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A-CONTEXT FOR NONSINGULARLY
RELATIVE PREMITIVE RINGS

WEI JINGDONG (é@m?f)*

Abstract :

Tn this paper the Gonoept. 4~context is introduced, as & generalization of Morita
Context, to give a characterization of nonsingularly relative primitive rings.

- §0. Introduction .

Jacobson®™ gave a charagterization for primitive rings with & nonzero soole by
proving the existence and uniqueness of the conesponding dual space. Among
many generalizations of this thought the most famous one might be'Morita Gontext.
Armitiuit used Mo fo study the ‘stiucture of &' olasy of rings. Zelmanowitz'™
_mtroduoed the oonoept Pa,rtml Context goneralizing “MO. TIn" order to - give a
stnoter cohiaracterization’ f01 nonsmguleu 1y relative primitive rings, ‘wé introduce
Heio & spéoml kind of Pa.ltlal ‘Oontext, -called - 4-context,” and then glve ‘thie
(emstenoe and unlqueness of Ai-context for- ‘nonsingulaily relatlve primitive rings.

81 Prelimihéfie_s ‘and Deﬁn_itions ,

Through out thls paper, 4 will denote a division rmg, R w111 denote a ring
with 1dent1ty, F will denote & right Gabnel topology over R, A 11ng R is oa.lled S
rionsingularly rela,tlve primitive ring if it is nonsmgularly F-primitive, f01 some
Gabriel topology 7. 0., R admits : a faithful nonsingular F-cooritical module™,
For localization concepts and their propel ties, the reader is rveferred to [1] and

{5]. Now we recall some results given in [7]. |
~ Proposition 1.1.@%  Suppsse M is a faithful F-cocritical R-module and
A=Endy, M is the corresponding division ring, where M is ths quasi~injestive hull of
M. Then | '
M\Zp(M)={s€ M:ArER, r+0, dMr=duvr}.
Proposition1.2,@™:2%%,212  Qupnpose R és a nonsingularly F-primitive ring, and
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D

My and M are two faithful F=cooritical: R-modules. Thew My s subisomorphic to M
(4. e., they have Gsomorphic nonzero submodules), ‘and .the: corresponding diviséon rings
4y =Endy My and A= EndgM, are isomorphic to each other.

Now we give the basio definition. For a right R-module ¥ and a left
R-module xW, V®r W will denote the tensor product of V and .

. Definition 1.3. Let 4 be.a division ving.. A d~centext is the sextuple (R, V, W,
X, (o), [*)°]), where R is @ m}ng, V' and s W4 are two-sided modules which are
. vector spaces over 4, X is a. nonzero lsft~R~mght—R—submodule of W@AV, *, *) and
[+,] are two two-sided module homomorphisms, (+,+): 2 X x>z RBr, [+ °]: 4(V®RW)4
=>444 satis Sying the following conditions:

(1) If (w, v) s defined (3. e. ,'wOfvE X)), then foa‘ every o’ n W, (w, 'v)fw =
w(v, fw]\

(i) If (w,v) is defined, then fo'r efvafry v inV, '(w, m);—-[v.’ , 'fw],fv.,

(iif) For every finite subset {ws, -+, w,.} tn W, there ¢8 @ nonzero element v in V
such that all(w;, v) are defined, t=1, - _ : |

Such a A-contest i3 called faith ful A f ot saitisfies ﬁwo more co«ndmt@ons

C(iv) Vs @ Jaithful right R—module.

(v) For eve'ry nonzero element v in. V, there és an element w dn W sueh . thwt
{v, w]= =0. S _
A d-context (R, V W X, ( , )' [ , ] ) is called full if X= W.,,V.. |
Obwously a full A-context is a Morita. Context. '

" For 'wGW D, will often denote {fvEV (w, 'v) is deﬁned}, Whloh is a mght_

R—submodule of V. .
I.emma. 14 Ths followmg s tfrue for @ fwethfuz A~comezt (R, ,,VR, RWA, .
( )’ [“ <1).
(i) If (w, v) =0 then either w=0 orv=0,
(ii): If for all v én'V, [v,w] =0, then w=0. , : :

(i) Let o€V, If (X ) 0, then vw=0, where (X )- denotes the homomorphw :

dmage of X in R under(+,).. S .
(iv) W s @ faithful loft Remodule. =~ TR B g
- Proof (i) Suppose (w, v)=0 and w=0, For every w' in W. wlv, w } =
(w,v)w' =0, .thus [v,%'] =0 since [v, w] is an element in ‘the dzwsmn rmg 4. Now
- we know v=0by 1.3.(v). SRR
(ii) "Let o' be a nonzero  element in D ohosen by 1.3. (m) For every v in V,
v(rw,_fu )= [v,w] v’ =0, hence (w,2’)=0 by 1.3.(iv). Then w=0 by (i).

