THE MINIMAX DIRECTION FOR THE DIRECT PRODUCT OF A CONVEX CONE WITH ITS APPLICATION TO TESTING PROBLEMS**

SHI NINGZHONG (史宁中)*

Abstract

Let \mathcal{C} be a closed convex cone in \mathbb{A}^* and let \mathcal{C}^p be the *p*-th direct product of \mathcal{C} . This paper gives some results of the minimax direction with respect to \mathcal{C}^p and an inner product based on $\Gamma \otimes \Lambda$, where Γ is a $k \times k$ diagonal matrix with positive diagonal elements, Λ is a $p \times p$ positive definite matrix and $\Gamma \otimes \Lambda$ is the Kronecker product of Γ and Λ . It is also shown that the results may be applied to test the homogeneity of knormal mean vectors where the mean vectors are restricted by a given partial order.

§1. Introduction

Let O be a convex cone in \mathbb{R}^k and let O^p be the p-th direct product of O. In \mathbb{R}^{pk} , a vector is denoted by a $p \times k$ matrix $a = (a_1, \dots, a_k)$, say, and an inner product and a norm are defined respectively by

$$(a, b)_{r\otimes A} = \sum_{j=1}^{k} a'_j \Lambda^{-1} b_j / r_j$$
 and $||a||_{r\otimes A} = \sqrt{(a, a)_{r\otimes A}},$

where Γ is a $k \times k$ diagonal matrix with positive diagonal elements r_1, \dots, r_k, Λ is a $p \times p$ positive definite matrix and $\Gamma \otimes \Lambda$ is the Kronecker product of Γ and Λ .

A $p \times k$ matrix a_0 is said to be of the minimax direction with respect to (wrt) (C^p , $\Gamma \otimes A$) if it satisfies

$$\inf_{e \in O^{p}} \Delta_{\Gamma \otimes A}(a_{0}, b) = \sup_{a \in R^{p^{*}}} \inf_{b \in O^{p}} \Delta_{\Gamma \otimes A}(a, b),$$
(1)

where

$$\Delta_{\Gamma\otimes A}(a, b) = \frac{(a, b)_{\Gamma\otimes A}}{\|a\|_{F\otimes A} \|b\|_{F\otimes A}}$$

for non-zero vectors a and b. The minimax direction is said to be unique if there is another matrix a_{00} satisfying (1) which implies $\Delta_{r\otimes A}(a_0, a_{00}) = 1$.

When p=1, some properties of the minimax direction were given in [7] and its applications can be found in [6], [2], [7] and [4]. This paper considers the general case. A main theorem is given in section 2 and its applications to statistical testing problems are discussed in section 3.

Manuscript received March 10, 1990.

^{*} Department of Mathematics, Northeast Normal University, Changchun, Jilin, China.

^{**} Projects Supported by the National Natural Science Foundation of China.

§ 2. Main Result

According to p=1 and k=1, we also define inner products and other related terminologies for Γ and Λ similarly as in Section 1.

Theorem 1. Assume that C is closed. If there exists a k-dimensional vector z such that $\Delta_{\Gamma}(c, z) > 0$ for all $c \in O$, then the minimax direction wrt $(O^p, \Gamma \otimes \Lambda)$ uniquely exists. Let α and β be of minimax directions wrt (Q, Λ) and (C, Γ) respectively, where Q is the positive orthant in \mathbb{R}^p . Then $a_0 = \alpha \beta'$ is of the minimax direction wrt $(O^p, \Gamma \otimes \Lambda)$.

In order to prove the above theorem, we need some lemmas.

Let D be a polyhedral convex cone in R^s . Then D can be denoted as

 $D = \{d \in R^{s}; d = \lambda_{1}d_{1} + \cdots + \lambda_{m}d_{m}, \lambda_{i} \ge 0, i = 1, \cdots, m\}$

for some d'_4 s, i. e., D is the smallest convex cone containing d_1, \dots, d_m , and the d'_4 s are said to be edge vectors of D.

For a given $s \times s$ positive definite matrix Σ , we define $(.,.)_s$ and Δ_s similarly as in Section 1. Since $\Delta_s(d, h)$ may be considered as the cosine of the angle between d and h in R^s wrt the inner product $(.,.)_s$, it is not difficult to show that **a** vector d_0 is of minimax direction wrt (D, Σ) if and only if it satisfies

$$\min_{\substack{\leqslant i \leqslant m}} \Delta_{\Sigma}(d_0, \ d_i) = \sup_{\substack{d \in \mathbb{R}^s}} \min_{\substack{1 \leqslant i \leqslant m}} \Delta_{\Sigma}(d, \ d_i).$$
(2)

From discussions of section 8 in [1], we can prove the following lemma.

