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Abstract
The author considers the possibility of ■ generalizing the theory of classical 

polynomials to the higher dimensional case. The starting point is the splitting u p . o f1 , 
the second order differential operator of these polynomials，into the derivation operator^ 
considered as an operator between Hilbert spaces and its adjoint. In the case of /several . 
dimensions tke derivation operator is replaced by the Dirac operator. As however the- 
set of polynomials in the vector varia^ble »  is not dense in the Hilbert modules 
considered, first a decomposition of these .modules in terms of spherical monogenic： 

ftmetions is proved. Then by applying the theory to each of the constituents^.
, generalisations of the Q-egeabauer and the Hermite polynomials are obtained.

§ 1. Introduction
. •  y  i. Speotral theory. We isay a selfa^joint oporato ir^ .,^  pure point spectrum om 

the Hilbert space H  if H  is the direot orthogonal sum of the eigenspaoes of A. Im
[3] we studied the Hilbert space L^(X9 EL)} where is a measure on the set X  
and 丑 is a Hil*bert space, of Zf2-funotions on X  with values in. H  and th e  
extension of an operator on H, which was defined polntwise.

The Clifford algebra. We oonsider the 2m-dim©nsional real yeotor space 
shortly) given by the basis yeotors {eA^Ac：{ls 2S with the-

notation and e乂= 0¾...¾ for … and 〇 .< 知;^饥。

On this vector space an associative product is defined by

•which is governed by the rules and f〇T 0 s j. Hence s/ is the lin ear
assooiativ© algebra generated by the elements et, 02, •••, I t  is olear however that- 
ja/ is not commutative. Moreover for to> 3, ja? has zero divisors and heno is； 
not a field. Since e〇 is the unit element for multiplioation we can identify 
with ^e0. An. involution on is defined by ¢{=-¾  and ab — Sa. The Euolidea©'
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norm in  will be denoted by | . |〇. A vector ^ (¢1, xm) can be identified 
with the Olififord number

m '

<=1 .
P o r the product of a vector with itself we have -  \^c]〇 . A unit yeotor will be» 
indioated in  the siequel by a Greek letter, e. g. 9, ^ 0. The deoomposition of m 
"will be denot白d as 彡  whe丄. e I  叫  〇• Analogically w© use the deaompositioii
必= p泠.

Hilbert-modules over Let R  be an ^-m odule (i.e. a veotor spaoe over ĵf). 
A fuaotion(., ,) : J3* X i s  called an innor proiuot on R i f  for all f,g, h^3 
-and

( f  ) ( / .  9̂ +h) == ( / ,  g)X+ ( / ,  h)y
( ^ y . ( / , ^ )  ==57/)5 _
(iii) ReC/, /)>〇  and Re( / ,  / )  =0<=»/==0.

Prom this j2/-yalu©d inner product a real valued inner pi°oduot oyer H  oaji
.  .  • •  . . . .I>© derived by

( / ,  S〇. ,..
M  looked upon as a vector space over R with this real valued, innor product will be 
denoted as H B.The norm on .S' is given b y jj/ |2—( / ,  / ) i j .  A module H  with an 
^ -v a lu e d  inner product is called a Hilbert module, if £Tij is a Hilbert space. The 
definitions of closed, densely defined, adjoint and selfadjoii\t operators thus oan b© 
generalized immediately. Notice however that since ia  general oontains non-
Invertible elements, Gram»Sohmidt prooedures oannot be applied without

, . . . . . ,  •  ■  - .  f  . . .  • ........................................................  - •  . . . . . . . .  . . .

caution. So, in  contrast with the cage of Hilbert spaces, it is not neooessarily true
that each operator with pure point spectrum gives x-ise to. an orthogonal basis of
* ■ • .  \  -：  ■ ； • .  > : , -  •  • . . -  . -  .  * . . ,«igenyeotors. The Riesz representation theorem however remains valid. For raore 
-details on Hilbert ^-m odules we refer to [5] .

