Chin., dnn. of Math.
188:1(1992), 6879,

ORTHOGONAL POLYNOMIALS ASSOCIATED
WITH THE DIRAC OPERATOR IN
EUCLIDEAN SPACE

J, Onopg*®

Abstract

The author considers the possibility of - geﬁeia,lizing the theory of classical

polynonuals to the higher dimensional case, The starting ‘point is the sphttmg up.of .

the second order differential operator of these polynom1als into the derivation operator,,
considered as an operator between Hilbert spaces and its adjoint. In the case of ‘séveral -
dimensions the derivation operator is replaced by the Dirac operator As however the
set of polynomials in the vector variable # is not dense in the Hilbert modules
~ considered, first a decomposition of these modules in terms of spherical monogenic: .
functmns is proved. Then by applying the theory to each of the const1tuents,
R generahzatmns of the (Gegerbauer and the Hermite- polynomlals are obta]ned.

§1 Introduction

Spec’ura,l theory We say a selfad301n’o opera.tm A has pure pomt speotrum o

the Hllbert space H 1f H is the direot orthogonal sum of the eigenspaces of 4. Ir

[3] we studied the Hilbert space L.(X, w, H), where u is a measure on the set' X

and H is a Hilbert space, of L,-funotions on X with values in H and the
extension of an operator on H, which was defined pointwise.

The Olifford algebra. We oonsider the 2m™-dimensional real veotor spa.ce

&7 (B™) (or &7, shortly) given by the basis veotors {e4=Ac{1, 2, --m}} with the

' notation go=¢, and e, =es,..z, for A={hy, -, I} and 1<h; <e--<b<m.

On this vector space an assooiative product is defined by
€1.61s-Ch, =é;.,,...;,,‘ for 1<py < e <l<m,

which is governed by the rules ¢} = -1 and ¢;¢;= —eie; for 5+ j. Henoce & is the linear

" associative algebra generated by the elements ey, es, **+, én. It is clear however that.

&7 is not commutative. Moreover for m>8, of has zero divisors and heno is:

‘not a field. Since ¢, is the unit element for rﬁultiplioation weo can identify ACR

with Ag,. An involution on o/ is defined by é;= —¢; and ab="ba. The Buclideam

" Manuseript received March 2,1990.
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norm in &7 will be denoted by |.|o. A veotor @(ws, -, om) €R oan be identified
with the Qlifford number
- Cw=Sem.
: i=1 T
For the pr oduot of a vector with itself we have ®@?= - |@|3. A unit vestor will be
~ indioated in the sequel by a Groeek lotter, e. g. £, 8, eto. The decomposition of @
will be denoted as &#=r§ Where_ r=| @'V[‘o. Analogically we use thg dgc_\oxg.positiong-
—pB i AT iy o

Hilbert-modules over .o/, Let H be an M—module (1 o. a veotor Spaoe over M ).
A funetion(., ), H xH,—-wzl is called an inner ploduoi; on H ifforall f, g, h€ H
and AE I | |

(1) (f, gA+h)= (f, PA+ (f, h),

(i) (0= (y,f), y -

(iif) Re(f,f)>0 and Re(f, f) 0(=)f 0. ,
From this ,,Qi-va.lued 1nner product a real Valued inner pr oduot over izl oa,n
bedel 1ved by

(f, g)n——=Re(f 9) (

H looked upon as a vector space over R with this real valued inner produet W111 bo
denoted as H z- The norm on H is given by |l.f II“’— ( f, f ) A module H with an
&/-valued inner produot is oalled a Hilbert module if Hp 1s a Hllbext space The
definitions of olosed, densely defined, ad301nt and selfad]omt operators- thus can be

generahzed immediately. Notice however that since &/ in general contains non- -

mvertlble elements, ' Glam~Schm1dt procedules -cannot be applied without
ca,utlon So, m contr ast W1th the case of Hilbert. Spaces, it is not neoeeSSa,mly h ue
i;ha.t eaoh opera.tor W1th pure pomt speotrum gives rise to a.n orthogonal bagis of
ralgenveotors The RJ.GSZ repreSentatlon theorem however remains valid. F01 mom
detaﬂs on Hllbelt M—modules weo refer to [5] |