Lemma 1. If there is a vector h such that $\Delta_{\Sigma}(h, d_i) > 0$, $i = 1, \dots, m$, then the minimax direction $wrt(D, \Sigma)$ uniquely exists. A vector d_0 is of the minimax direction if and only if there exists a subset M' of $M = \{1, \dots, m\}$ such that $d_0 = \sum_{j \in M'} \lambda_j d_j$ with $\lambda_j > 0$ and for $j \in M'$

 $\Delta_{\Sigma}(d_0, d_j) = \min_{1 \leq i \leq m} \Delta_{\Sigma}(d_0, d_i).$

If D is a closed and convex cone, there exists an increasing sequence $\{D_n\}$ of polyhedral convex cones, convergent to D with $D_n \subset D$ for all n.

Lemma 2. Assume that there is a vector h such that $\Delta_{\Sigma}(h, d) > 0$ for all $d \in D$. Let β_n be of minimax direction wit (D_n, Σ) . Then the limit β of $\{\beta_n\}$ exists and β is of minimax direction wrt (D, Σ) .

Proof Without loss of generality, we assume that norms of β_n are all one. Since the surface of unit ball is compact, for any subsequence of $\{\beta_n\}$, there is a sub-subsequence $\{\beta_t\}$ and a vector β such that $\beta_t \rightarrow \beta$ as $t \rightarrow \infty$. Note that, by Lemma 1, $\beta_t \in D_t$ and hence $\beta_t \in D$ and $\beta \in D$.

Let $f_t(x) = \min_{d \in D_t} \Delta_{\Sigma}(x, d)$ and $f(x) = \min_{d \in D} \Delta_{\Sigma}(x, d)$. The closedness of D_t implies that the intersection of D_t and the surface of unit ball is compact and hence $f_t(x)$

is continuous. Similarly, f(x) is also a continuous function. As $\{D_t\}$ converges to $D, f_t(x) \rightarrow f(x)$ as $t \rightarrow \infty$ for any $x \in \mathbb{R}^s$ and $\{f_t\}$ is a uniformly convergent sequence on D.

If β is not of minimax direction wrt (D, Σ) , there is a vector β^* satisfying $f(\beta^*) > f(\beta)$. Let $s = f(\beta^*) - f(\beta)$. Since $\beta_t \in D$ and $\beta \in D$ there is large enough t such that

$$f_t(\beta^*)-f(\beta^*)>-\frac{s}{3}$$
 and $f(\beta)-f_t(\beta_t)>-\frac{s}{3}$.

Then we have

$$f_t(\beta^*) - f_t(\beta_t) > \frac{s}{3} > 0$$

and this is contrary to the definition of β_t .

To complete the proof, we need to show the uniqueness of the minimax direction wrt (D, Σ) . In the fact, if β_1 and β_2 both are of minimax direction wrt (D, Σ) and $\Delta_{\Sigma}(\beta_1, \beta_2) < 1$, i. e., β_1 and β_2 are not on the same half-line, the condition implies $f(\beta_1) = f(\beta_2) > 0$. Let $\beta = \lambda_1 \beta_1 + \lambda_2 \beta_2$ with $\lambda_i > 0$. By the inequation

$$\|\beta\|_{\Sigma} < \lambda_1 \|\beta_1\|_{\Sigma} + \lambda_2 \|\beta_2\|_{\Sigma},$$

we have $f(\beta) > f(\beta_1)$. This is contrary to the definition of β_1 .