An important example of Hilbert modules are the modules LZ{Q, 〇>) of 
^ -v a lu e d  measurable functions over with tho inner produjt

(J, 9)^^ f

Also we shall use tho Hilbert module the inuar proiu3t

$n which &>m_i is the surface of the unit sphere S^1.
The Dirao operator and the Laplaoian. The Dirao operator is given by

5 f / i s  a G^^funotion lii a domain iQ；. then /  is oalled left (rigM) monogenio If
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D / - 0  (resp〇 / D ^ d aJe^6) in Q.
Since i)2— -  J, where A Is the Laplaoian, eaoii monogenic funotion is harmonia 

and honoe analytic. The operator D can separated in  a radial and a spherioal 
part

In  [4] we proved that the Dira3 operator oii the sphere, P , is selfadjoint oa th e  
Hilbert module L2(8m̂ 1). The eigenmodules are given by

the module of irmer spHerial monoganio funotions of degrae and ^
Qi〇- r / =  (h+m - 1)/},

the module 〇f outer spherical monogenio functions of deg丄.ee 奴 The orthogonal sum 
of and Qfc_i(whOT© we put Q-x= {〇}) is the module of spherioal liai^inonios of 
degree W ith Pfe, (Qfc) w© shall denote an arbitraL-y oloment of ^¢(¾¾). Th© 
modules P fc are mutually orthogonal, as are the modules Qfc. Moreover eaoh P fc is* 
orthogonal -fco eaoh Qtm The mapping whtoh maps P fc oa |P fc is an. isomatry bstwaan
少fc and Qfc.

. .Poi- detailig on this paragraph we refer to [2].
• . • • . . . .  • .1/1 r  as oparator on If2-m〇dules over a radially symmetric domain

Let be a radially symmetric domain and 〇> a radially symmetric weight- 
funotioa. W ith the notation.

{<r € R；

the module L2(Q, c〇) oau be identified with. ^ 2(¾ ) rm~2col,. 」 ，， - • • is the measure arising when w riting the integral of the inner product in  spherical
coordinates. Hence ther extension of the operator T , as defined in  [3], is selfadjoint ■ . • 4 on the module L2(Q, 〇>), which shall be denoted by i 2 fox* short in  the rest of thx§-

paragraph. For eaoh ^ take an orthogonal basis {P 0̂； ¢==1,^^^(971, ¾)} of 0̂ ^
、 . - •  . . .  *Then we define

丑公)+=v{ / : / ( r在 j〇i* f  a. .e” a(r) 01ififoi‘d Valued}../ ■ . . . 1
ior r. a.e.,6(r) Olififord valued),

助 ) = _ +@丄抝)‘ . . ： 一  and … 一

敬 ‘ 石2. _ ) - ,
L ^ L 2r\R̂ K

Then, wo have the Seoomposition
1 .2. The Dirao operator M

：The ir^portaiaee of thelmodules stems fjcom ĥeiSaot thatsre^Yairfodi l -
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for the Dirao operator. Indeed we have, for a real valued, derivable fu n c tio n / 
that

- (Df(r))P̂ (oo) + / ( r )  (DPr^))
嗜 (r)PP⑷

' 痛  k 此 m ^ ， a )
sinoe '

D /(r) =  | ( a r + l r ) / ( r )

This is also valid after right multiplioation with a Clifford oonstant and henoe, 
by superposition, for Olififord valued/  since we oan write /  as 2 ^ ca, ；,n> / ^ .  In  
a similax* way one gets '

D(iP̂ (x)f(r))

= (f(r) ̂ ± 2±±f(r))} (2)
sinoe €Qfc and hence the second term is zero.