~ An 1mp01tant example of Hilbert modules are the modules Lz (Q w) of
&/-valued measurahle functions over QCR™ with the inner p1‘odu4t

i 9=[; Foor
Also we shall use the Hilbert module LQ(S’”"l)Wlth the inner prolust
LS, = fgdS N

gm-1
in which wp.y is the surface of the umt SpheL »S””‘
The Dirac operator and the Laplaolan. The Dirao operator is given by

DE(’“« o
if fisa Gi-funotion in a domain Q. then f ‘is oa,lled Ieft (right) monogenio 1f
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Df O(1esp fD an‘fe =0) in Q.

Since D?= - 4, where 4 is the Laplacian, each monogenic fun&t‘ion is harmonie
and hence analytio. The operator D can be separated in a radial and a spherical
part ' : -
p=£(o,+L1).

In [4] we proved that the Diras operator on the sphere, 1‘ ig selfadjoint on the
Hilbert module L,(S™1). The elgenmodules are given by '
P={f €08, Tf= - kf},
~ the module of inner spherial monogenio functions of degrae &, and
Qu={f €O (8" ), I'f=(k+m-1)f},
the module of outer spherical monogenio funotions of degres . The orthogonal sum
of &, and Q,_;(whore we put @_;= {O}) is S5, the moiule of sphe;gcal harmonios of
degree b. With Py, (@) we shall denote an arbitrary element of Py(Qu). The
modules Py are mutua'llj orthogo’nal as are the modules @, Moreover each Py is
orthogonal o each Q,. The ma.ppmg thoh ma,ps Py on £Py is an isomatry betwaen
P, and Qy,.
" For details on this paragr aph we refer to [2]
1.1 I as operator on Lz—-modules over a radially symmetuo domain

Let 2 be a radla,lly Symmetl io domam and o a 1a,d1ally Symmetuo Welght
funotlon W:Lth the no*‘atlon ' '

: : Qp={r€R,JxcQ, ol =} , .

the module Lz(Q co) can be identified with L;(Qgz, r™ 20!, Ly (S”"i))where rrf"'”i’wlf

is the measure arising when writing the mtegla,l of the inner produot in sphélica'i

coordinates. Hence the extension ‘of the operator I‘ as defined in [8], is Selfa.d]omt

on the module Lg({) ®), which shall be denoted by Lz for short in the rest of this.

paragraph. For each k& take an or thogonal basis {Pf°, b= 1, K (m, 5)} of Py

Then we define T
R,?’*='{f;f’(mf’)"#l";ﬁ‘)(ff)d(r),' i"br'fr" a. o., w(r) Oliﬁ‘or‘d valued}, . °
RO~ ={f,f(r€) =EPY (r&€)b(r), for-r.a.e.,b(r) Olifford valued}, |

, RP=RO'@'BS .
~ and ‘ o

L =Lo( BO*,
L“}, i L2 n R(c)— '
. - N

. L == 2 n R\')

~. Then we have the decomposition '
T Ly= @L L“’

- 1.2. The Dirao operator

‘The-importanes:of the! modules R stems fromithe.fact that they. are: lmvariant ,

=
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for the Dirao operator. Indeed we have, for a real valued, derivable function J
that : ‘
D(PP (#)f (r)) =D(f (r) PP (®)) ~

= (Df (1)) PP () +f () (DPP(®))

=&f'(r) PP (@)