Proof of Theorem 1 At first, we prove the case that O is a polyhedral convex cone. Let the edge vectors of O be g_1, \dots, g_m . Note that the positive orthant Q is a polyhedral convex cone in \mathbb{R}^p and has p edge vectors q_1, \dots, q_p , say, where q_i is the vector whose *i*-th element is one and all others are zero. It is easy to check that a $p \times k$ matrix e is an edge vector of O^p if and only if exactly one row vector of e is an edge vector of O and all others are k-dimensional zero vectors. Thus O^p has $p \times m$ edge vectors. Denote them by $e_{\mu\nu}$, $\mu = 1, \dots, p$ and $\nu = 1, \dots, m$, then which may be expressed by

 $e_{\mu\nu} = q_{\mu}g'_{\nu}, \ \mu = 1, \ \cdots, \ p; \ \nu = 1, \ \cdots, \ m.$

Since α is of minimax direction wrt (Q, Λ) , from Lemma 1, there is a subset P' of $P = \{1, \dots, p\}$ such that $\alpha = \sum \lambda_i q_i$ with $\lambda_i > 0$ for $i \in P'$. Similarly, there is a subset M' of $M = \{1, \dots, m\}$ and $\beta = \sum \tau_j g_j$ with $\tau_j > 0$ for $j \in M'$. Then

$$\begin{aligned} \alpha_0 = \alpha \beta' &= \sum_{i \in I'} \sum_{j \in M'} (\lambda_i \tau_j) q_i g'_j \\ &= \sum_{i \in P'} \sum_{j \in M'} (\lambda_i \tau_j) e_{ij}, \end{aligned}$$

where $\lambda_i \tau_j > 0$. As Q is the positive orthant, $\Delta_A(\alpha, q_i) > 0$ for $i \in P$. The conditions imply $\Delta_{\Gamma}(\beta, q_i) > 0$ for $j \in M$. Then we have

$$\begin{aligned} \Delta_{\Gamma\otimes A}(a_0, \, \theta_{ij}) &= \Delta_{\Gamma}(\alpha, \, q_i) \, \Delta_A(\beta, \, g_j) \\ &= \min_{1 \leq \mu \leq p} \Delta_{\Gamma}(\alpha, \, q_{\mu}) \min_{1 \leq \nu \leq m} \Delta_A(\beta, \, g_{\nu}) \\ &= \min_{(\mu,\nu)} \Delta_{\Gamma}(\alpha, \, q_{\mu}) \, \Delta_A(\beta, \, g_{\nu}) \\ &= \min_{(\mu,\nu)} \Delta_{\Gamma\otimes A}(a_0, \, \theta_{\mu\nu}) \end{aligned}$$

for $i \in P'$ and $j \in M'$, in which the second equation follows Lemma 1, and, by Lemma 1 also, a_0 is of minimax direction wrt $(O^p, \Gamma \otimes A)$.

Now let O be a closed and convex cone and let $\{O_n\}$ be an increasing sequence of polyhedral convex cones, convergent to O with $O_n \subset O$ for all n. Then $\{O_n^p\}$ is an increasing sequence and converges to O^p . Let β_n and β be of minimax directions wrt (O_n, Γ) and (O, Γ) respectively. Then $a_{0n} = \alpha \beta'_n$ is of minimax direction wrt $(O_n^p, \Gamma \otimes \Lambda)$. Following Lemma 2, we see that $a_0 = \alpha \beta'$ is of minimax direction wrt $(O^p, \Gamma \otimes \Lambda)$.

§3 Applications

Let $\overline{X}_{j} = (\overline{x}_{1j}, \dots, \overline{x}_{pj})$ be the mean of a sample with size n_{j} from a *p*-variant normal population $N_{\nu}(\theta_{j}, \Lambda), j=1, \dots, k$, where Λ is known. We consider testing the homogeneity of the normal means $H_{0}: \theta_{1} = \dots = \theta_{k}$ against $H_{1} - H_{0}$, where H_{1} denotes the hypothesis that the normal means are restricted by a partial order.

At first, we consider that for an umbrella order, that is,

$$H_1: \theta_1 \leqslant \cdots \leqslant \theta_h \geqslant \cdots \geqslant \theta_k, \tag{3}$$

where h is known and $\theta_{\mu} \leq \theta_{\nu}$ means that all the elements of $\theta_{\nu} - \theta_{\mu}$ are nonnegative. If h = k, the ordering is said to be simple, the likelihood ratio (LR) test was described by Barlow et al. (1972) for p=1 and generalized by Sasabuchi et al. (1983) to $p \geq 2$. But, in the case $p \geq 2$, they only gave an iterative algorithm computing the maximum likelihood estimate and we need simulation to obtain the upper α point (cf. Nomakuchi and Shi, 1988). When $h \in \{1, \dots, k\}$, the LR test was considered by Shi (1988) for p=1 and it is very difficult to generalize his results to $p \geq 2$.