These explicit expx*essions show that the aotion of the Dirao operatox*
on tlie module E P  oan be reduced to that of the Dii*ao operator in  2& dimensions：

. •  ；highox* on the module of radially symmetric funoiions. We ishall formalize it
,  • .  -follows：
士afce a fixed inner spherical ir^oiiogertto funotiOn of degreeJb ia  你 dim由i-  

sions. W ith the no-fcations i?〇tOT+2fe for the module of x^adially symmetrid fiinotions 
in  m-\-2k dimensions, R^m for the module B^} in m  dimenssions, m

variable in  Rm, h=pfi} 1^( = 1  as variable in. E w+̂  and Z)̂  and i>6 the respective
Dix*ao operators we oan define the following bijeotion of 2 ¾  on i2〇fW+2fc： Let
F(oo)-nK〇〇)f{r) + mK^)9(r), then F̂ (h)̂ f(p)+ffg(p) iB the radially 
symmetric extension of F. Oonyersely, if Gf(b)̂ h(p)A- fiI〇(p) is a radially 
symmetric function in  Rw+2；fe, thea we use tile notatioa G+(〇s)==P^)(nc)h(r) + 
^Pfc°(a?)^(r). Olearly Moreover, from the formulae foi* the
Dirao operator it in immediately olear that

DxF~(JDbF*y (3)
Varid by reiteration.

D lF ^ tD iF * ) * ：  (4)

So we hay© e. g /fo r the powers of the variables ic and 6 that for « even. n=2l,
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for n odd, « = 2?+ 1,

Hence
with

Dbb^Db((-l)^)

= ( -
*= -  n h n~ \

Dbhn̂ Db((-l)lTn̂

= (一 1) M + TO + 2¾ —
SS - (抑+ 7̂  +  2¾ — 1)卜一工。

I^a?nPfct» A)

6(9¾̂ Jo) =1 一栉, n even,
—(相+ 仰士 2ife — ，邛 odd。
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(5)

(6)

§ 2。 Orthogonal Polynomials Associated with 
1 the Dirac Operator

In  the theory of the classical orthogonal polynomials one starts from two 
H ilbert spaces Hj, ¢ = 0, 1,

Eli=L2(Q, eoi), ¢= 0, 1
1 ■"where iQ Is an open domain in  R, <〇î O°°(Q) and the operator L—d/dx is a closed 

densely defined operator from If JD* is the adjoint operato: of 厶， which
.also has the form； of a differential operatox% theu L̂ Jj is a selfadjoint operator with, 
pur© point speotpum. The orthogonal polynomials eonsidered are eigenfunotioiis of 
this operator L*Ii, The only solutions in  the real case g,re the Jacobi polynomials 
(with the special ease's Gegeubauer, Tohebyoheff and Legendre polynomials), 
Laguerre and Hermite polynomials. I t  is olear howeypr that for eaoh operator L 

..solutions of this problem can be sought. In  the sequel we shall take L^D,
2.1, The radially symmetric case

Wq again take i 2〇 to be the module of radially symmetrio funotions, i 〇e„ 
iunotions of the form f(aff) ==1 A(7：) + iB ( r ) .  Let now Q bean  open radially 
.symmetric domain in  .ROT with t^o radially symmetrio 0°° weiglxt fu^otious w〇, wx.

^We Refine the g ilb e rt module^ and £fi fcy
； • • ■ » >'  • • .

Sir̂ L̂ iQ, Wi) f ] L2t〇(Oj w{)
.and denote th.e innei* products by (, ) 4. W ith polynomials we mean polynomials 
in  the variable a? with right, Olifford valued, ooeffioients, i.e. funotion^i Qf the 
form np« (^) = 2  〇>s G¢=0
^Olearly ©aoh polynomial is a radially symmetrip function

. ,  24<n . - +  2i +l <n
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The right module of polynomials is indicated as . Let(Pn)^=〇 be a sequence*
of polynomials, each P n of degx-ee n. This sequence is an aIgebx*ai〇 basis of 
if and only if the ooeffioient for the highest degree of each P n is an inyertibl©1 
OlifiPord number. By multiplication with a suitable Clifford constant we get 
polynomials wilih a real valued highest degree eoeffioient. In  the sequel we shall 
always mean with (Pn) suoh a sequence. We now look for domains Q with weight 
functions wt such that

