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THE MINIMAX DIRECTION FOR THE DIRECT
PRODUCT OF A CONVEX CONE WITH ITS
'APPLICATION TO TESTING PROBLEMS™ -

SHI NINGZHONG({ T c]z)* .

Abstract

Let € be a closed convex cone in L* and let C? be the p-th direct probduct of C. This
paper gives some results of the minimax dirsstion with respect to C” and an inner
product based on I'®d, where I' is a kx% diagonal matrix with positive diagonal
elements, 4 is a p X p positive definite matrix and I'®4 is the Kronecker product of I
and 4. It is also shown that the results may be applied to test the homogeneity of %

_normal mean vectors where the mean vectors are restricted by a given partial order.

§ 1. Introduction

Let O be a convex cone in B* and let 0? be the p-thh direot product of 0. In
R#*, a veotor is denoted by a pxF% matrix a=(ay, '+, @), say, and an inner
product and a norm are defined respestively by |

(a, b)rm-—z @ 47%;/r; and  |alrea=~/(a, @)res

where T isa kbxk dla,gonal matrix with positive diagonal elements ry, +-, ffk, 4 i
a pX p positive definite matrix and I"®4 is the Kronecker product of I" and 4.
A pxFk matrix a, is said to be of the minimax direotion with respect to (Wr\,)
(02, I'RA) if it satisfies
.mf Arga(a@o, b) = gup ir mf Arga(a, b), o (D
where

on(6, b) = (@ Droa
4rea(a, b) lalreslblrea

for non-zero veotors ¢ and 5. The minimax direction is said to be unique if there
is another matrix g satisfying (1) which implies dpga(ay, @) =1.

When p=1, some properties of the minimax direction were given in [7] and
its appiications can be found in [6], [2], [7] and [4]. This paper considers the
general case. A main theorem is given in section 2 and its a.ppiioations to statistical
testing problems are discussed in section 3.
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§ 2. ‘Main Result

- Aoccording to p=1 and k= 1 we also define inner products’ and other related
terminologies for I" and 4 similarly as in Section 1. '

‘Theorem 1. Assume that O is closed. If there evists a Io—d@mmswml ‘weotor &
such that 4Ar(e, 2)>0 for all ¢€0, then the minimar direction wri (0?, I'RA)
uniquely exists. Let &« and B be of miéntmaw directions wrt (Q, 4) and (o, F)
respectively, where Q is the positive orthant n R?, Then ao=aB’ Gs of the minimaz
directéon wri (O, 1"@./1) : o

In order to prove the above themem we need some lemmas o

Let D be 8 polyhedral convex eone in R°. Then D can be denoted as

D={d€ R d=Ayds+ " +Apbp, Mi=0; 6=1; -+, m} ‘
for some d,‘s, i, e., D is-the smallest-convex cone containing dy, -+, dy, and the die :
are said to be edge vectms of D ) |

For a given sXs posn;lve deﬁmte matnx E we define (.., )y and 4y similarly -
as in Seotion 1. Since 45(d, 7) may be cons:.deled as the cosine of the angle between
d and h in B® wrt the inner- product (., .)s, it is not difficult to show that a
veotor dy is of minimax dileetion Wr_t (D, 2) if andonly if it satisfies . _

min Az(dy, di)=sup min 45(d, d;). (@

: 1<i<m dER? 1<isin

From disoussions of section’ 8 in [1], we can prove the following lemma,.

Lemma 1. If there is a vector h such that ds(h, &)>0; §=1, <, m, then the
mindmaw direction wri(D, 3) uniquely evists. A veotor dy s of the mimiman direction
%f and only &f thea"e exists @ subset M " of M= {1 .o m} su_eh that d°=,§,, A,a?, with
A>0 wnd fm’gEM’ L
Az (do, d,) = mm 45 (dy, d¢) | |

I f Disa closed cmd conves cone, there emsts “am efncreasmg seguence {D,,} of
polyhedral conves cones, com)efrgern,f, to D fw@th D,=D for all n.

Lemma 2. Assume that there is @ vector b such that 45(h, d)>0 for- all d€D.
Let B, be of minimawz direction Wit (D,,, S) Tken the limit B 0 f {,8,,} exists and B s
of mintmaw direction-wri (D ). - o oo g

Proof Without loss of generality, we assume that ‘norms -of ,8,, are all .one.
Sinoe the surface of unit ball is compact, for any subsequence of {,8,,}, there is a
sub-subsequence {,Bt} and a vector B-such that 8> as i—>co. Note that, by Lemma
1, B:€D; and henee B:€D and ,BED ' |

Let f:(2) —mm 45 (w, d) and f (a:) mm As(w, d). The closedness of Dt Jmphes

that the inter Seetlon of D; and the sur fa.ce of unit ball is compaot and hence fi(@)
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is continuous. Similarly, f(z) is also a continuous function. As {D,} converges to
D, fi(w) = f(#) as ¢ —> oo for any z€R* and {f} is a uniformly convergent\

sequence on D,

If B is not of minimax direction wrt (D, X), there is a vector B* satisfying

F(B)>f(B). Let s=f(B*) —f(B). Since B, €D and B& D there is large enough ¢

such that .
ft(B)—f(B*)>—-§- and f(8)~/u(B)>~3.