C(did) Suppose v(X)=0. For every wE€ W, choose a nonzero element ¢’ in D,.

Then [v,w] v'=o(w,v')=0.. He‘noe__ [vjw] =0 sinoe: 4 i8 a division ring. Now v=0by"

(iii).
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(iv) Let 'rER If yW =0, then for every v in ¥, [or, W]=[v, +W]=0. Hence
vr=0by 1.3.(v), and r=0 by 1.3.(iv). ~ |

§2. Existence and 'Uniqueness Theorems

Theorem 2.1. R is @ nonséngularly rela:dve pmm@tfwe 'rmg ¢ f and ornly of R
dmots @ fw@th Jul d-context for some division ring 4. ' '
Proof Necessity., Suppose R is a nonsingularly F—pnmltlve nng, where F is:

& Gabriel - topology, and Vj i8 a faithful nonsmgula.l F-oooritical module, We
may assume that ¥z is quasi-injeotive by [7], 1.2, Let 4=EndzyV, which is a

division i'ingi Let W = PHomg ('V,‘R)',' the set of all partial linear furiotionals of
Vs Then W 0 by [9], Theorem 8.2. For w€ W, w0, let D, be the domain of w,
which is a nonzero submodule of Vg Let X be the two-sided submodule of

- 2(WRV)xz generated by all of the elements w®., wEW, vED,. For vE€D,,
~ define (w, v) =w(v). Obviously this definition can be extended to a two-sided

module homomorphism from X to zRa. For v€V, wa W, let [v, w] be the
homomorphism from D, to ¥, [v, w] (¢/) =vw(v') =v(w, v'), o€ D,,. .Since Ve is
quasiinjective, this hotomorphism can be extended to an endomorphism of Vo,
ie., we may consider [v, w]€ 4. It is not diffioult to verify that [ , *] defines a
two-sided module homomorphism from KV@sW)ito ;4 Now we olaim that we
have oonstruoted a faithful d-context. 1.3. (i) follows by definition. Let waW

wWEW, vE Dy, 7= (w, ¥)ER, d= [v, w'1€ 4. Then for eVery zEd‘ID N D, +0
(noting that ¥ is unlform),wd(z) fw(dz) w([fv,w]z) w(fv(w ‘%)) = 'w('v) (w 2y

=rw (z) Therefore wd=rw, and thisis 1. 3. (11) Smoe Vg is un1form ﬂ D,,,ﬁeo ,
for {w;}i-1€W,i. e., 1.8, (iii) holds. V is faithful by definition. Now suppose v i

‘& nonzero element in ¥, By 1.1, there exists an element » in R, such that Vr=

Avr #0..Let f be the partial linear functional defined on wvrR, f(vrs)=rs, s€R.
Then fEW, and (f, vr)=r€ (X). Hence v(X ) #0 since O%vr&o(X). Tt is ‘easy -

“to see that this implies that [v, w] =0 is impossible, i.e., 1.3, (v) follows.

- Sufficiency. Suppose B admits a faithful 4-context (R, Ve, W X, CON
[+,2]) foriso’me' division i'.ing 4. We will prove that Vp is nonsingular and
uniform, Then ¥y, is a faithful nonsingular G-cooritioal module, where G denotes ‘
the Goldie topology, and hence'R is a nonsigularly G-primitive ring. For two
nonzero elements vy, v, in ¥, choose an element w; in: W such that [vi, w.]+0.
W._e may assuime that [v;, wi] =1, for we: may substitute e by wilvy, - w]™t if
Decessary. Similarly ohoose w, in W such that [, we] =1.By 1.8. (iif) there is a
nonzero element v in ¥ such that both (wi, v) and (ws, v) are defined. Them
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@y (w1, v)=v=0;(ws, v). Therefore RN v,R*0, and V¢ is uniform. Finally we
prove that Wy is nonsingular. Let » be a nonzero element in ¥ ‘Choose a nonzero
element w in W such that-[v, w] #0, and a nonzero element o in D,. Then I=
{w, v') R is a nonzero right ideal of R, If vg=0. for a=(w, v)a'=(w, o' a')€1I,
theén (v, w]v'a’=v(w, v'a’) =0. Hence v'a'=0, and g=0. Thus a,nnR('v) ﬂI=0 and
anng(v) is not essential in R, i. e., Zp(V) =0. : : T