—ERP@f(), W
since ' -
Dj()=g(or+1 1) f(r)

| =£&f"(r).
This is also valid after right multiplioation with a Olifford constant and henoe,
‘by superposition, for 011&"01d Valued f since we can Wllte f a8 Dici,,m f 464, In
a similar way one gets : ' -
D(fP“)(w)f ()
=D<f(q,.),rm+2k 1) EPP(x)

m+ T

= or (7 (ryymiansy EPE(D) +<f<r>rm+2”-1>D(5—%%—£:’%9—

m+‘k -1

=Pp@) (7 + 22 Ly, | @)
since £PY(€) €Q, and henoe the second term is zero. . )
These exphcus explessmns show +that the aotlon of the Dnao opela,tor
on the module B’ can be reduced to that of the Dirac opemtm in 2k dlmenswns
'hagher on the module of radmlly symmetrm funotlons We shall f01 malize it a8
,follows' ‘ o
Take P afixed inner sphemea.l monogenlc funetion of deglee k in m dimen-
sions, Wiith the nota,tlons Ro, mya for the module of 1ad1a11y Symmetuo funotlons
in m+2k dlmensmns, RY), for the module R¥ in m dlmenSSmns x=rf as
variable in R™, b =pf, 8| =1 as variable in R™*% and D -and D,, the 1eSpeot1ve
‘Dirac operators we can define the following leectlon of R, on Ro myok; Lot
F(a)=PP(®)f(r) + EPP (@) g(r), then F*(b)=F(p)+By(p) is the radially
symmetrio extension of F. Conversely, if G(b) =h(p)+Bk(p) is = radially
symmetric function in R"‘*"‘" then we' use the notation G*(a)=P{¥ (@)h(r)+
EPP (@) h(r). Olearly G** =@, and F*“‘—F Moreovel from the formulae for the
 Dir a0 operatm it is lmmedlately olear that ’ ' |
- (DyF*)* @
.and by reiteration R | , - -
So we have e. g. for "thé:i;-owers of the 'Varia’.bleé'h: a,'nvd b ’@hat'fdr n.even n=2[,
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Dyb"=Dy(( - 1)'p")
= (~1)"Bnp"?

== ”"I’bbn-d",
for n odd, n=27+1,

Db =Dy (( - 1)ir"B
= ( - 1)l+1<n+m+270 - 1)pﬁ-1
=~ (n+m-+2k—-1)b"1,

Hence . : ’
D, &Py (2)=0b(n, k)a:”“iPk(a:) ®)
with
-n . n even,
b { . -
(n k> (n +m+2k -1), n odd , (6)

§2. Orthogonal Polynomlals Assoc1ated with
! the Dirac Operator

In the theory of the ola,ssmal mthogonal polynomials one starts from two
Hilbert spaces H;, =0, 1,
H;-—Lg(Q m;), 3=0, 1

where Q is an open domain in R, w,EO‘”(Q) and the operator L=d/ds is a olosed
‘densely defined operator flom Hy>Hy. If L* is the ‘adjoint operator of L, which
_also has the form of a dlﬁ‘erentlal oper a,t01 then L*L is a selfadJomt operator with
pure point speotrum The mthogonal polynomla,ls oon&udeled are elgenfunotmns of
this operator L*L, The only solutions in the real case are the Jagobi polynomials

(with the speoial 0asss Gegenbauer, Tchebyoheﬁ" and Legendre polynomials),
Laguerre and Hermite polynomials, It is clear however that for each operator L
.solutions of thls problem oan be souo'ht In the Sequel we sha.ll ta.ke L=D,

2. 1, The 1ad1a11y symmet:i; case _ _

_ We again take B, to be the module of ra,dlally Symmetrlo funotlons, ie.
funotlons of the form JF(o)y=A(r) +fB(rr) Let now Q e an open radially
'_ symmetl ic domam in R™ with two radlally Symmetrlo o> Welght funotlons Wy, Wy.
“We define the Hllbelt modulcs Ho and Hy by ,

- , He*L2<Q 'wc)nRo—Lzo('Q 'w) o L

: ,and denote the 1nnel products by (, )i. With polynomials we mean polynomlals
in the variable @ with right, Ohﬁ'ord va.lued ooeﬂiolents e, functlons of the
form