Theﬁ\ we have
| FABY ~F4(B) >-§- >0

and this is contrary to the definition of 8.

To complete the proof, we need to show the uniqueness of the minimax direction.
wrt (D, ¥). In the faot, if B4 and B, both are of minimax direstion wrt (D, 3)
and 4;(By, B2) <1, i. e., By and ' B; are not on the same half-line, the condition.
implies f(By) =F(82)>0. Lot B=A18;+AsB8, with A;>0. By the inequation

18l 2<A1]Bifls+Ae| Bal s,

we have F(B)>F(B1). This is contrary to the dehnltlon of B

- Proof of Theorem 1 At first, we prove the case that O is a’ polyhedral convex

. cone, Let the edge veotors of O be g, -+, gn. Note that the positive orthant Q is a

polyhedral convex cone in R? and has p edge veotors gy, +++, ¢, Sy, Where ¢; is the.
veotor whose 4-th element is one and all others ave zero. It is easy to check that a.
p Xk matrix ¢ is an edge vector of 0? if and only if exaotly one row veotor of e is an
edge veotor of O and all others are h-dimensional zero Veotors. Thus O? has jox m
edge veotors. Denote them by ¢,,, w=1, ---, p and »=1, -+, m, then which may be
expressed by . A o ' C '
v = Qud) /"’{=17 vy Py o=l 0y m

Since « is of minimax direction wrt(Q, 4); from Lemma 1, there is a subset.
P’ of P={1, «+-, p} such that =3 Mg, with A; >O for 4 € P, Similarly, thele is a

subset M’ of M ={1, -, m} and B=23 v,9; with #;>0 for j€ M'. Then

| | wo=05,3 P (Mﬂi>gsgf

$E€F’ jEM

=2 2 (Mivpey,

T $EP JEM'

where A7;>0. As Q is the positive orthant, 4,(«, ¢;) >0 for ¢€P. The conditions

imply 4r(B, 9;) >0 for j€ M. Then we have
AP®A<@0, 9%5) AP(“, q;) 44(B, 95)
= mln AI‘(“? I‘) mln 44(B, 9v)

lsu<p

==m1r.t 4r (o Qu)AA(._@, 9)

=min Ap@a (w()y 31.4#)
Gepv)”
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for @EP’ and 3€M ’,.in which the second. equatlon follows Lemma 1, and by
Lemma 1 also, @, is of minimax direction wrt(0?, I'®4). -

Now let @ be a closed and convex cone and let {0,} be an increasing sequence

of polyhedral convex cones, convergent to O with 0,0 for all n. Then {0Z} is an

- inoreasing sequence and converges to 0%, Let 8, and 8 be of minimax direetions

wrt (O,, I') and (O, I') respeotively. Then ao,=af3} is of minimax diljeotio_n wrt

(0%, T'®A). Following Lemma 2 ‘We See that ap=0o3’ is of minimax direction wrt

(0?, T'RA).

§$3. Applications

Let X;= (51}, +++, Zy) be the mean of a sample with size n; from a p-variant
normal population N,(8;, A), j=1, «, k, where 4 is known. We consider testing
‘the homogeneity of the normal means Hy: A0;= ve=0y against Hy~— Hy, where H,
denotes the hypothesis that the normal means are restricted by a partial order.

At first, we oonsider that for an umbrella order, that is, |

Hyi01< <00y, : 3) -
~where A is known and 6,<6, means that all the elements of #,—6, are non- -
negative. If h=#, the ordering is said to be simple, .the likelihood ratio (LR) test
was desoribed by Barlow et al. (1972) for p=1and generalized by Sasabuchi et al.
(1983) to p=>2. But in the case p>2, they only gave an iterative algorithm
‘computing the maximum likeliliood estimate and we need simulation to obtain the
upper « point (of. Nomakuchi and- Shi, 1988). When b€ {1 *, b}, the LR test was
considered by Shi (1988) for p=1and it is very dlﬁioult to genelahze his results
to p=2. ‘

In thlS seotion, by using results of Seotlon 2, we will glve a simple test statistio
whleh was said to be the optimal contrast test by Robertson et al..(1988) and the
most stringent somewhere most powerful test by Schaafsma and Smid (1966).