* D oan fce extended to a closed densely defined ope rator fx*om S 〇 Su

* is a selfadjoint differeatial operator with pure point spectrum
… }  CO

guoh that there exists a sequence of ©igenpolynomials (Pn)y forming a basis for
This investigation will oontaiu two steps； first we look for Q, w〇} and h

, • »where Zr is a differential operator and the following weak conditions hold.
* fox* ©aoh pair of polynomials we have

(Df, 9)i-Lg)0j ，

* there exist P〇} Px, P 2 such that
. - r . . . • with Kn a Oliffox̂ d constant.

In  the first step we show that the only solutions meeting the weak oonditiOM are 
those with the weight fuiiotiODLS (1 + a?2) 06 (for 〇©: taia values of «) and exp( -  a:2/2) „ 
In  the second step we show that in  these cases also the strong conditions are met. 

Suppose that Q, w〇y Wt and L meet the weak conditions. Then we have'
(Pf, g)î ^〇Df Wxdoo

J Q ■ •
■  •.

JJPCgŵ dx-î  f da,gwlt ;
J Q J iQ

where, if 0  is not a bounded domain, integral oyer dQ has to be looked upoi^

i f^agw±-lim fdagwt
J 9Q fĉeo ĴQfc

. •  • . '  >with i2ft.=.Qn 5(¾ ). For Jr to be a differential operator -we must have that ^=»0 oi&: 
8Qf aud respectively for Q not bounded

for all polynomials /  and g. In this 6asd we have that
(pf}9)^i f m ^  ; ：： -：1

j '
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Heno© L  has the form

We now put ^  = 叫 1 • Then
L D ^ w ^ D w ^

■ s=s w/〇 w〇-D
= XD2 +  [ (DX) + X  - ^ ° I ] i ) .

Olearly for eaoh polynomial P 〇 of degx-ee zero
LDP〇= £0= 0«

Xet P i be the polynomial of degree 1 we look for,
Pt(x)=a:at+bu

Then there has to be a Xt such that
XD2P1+[(DX) + X  ^ 〇I .]H P ^ P ^

But
D 2P i - 〇 ,
DP±^ -  mat,

where a% is a real constant, and hence
(d x ) +x  = - pt .,

Since w〇 and Wi are radially symmetrio, w{(a;) =Wi(r), X  ipi radially symmetrio 
And we have

DX(x)：̂ iXf(r),

JDw〇(x)=iv/〇(r).

Henoe 九i is real, 6i=0 and
[(.DX)+Jr-^-〇i. (8)

•wlxere A is real. For P 2—a?2a2 + ®&2+c2 we have
XD̂ 'P 2，-\" •X/-A-̂DPz~ P 2̂2t

where

^inoe J. is-real, we have

JD2P2=2獅 2，
BP 2 =  -  2xa2 ~ w62.

3cADP2 - x(DP2) A.

Hence the second member at left is a polynomial of degree not more than two, i.o. 
JT is a polynomial of degree not more than two and has the form (since X  is real)

X = a B sB + 0 ,
J3, O real oonstants, and w〇 sati$fies (8)

- 2 r 5 + ( - r 2jB+0) i^oCr}
w〇( r ) :r土
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This leads to the following possibilities (we put A Jr ^ B ^ 2 y )%
(1) J5 — 0: we put 0 = 1  and get

w〇(r) ^2 yrw〇(r ).
Prom this we have

w〇-= ̂ Qxp(rzy),
Wi = ̂ 〇.

