’;, X .o b a squence of stmcﬂy statfwm'ry wnd @~
mbiing mnclom variables with BX1=0, EiX1[‘<oo(s>8) and' E q)“’“"/’*’(n) <oo, If
b.~n®, where < (0, 271), then

Var*(1/2Y,)—>a6? a, s, (3.19)

Pfroof It is enough to prove that Var*(€ 1)~>0% 8. 8. By Lemma 3.3, for any

48>0, we have '

1 n-—b+1 1 1 - '
P{ m = 'r);’ >8} 84 m Obzo'b'* b+1)2. §3 .20)
Since b~n?, where a& (0, 271), by the Borel-Cantelli Lemma, we have
n—b+1 :
F%Tf E B2ss? a.s,
So | Var*(§)—a® a. s, (8.21)
The proof is completed. '

We continue to study the a. s. convergence of the bootstrap distribution.
Theorem 3. 3. Let Xy, X, +++, X, + bo & squence of strictly stationary and p-
miaing random variables with EX1=0, B|X|**<oo for some s>8 and §>0, and

D 020 <co, If brrn®, where o€ (0, 2%, then as b, n—>co A
=1 ; .
sgplP*{Z‘/”(ﬁ:-E*?;)<t}—P{n1/22‘,.<t}[—>o a.s.  (3.22)
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_ Pfroof The proof ig similar to: that of Theorem 2.4. Applymg (2 22) with p=4
we get o
sup| P*{zifz(?,-lE~?,) /(var*gi)i_{k;_} —m) |

2+- MR

g PG| T (3.20)
b8 (Var*g, )1+‘g . ' ' B ‘

To prove that the above expression eonVergenoes a. 8.0 0, it s enough to prove
B €, |""”/4 ~H|Bi|#**>0 a. s. and E| B, |?*#4<0. But the latter is easy to prove.
Applymg the method of Lemmas'8.8 and Theorem 3.2 with %, been replaced by
(IB | 2ot — EIB |**/*), we gan.prove E*I§1[2+‘/‘* —H|B, |2+°/‘-‘—>0 a. 8. Thus we
obtain (8.28). The conolusion follows from (3. 23) and the central limit theorem
for the strictly stationary and gu—-m1x1ng sequenoes

Remark. It is easy to extend our results for 7 to the regular funotion of X,,
The proof is trivial, so we omitted the detalls '
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