Pn (w) = E wjd!) WJE M,
: Olearly ea,oh polynomial is & radially symmetrie funotion
p,,(w) 2 ( 1)ir 2jw2i +§ 2 ( 1)”” 2”‘02;4-1- »‘
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The right module of polynomials is indicated as .« [#]. Let(P,)zo be-a sequence
of polynomials, each P, of degree n. This sequence is an algebraio basis of [z}
if and only if the coefficient for the highest degree of each P, is an: invertible
Olifford number. By multiplication with a suitable Olifford constant we gob
polynomials with a real valued highest degree coefficient. In the sequel we shall

always mean with (P,) such a sequence. We now look for domains @ with weight -

funetions wy, wy such that _ , :
* D ocan be extended to a closed densely deﬁned operator from H o > Hy.
¥ D*D is a selfadjomt differential opel at01 Wlth pule pomt speotrum
o={ho, M, =} 7y
such that there exists a sequenoce of elgenpolynomla,ls (P,), for mmg a basis for H,.

This investigation will contain two steps, first we look for .Q fwo, ‘w, and L

where L is a differential opera.tor and the following weak conditions hold,

* for each. pa,lr of polynomials we have

(Df, 91=(f, Lg)o,
* there exist Py, Py, P; such that
' LDP,=P,\, n=0,1,2

with A, a Olifford constant. R

In the first step we show that the onIy solutlons meetmg the weak oondltlons are
those with the weight functions (14 a?)® (for ce:tain values of @) and exp( — &?/2),
In the second step we show that in these cases also the strong conditions are met.

Suppose that Q, w,, w; and L meet the weak conditions. Then we have’

=T J‘a ( ]D)gfwid-’l’

?J‘ﬂ FD(gw,)da ~ L‘; fdagwl; -
" where, if Q is not a bounded domain, the iﬁfleéTdVér 8Q has to be looked = upom
as R

j' f do gur= hm f do gfwi

with Q,=Q0 B(%k). For L to be a dlfferentlal opelatm we radst have that fw1==0 ony
0Q, and respeotwely for .Q not bOuIlded S

Y P RS

‘ f da g'wi

i kToa oy IR MR E-4 ST

for a.11 polynomials f and ¢. In this case'we have that
Df, 9= J, FD(wnghas’ e e
SR }"‘“(f: 'wo D(wig))().
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Henoce L has the form .
L : - Li=wztDw,.
We now put X =wywit. Then
LD =w;*Dw,D
. =«w0‘1DX weD
=xD*+ [(Dx) + x {B8) ] p,
. Wo 4

-'Olea.ﬂy for each polynomial P, of dégree zoT0

LDPy=10=0,
Let P1 be the polynomlal of degree 1 we look for,

‘ P1(w) ww1+61.
‘Then thele ha.s to be a Ay such that y
| XDPi+[(DX)+X (D”’f’) ]DPi—PJ«.i,

But
- D?Py=0,
DPy= —may,
where ay is a rea.l constant, and henoce

[((px)+x <Dw°>] _py

am .

Since w, and w; are 1a.d1a11y Symmetuc w; (@) = 'w,(r), X is ra.dlally Symmetrm
and we have :
DX (w)i=§X'(¢)', "
. | _ Dwo(@) = Euwl(r).
Heonoe Ay is real, b;=0 and

[(DX) +X _(2%).]‘ —wA, ®

‘where A is real, F01 Py=x%q,+ 22bo+¢2 We have
XD2P2+WA DPz-Pz?\oz,

“where
D?P3=2may,

.DP3= - 2%@2 - mbz,
Since A4 isreal, we have
' wADPz—-w(DPz )A

| Henoe the seoond member at left is a polynomial of degree not more tha.n two, i.e.