In this section, by using results of Section 2, we will give a simple test statistic which was said to be the optimal contrast test by Robertson et al. (1988) and the most stringent somewhere most powerful test by Schaafsma and Smid (1966).

A contrast test, corresponding to a vector a, would reject H_0 for large values of

$$U_{a} = (a, \overline{X})_{\Gamma \otimes A} = \sum_{j=1}^{k} n_{j} a'_{j} \Lambda^{-1} \overline{X}_{j}, \qquad (4)$$

where $\overline{X} = (\overline{X}_1, \dots, \overline{X}_k)'$, Γ is a $k \times k$ diagonal matrix with diagonal elements $1/n_1$, \dots , $1/n_k$ and $a = (a_1, \dots, a_k)'$, with $\sum_j n_j a_j = 0$ is said to be the contrast coefficient. An optimal contrast test is, chosen an optimal contrast coefficient a_0 , say, to maximize its minimum power over all $a \in H_1 - H_0$. I et

 $O = \{ c \in \mathbb{R}^k; c_1 \leq \cdots \leq c_h \geq \cdots \geq c_k, \sum_i n_j c_j = 0 \}.$

Following the discussions in Chapter 4 of [4], we can prove that U_{a} is an optimal

83

contrast test if and only if a_0 is of minimax direction wrt $(O^p, T \otimes A)$.

It is clear that the convex cone O satisfies the conditions of Theorem 1 and we need to derive α and β , the minimax directions wrt (Q, A) and (O, Γ) , and the second respectively.

Bemark. Let $\delta = (\delta_1, \dots, \delta_p)'$, where δ_i is the square root of the *i*-th diagonal element of Λ^{-1} . For a number $p', 1 \leq p' \leq p$, we partition δ into two parts: $\delta = (\delta'_{(1)}, \delta' \leq p' \leq p)$ $\delta'_{(2)}$)', where $\delta_{(1)}$ consists of the first p' components of δ , and partition the matrix Acorrespondingly:

$$\Lambda = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ \Lambda_{21} & \Lambda_{22} \end{pmatrix}.$$

From Lemma 1, there is a subset of P' of P, without loss of generality, $P' = \{1, \dots, p'\}$ p', such that

$$(\Lambda_{11} - \Lambda_{12}\Lambda_{22}^{-1}\Lambda_{21})\delta_{(1)} > 0,$$

$$(5)$$

$$\Lambda_{22}^{-1}\Lambda_{21}\delta_{(1)} + \delta_{(2)} \leq 0,$$

$$(6)$$

$$\Lambda_{22}\Lambda_{21}O_{(1)}+O_{(2)}\leqslant 0,$$

and the minimax direction wrt (Q, Λ) is

$$\alpha = (\alpha'_{(1)}, 0')$$

where 0 is the p-p' dimensional zero vector and

$$\alpha_{(1)} = (\Lambda_{11} - \Lambda_{12} \Lambda_{22}^{-1} \Lambda_{21}) \delta_{(1)}.$$

If $\Lambda\delta > 0$, condition (6) is vacuous and $\alpha = \Lambda\delta$. For details see [8].

Now we derive β , the minimax direction wrt (\mathcal{O}, Γ) . The convex cone \mathcal{O} has k-1 edge vectors $g_i = (g_{i1}, \dots, g_{ik})', i=1, \dots, k-1$, in which $g_{ij}, j=1, \dots, k$, are given as follows:

 $g_{ij} = -1/s_i$ for $j \leq i$, when i < h, $= \frac{1}{(s_k - s_i)} \qquad \text{for } j > i;$ $i = \frac{1}{s_i} \qquad \text{for } j \le i,$ $q_{ij} = 1/s_i$ when $i \ge h$, $= -1/(s_k - s_i) \qquad \text{for } j > i,$

where $s_i = n_1 + \dots + n_i$. If $\beta = (\beta_1, \dots, \beta_i)'$ can be written as a linear combination of the edge vectors of the form

$$\beta = \lambda_1 g_1 + \dots + \lambda_{k-1} g_{k-1}$$

with $\lambda_i > 0$, $i = 1, \dots, k-1$, and satisfies

$$\sum_{j} n_{j}\beta_{j}g_{1j} = \sum_{j} n_{j}\beta_{j}g_{2j} = \cdots = \sum_{j} n_{j}\beta_{j}g_{k-1j}, \qquad (7)$$

then, by Lemma 1, the vector β is of the minimax direction wrt (O, Γ) . We solve the above equation and obtain the following