The condition that ^  has to be zero on the boundary of Q is only met if y< 0. W© 
normalize 7 «  " l /2> and get the solutioa

' w〇 = exp (i®2/ 2) t

(2) 0 ==0. with the normalization the equatzoa for w〇 beoomes
w〇(r) Ŵ T)

from which w〇(r) (
This does not give a solution to the weak problem。

⑶  5 弄o, a _ o :
( - r2B + O)w〇 (r) =  2ryw〇(r), 

w〇(〇 = ( -  r 2B + 0 )y/~B. ■{>.For BO<0 this does not lead to a solution of the weak problem; for BO>0 we 
normalize to get

w〇(r) -  (1+ * 2)8, .

where a + l>0 so that Wi satisfies the boundary condition, and Q =B(r).
If the strong conditions are met and henoe for each n there exists a polynomial 

P„ and a constant X, suoh that
‘ X D 2P n+ xA D P n̂ P nXn,

then, from a comparison of the ooeffioients for the highest degree at both sides wo 
see that is real. Moreover the equation gives a recursive relation between the 
ooeffioients of P„, and henoe all the ooeffioients are real. As a oonsequenoe we oan 
write

P„(a?)
2.2. Rodrigjies! formula

To show that the solutions of the weak problem satisfy the strong conditions 
we use an indirect method. First we show that the orthogonal polynomials oan be 
«defined by a generalized formula of Rodrlgiies, XJsing this formula it is stralglitfoiv 
ward to prdve that'the pblyiioniial^ indeed ar& eigeiifiinotlbns of tte  differential 
formula. 、〇
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Pn ~  (-̂ 0, n) +
= JTJ55+2fc*Pn + 沒為■刀 m+2fc*Pn 
^ X D l ( P ： )+ o c A ±D ( P i)
- L 〇t mD m (P J  ) •

H er 〇 3 i t  mak^s sens© to  poS9 th e  g en era lized  problem , w h ich  d o m a in s  Q w ith . 
瞀e ig h t f im o tio n s  忉i  sa ti总fy  th e  fo llo w in g  co n d itio n s

* i t  ii3 p ossib le  to e x te n d  D  to a oloaed, d en se ly  d efin ed  operator from  w 〇y
L2(Q, w-x) ； : : . f '

* is  a so lfa d jo in t d iffe r e n tia l operator w ith  pur© p o in t 叩 的 t rum  ¢̂ == {入〇, 
•••} su ch  th a t ©aoh © igenm odule has a n  orthogonal b a sis  o f fu n o tio n s  o f  th e  form .̂

p^icP^^ w h ere  is  a  p o ly n o m ia l o f degree n.
I n  a n a lo g y  w ith  th e  r a d ia lly  sy m m etr ic  oase w e g e t  „
Theorem 2 « 3 . L et Q y w 0l X  sa tils fy  the strong Gondiiiom. WUh ihs notations 

fo r  t< n 3
ffu», ŝ Pfc ~  • *Ln̂ tP ft

(Notice that the definition is  Midependent o f  tM  ohosert ：P]c) there exist oomtconis suoh 
that .

Pnt JePfc ̂  ff〇t nt ft-Pfc〇fc Ĉ o ̂  (*®n) ̂ n) Pjfiic*
A s a o o n o lu sio n  w e  h a v e  th a t th ere  are tw o oasas i n  w h ic h  tho  olaissioal ortho*  

g o n a l p o ly n o m ia ls  a llo w  a n  e x te n s io n  ta  th e  m ore d im en sio n a l oasa i n  su oh  a w ay  
th a t a secon d  order d iffe r e n tia l operator aixd a  g en era lized  R odrigues form u la ， b o tb  
in  term s o f  th e  D irao operator, ex is t . T h ey  are；

* tlie  g en era lized  H erm it©  p o ly n o m ia ls , defined  as
H M {oc)P f. = ^ 2 ( » i ) ) - e x p ( - r 2/ 2 ) P ^  

w h ich  are orth ogon al o n  th e  com plete spaoe for the w e ig h t  fu n o tio n  exp  
an d

* th e  g en e r a liz e d  G egen b au er p o ly n o m ia ls , d e fin ed  as
-  ( l - r 2) - ^ ( l - r 2) ^ W

w h ich  are o r th ogon a l o n  th e  u n it  b a ll  for th e  w eig h t fu n o tio n  ( l —r 2) a i f  « > —16
• _• '
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