. X is a polynomial of degree not more than two and has the f01m( sinoce X is 1ea1)
X = a:2B+O ' o '
B, O real constants, and w, satlsﬁes 8

~orB+ (- ¢2B+0) ”/g”'g —rd.
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This leads to the following possibilities (we put 4+2B=2y),
(1) B=0,weput O=1and get
wp (”') =2yrwo(r).
From this we have .
wo = Boxp(ry),
Wy =W,

The condition that w; has to be zero on the boundary of Q is only met if y<0. We-

normalize 7== = 1/ 2, D=1 and get the solution
'wo-—fw1=exp(w2/2),
Q=R",
(2) O=0, with the normalization B~1 the equation for w, becomes

wl(r) =2 wo(r)

from which
wo(r) =Br?. I -
This does not give a solution to the weak problem, ’
(8) B+0, 0+0, S
| | (—=°B+0)wy (1) =2rywo(r),
wo(r)=(-r?B+0)"/?,
For BO <0 this does not lead to & SOlutIOD. of the Wea.k prob]em, for BO>0 we
normalize —B=0=1 to get
'mm~@wW‘,
SRR wi(,’.) (1+x2)a+1 -
. where a+1>0 $0 tha.t w, satisfies the bounda,ry cond1t10n, and Q =B(r).
If the strong conditions are met and hence for each n there exists a polynomial
P a.nd a oonsta,nt An suoh that
' XD*P,+xADP, =P,
then, f10m a comparison of the coefficients f01 the highest degree at both sides we

goo that A, is real. Moreover the equation gives a recursive relation ‘between the

ooefficients of P,, and hence all the coefficients are real. As a consequence we can
write '

P(a) = wmFjas
2.2. Rodragues formula,

To show that the solutions of the weak problem satlsfy the strong eondltlons'

we use an indireot method. First we show that the orthogonal polynomlals can be
defined by a generalized formula of Rodngues Using this formula it is straightfor-

~ward-to prove'that’ the polynommls mdeed are. elgenfunot"' ns '(')Ef'ﬂthﬂ differential

formula.
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For n€ N we define the Hilbert module
H,=Ls,0(Q, wa),
where w, is given by |
W, =X "w,.

It is olear that H, for n>>0 containg all polynomials singe

FEH, & X"*f € H,.
‘We now define the operators L, by

Linf = w3 (Dtwnsa f )+
These operators are defined for f if f is a O*-function, Moreover using the explicit
expression for w, we have that ‘

Lf=— Lo DX f)
- 1 _ ((n+1) (DX) X "wo+X " Dany) f + wo-’_rx,, Df
[(n+1) (Dx)+x D ]f+XDf,

where the term between square braokets is a polynomlal of deglee 1 with real
coefficients. Henoe, if P is a polynomial of degree I, then L,P is a polynomlal of
degree l+1(for the weak solutions given the ulghest order terms cannot cancel
each other), If we 1ntroduce the notatlons

| 9tn= L. Ln—ll:
it is olear that for n>t>0, i i8 & polynomial of degree n—.

Theorem 2.1, For § fiwed the éequerm_ce of polynoméals Gem, n=1, t+1, -
forms an orthogonal set in H,. Moreover the fumotions gy, satisfy the differential
equation | o - o ' |
' | -L\i;‘D.g;n=‘?"tn.lgtn-

Proof For two arbitrary polynomials f and g we have (Df, g)k+1=§ (f, L},g),,,.,
Indeed

- (Df, Prga= bl_ﬁwkugdw :

= | FD(wnsag)dee

= _ Fun(Tug)iee

L4

smoe fwk+1=X w03 vanlshes on the boundary of Q. Henoe wo ha.ve for keN
‘ (gm, w )t"‘ (L Ln_11 ® )
o ., | = (1, D), ,
Henoe, if E<n—t then (91n; " ),—O Since each g, 18 a polynomla.l of degree n- t;
for each n, (¢is),cy i8 a sequence of ortbogonal polynomialg.
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It is olear that L;Dg,, is a polynomlal of deg1 o0 n—% which is orthogonal to all
&” for k<<n—1 since
(LD, @)= (gt;', L,Dx*),
and L;Dx® ig a polynomial of degree %. Henoe L, Dy, is a multlple of gtm
Remark 'We have : : ' . S
Ly Lyl =witDw, pwili Dw; poe - wyt  Dw,l
‘ = wilDtw, X, ‘
‘which gives the classical Rodrigu-s formula,
2.3,  Not radially symmetric functions -