Lemma 3. The elements of the minimax direction β are

$$\beta_{j} = \{\sqrt{s_{j-1}(s_{k}-s_{j-1})} - \sqrt{s_{j}(s_{k}-s_{j})}\}/n_{j}, \quad j < h, \\ = \{\sqrt{s_{h-1}(s_{k}-s_{h-1})} + \sqrt{s_{h}(s_{k}-s_{h})}\}/n_{h}, \quad j=h, \\ = \{\sqrt{s_{j}(s_{k}-s_{j})} - \sqrt{s_{j-1}(s_{k}-s_{j-1})}\}/n_{j}, \quad j > h.$$

Letting $a_0 = \alpha \beta'$, we see that the optimal contrast test rejects H_0 for large

values of

$$U_{a_0} = (a_0, \overline{X})_{\Gamma \otimes A} = \sum_{j=1}^k \beta_j n_j \alpha' \Lambda^{-1} \overline{X}_j.$$
(8)

Theorem 2. The optimal contrast test for testing H_0 against the umbrella order (3) is of the form (8), where α is of minimax direction wrt (Q, Λ) given in Remark and β is of minimax direction wrt (C, Γ) given in Lemma 3. Under H_0 , the test is normally distributed with mean zero and variance $\|\alpha\beta'\|_{\Gamma\otimes A}$.

Another useful partial ordering is the simple tree order

$$H_1: \theta_1 \leqslant \theta_j, \ j=2, \ \cdots, \ k. \tag{9}$$

When p=1, the LR test for testing H_0 against H_1-H_0 was studied by Barlow et al. (1972) and Robertson et al. (1988) and it is also difficult to generalize the results for $p \ge 2$. We, now, derive the optimal contrast test for this testing problem.

Let $C = \{c \in \mathbb{R}^k; c_1 \leq c_j, j = 2, \dots, k, \sum_j n_j c_j = 0\}$. Then C is a closed and convex

cone having k-1 edge vectors

$$g_i = \left(-\frac{1}{n_1}, \dots, -\frac{1}{n_i}, \frac{k-1}{n_{i+1}}, -\frac{1}{n_{i+2}}, \dots, -\frac{1}{n_{i+k}}\right),$$

for $i=1, \dots, k-1$. Because of symmetry, it is easy to check that vector

$$\beta = \left(-\frac{1}{n_1}, \frac{1}{s}, \cdots, \frac{1}{s}\right)',$$
(10)

where $s = n_2 + \cdots$, $+ n_k$, satisfies equation (7) and hence β is of the minimax direction wrt (O, Γ) .

Theorem 3. The optimal contrast test for testing H_0 against the simple order (9) is of the form (8), where α is given in Remark and β is given in (10). Under H_0 , the test is normally distributed with mean zero and variance $\|\alpha\beta'\|_{\Gamma\otimes A}$.

References

- [1] Abelson, R. P. & Tukey, J. W., Efficient utilization of nonnumerical information in quantitative analysis, Ann. Math. Statist., 34(1963), 1347-1369.
- [2] Barlow, R. E., Bartholomew, D. J., Bremner, J. M. & Brunk, H. D., Statistical Inference under Order Restrictions, New York Wiley 1972.
- [3] Nomakuchi, K. & Shi, N.-Z., A test for multiple isotonic regression problem, Biometrika, 75(1988), 181-184.
- [4] Robertson, T., Wright, F. T. & Dykstra, R. L., Order Restricted Statistical Inference, New York: Wiley, 1988.
- [5] Sasabuchi, S., Inutsuka, M. & Kulatunga, D. D. S., A multivariate version of isotonic regression, Biometrika, 70(1983), 466-472.
- [6] Schaafsma, W. & Smid, L. J., Most stringent somewhere most powerful tests against alternatives. restricted by a number of linear inequalities, Ann. Math. Statist., 37(1966), 1161-1172.
- [7] Shi, N.Z., Testing a normal mean vector against the alternative determined by a convex cone, Mem. Fac. Sci. Kyushu Univ., 41(1987), 133-145.
- [8] Shi, N. Z. & Kudo, A., The most stringent somewhere most powerful one sided test of the multivariant normal mean, Mem. Fac. Sci. Kyushu Univ., 41(1987), 37-44.
- [9] Shi, N.Z., A test of homogeneity for umbrella alternatives and tables of the level probabilities, Commun. Statist., A17(1988), 657-670.