. Corollary 2.2. R is o primitive ring with & nenzero -socle o,f amd only wf R
admbts @ fasthful full 4-context for some division ring A. ] AR

Proof IfRisa pmmltlve ring with'a nonzero socle, ‘then in the’ ‘necessity
pa,rt of the proof of Theorem 2.1, V is simple, D,=V for etery w in W, and henoe
X =W®.V. Oonversely, assume. the: faithful 4-context- is also full. For two
arbitrary nonzero elements vy, v in V, choose Wy inlW such that [v, w;]=1. Then
v=v;(wy, v) E0B, i. ee v B= V Hence VR is simple, Since V' is also nonsiggular,
we know R is pr imitive Wlth a nonzelo soole. :
' Noting that a faithful full A-context is two—suded falthful Morlta. Oontext we
«See that the sufﬁelenOy of 2 2isa direct conolus;ton from the fact that, the .class of
all pr 1m1t1ve rings W;Lth nonzelo sooles is a normal class“’ The neoesmty of, 2 2
oould also be construoted dlreotly as in the form (R eR Re) over the leJ.Slon
ring ¢Re. Now we give two lemma.s. before we discuss the uniqueness of the
A-context. e e
" Lemma23. ;S’uppose (R, ‘,VR, RWA, X (. -), ~] ) a',s a fm'thfuz : A-oo_nm;.
Then Vg is quasfb—myeet@fva wnd A - EndV. ' R T

. Proof - ‘We know V5 is nonsmgula,r umform by the p1 oof of the sufﬁelency of

Theorem 2.1. Henoce V3 is monoform, Assume f is a partial endomorphism of Vg

defined on a nonzero submodule U of V. Choose u€U; wE W, such that [, w]=1.

- Since VR is un1f01m, We may choose a nonzero element v in Uﬂ D,. Let. d—-
If(w), w]. Notmg v=[u, wlv= u(w, v), we ha.vef(fu) -f(u(w, fv))—f(u) (w, v)=
Lf(w), w] V= =dw. Slnoe Veis monoform, f and d are 1dentloa.1 on U ‘Thus, f ecould be

extended to V,ie., Vgis quas:.—lnjeotlve and End, V=4. :

Lemma 2.4. Suppose (B, V, W, X, (+,+), [*,°]) s a fcwthful A-contsxt and T

&s & nonzero Tight ideal of R. Then there exist a nonzero element w in W and @ nonzero

sz;bmodule U of Vg such that (w, u) € I for every element u in U. |
"Proof 8ince V is faithful, VI#0. Thus VI(X)+#0 by 1.4, (iii), and I(X) +

9, i.e., there are w' €W, v'€V, such that I(w',v") =(Iw', v')=0. Now let w=aw’'€
Iw', a€1, w0, U=D,+0. Then for every u€ U, (w, u) =a(w’, u) €I.

Theorem 2.5. Suppose R is & ring, 41 and 4, are two division rings, (R, 21V 1,

aWas) and (R, 12V ory 2W 242) are faithful di~ and dy-context mspectwely Then 4y 4,
Vix=Var (sublsomorphism), iWi=Wa.
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Proof We know that Vi, and Ve are nonsingular uniform quasi-injective
modules, and 4;=EndzV,,d,=EndzV; by 2.8 and the sufficienoy proof of Theorem
2.1. Then by Theorem 1.2 4; and 4, are isomorphic.and Vizand Vo are subisomorphie
to each other. Lot V*=PHomy(Vy,R) = PHomg(Vs, B) (noting that ¥y and ¥, are

‘uniform modules and subisomorphio to each other). In order to prove zWi2;Wa,
we only need to prove x Wi plV*2zWs,. For wE€ W, (w,-) defines a homomorphisns
from D, to R. By 1.4. (i), this gives a natural imbedding of zW; in zV*. Assume f

. is a nonzero element of ¥*, from’a nonzero submodule U of V5 onto a nonzero right
ideal I of R. Since ¥ is monoform, f-is an injeotive map and is an. isomorphism
from U to I. According to 2. 4, choose a nonzero submodule U’ of V5, wE W, such
that (w, w) €I for every '€ U. We may consider w as an isomorphism from U’
onto some nonzero right ideal I’ contained in I. Let d be the homomorphism:

U571 A U, d= f'ifw Then € 4. Now it is easy to see under, the embeddmg
W —eV?, f=wd*EWy, i. e., RW1_ V™. SlID.l].al’].y W22 zV?*. This ends the proof.
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