In the paragraph above the module Lz O(Q w) was studied. For the solution of
the problem for the module L,(Q2, w)we shall make uss of the decomposition of
functions in terms of spherical monogenic functions. Using the decomposition

L, (Q, w) =@ L{H(Q, w) '
it is sufficient to find an orthogonal basis for eash L% to obtain a basis for the
complete Lz-module We now introduce the notation
Q,={xcR?, |x| € Qg}.

Hence 2=0,,. We denote by R, the module of A-symmetric functions in p

dimensions associated with P and
. ) Lg);g p""L2<Q9, ’w> nR“)
Then there is an isometry between L, ,, and Lo, myos, given up to a constant by
. ' @, Lg% = Lin,0, 428, '
v(f) =r*.
If { f,, fa(B) =a,(p) +Bo,.(p), @, €, real valued, n=0, 1, ---} is a basis for Lj,o,ms2e
then o
{v7fa=S3} | |
is a bams of Lz e With the notation D, for the Dirac operator in p dimensions
and L, , for its adjoint in p dimensions,
m !Jf Wy (Dpw"+1f):
we now have also
"Theorem 2.2, I f {P (b)} b8 an orthogoml bws@s of Lz, 0. 2kem CONSESIIng of
polynomwls with real walued coefficients, then {Pi (%)} és an orthogonal basis of
I f there ewist My such that S
LO,2lﬂ+an2k+mP»=Pn?‘m’ _ '

| Lo, aDin(PF) = P, ,
Proof The mthogonahty follows flom the isometry between Lz o, 2%em a0d
L, . Also we have
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P, = (Lo,m+2kDm+2LPn> _
= XD} suPu+ BA1DniouPs
=X D (Py)+2A:D(P7)
= Lo, aDn(P}).
Her 0> it makas sense to poss the generalized problem, which domains Q with:
*weight funotions w,, w; satisfy the following conditions
*® it is possible to extend D t0 a olosed, densely defined Opera.t01 from Lg(Q wo)
- L;(Q, wy); :
* D*D is a solfadjoint differential opela.tor with pure- pomt spestrum ¢'= {7\,0,~
A1, -~} suoh that each eigenmodule has an orthogonal basis of funetions of the form:
Pa,5PY, Where p,,y is a polynomial of degree n. .
In analogy with the radially symmetrlo oase we got
Theorem 2,8. Lot Q, wo, X satilsfy the strong oondeueons. With ths notations
for t<n, o o :
gt.n.léPk=L:".'Iln'-1P1c ' . .
(Notics that the deﬁmteo«n 8s dndgpendent of the chosen Py) there ewist constants such
that . e ' S I
pn,zaP 1= o, v Puon= (w5 (D")w,) P :

. As a conolusion we have that there are two cases in which tho olassioal ortho-
genall.pol_ynomials allow an extension to the more dimensit__)nal 0asa in such a wa,y' _
that a second order differential operator and a generalized Rodrigues formula, both -
in terms of the Dirac operator, exist. They are, -- |

* the generalized Hermite polynomials, defined as
H,, n1(®) P =" (—D)"exp(—r/2) PP
which are orthogonal on the complete space for the weight function exp(—r2/2),
and - ‘ -
* the generalized Gegenbauer polynomials, defined as
O:'m’k (w)P‘” =(1—r2) ~apr (1~ ‘0‘2)“"‘”13(‘)
Whlch are orthogonal on the unJ.t ball for the Welght functlon 1- frz)“ if w>-1.
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