A contrast test, corresponding to a vector @, would reject Hy for large values of

. — % . E= "

= (w’ X>'?’®A = :’__2‘1 ""ia,jA—IXh (4)
where X = (X4, +-», X3)', I' isa k% b diagonal matrix with diagonal elements 1/n,,
ooy 1/my, and a=(ay, ++, @;)’, with Z n;a;="0 is said to be the oontrast ooefﬁoiént. ‘An

optimal contrast test is, chosen an optlmal eontrast coeﬁiolent o, Say, to maximize
its minimum power over all a€ Hy — H,.
O== {06 Rk, OLIS e G ‘>0]g, 2 114C4 = O}.
s 1404

Following the,dﬁseuésions in Ohapter 4 of [4], we can prove that Ug is an optimal
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vontrast test if and only if g, is of minimax direetionWrt(O” T@A)' L
It is olear that the convex oone O satisfies:the conditions of Theorem 1. and "We
need to ‘derive o a.nd ,8, the minimax dueetlons Wlt (@, - A4) and (O I,
respeotlvely ' IR . B ECTIL NS TR
- Remark, Lot 8= (3, -; 8,); where 3, is the square root of the i-th diagonal |
elemsnt of A%, For a number ¢, 1<<p'<p, we partition d into two parts: d=(8,
33!, where'84, consists of the first 4’ components of 3, and partition the matrix .4

All A12
A=< )
'A21 'A22

From Lemma 1, there is a subset of P’ of P, “without loss of generality, P'= {1,
P }, such that

|c<\)1'r95ponding1y:

'(_/111 1112/1'2‘;/151)5(1)>0 o ()
‘ /122 A213(1)+8(2)<0 'l o )
and the mlnlma,x dneotlon wrt (Q, /1) is .
' o= (alyy, 0)’,
whe e 0 is the p—9p’ dlmensmna,l zero veotor and
. Gty = (/111 /1121122 A21>5 1)
If A5>0, condition (8) is vacuous and a=43. For details see [8].
- Now we derlve B, the minimax direstion wrt (0, I'). The oonvex cone O “has
% -1 edge veotors gi=(gia, -+, ga)’s b=1, v+, k=1, in which gy, j= 1, o :, kb, are
given as follows: ’ ' - R

Cwhen 4<h,  gy=—1/s  for j<§,
O =Yees) g
when §=h,  gij=1/s: for j<d,

. = -1/ (s-s)  for j>4,

“where s;=ny+++e+ny, If B= (}31, ces, ,8.)’ ca,n be Wntten as a lmear oombmatlon of

the edge veotors of the form ' ‘ o
B o ,3 ?~191+ +7\:k-19'k-

with 4,>0, §=1, +--, k-1, and satisfies

2 1 B3ig15= 2 iBiGas=++e = g]niﬁigk-il’ | ¢P)

then, by Lemma 1, the veotor B is of the minimax direction wrt (0, I'). We solve
the above equation and obtain the following .
5 Lemma 3. The elements of the mrm@ maw direciion B are
={~/ si_1(ss— —8j-1) — '\/si<slo"‘sa)}/nh Jj<h,
= {\/ -1 (85— 8p1) +'\/Sh<sk - $1) }/ "y .7 =h,
= {\/S,(Sk '§5) — \/ sf—l(sk s:i—l)}/'"’h .7>k
"Letting ap=aB’, we see that the optlma,l contrast test rejeots H, for larg go
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values of |
Uu= (“0» X)I‘®A = 2 IBIW“’A lfi- : (8)

Theoxre m 2. * The optimal contrast test for. testfmg H, against the umbrella order

(3) s of the form (8), where « is of mm@mam dérection wrt'(Q, A) given én Remark

and B is of miniman direction wré (0, I’) g'wen in Lemma 8. Under Hy, the test is

normally distributed with mean zéro and vardance |« |rea.

Another useful partial ordering is the simple tree order

H.:0,<0;, j=2, -, k. - (9)

When p==1, the LR test for testing H, against Hy— H, was studied by Barlow et

al. (1972) and Robertson et al. (1988) and it is also diffioult to generalize the

results for p=>2. We, now, derive the optimal coritiast test forr this testmg problem,

" Let O={cE€ R¥ 01<ey, j=2, +, k, 32 ny0;= 0%, '1‘he_n 0 is a, o_lose[i and convex

cone having & -1 edge vectors o _
1
_gi=(“‘}“; °*%y 1 k 1 - 1 y %y T )r

R (% 'n.w’ Mgy o Ti+2 Niw /-
for =1, ++:, &~ 1. Because of symmetry, it is.easy to check that veotor
1 1 1y
B"'("‘";b‘;y' —S_’ E) E‘) ’ . (10)

where s=mnp+-+, -+m, satisfies equation (7) and hence B is of the minimax
- direction wrt (0, I'). . o :

Theorem 3, The optq,mwl contfmst test fm‘ testing H wgwmst the s'ample o'rdefr*. :
(9) s of the form (8), where o Qs_ géven én Remark and B és given in (10), Under H,,
ths test és normally déistributed with mean zero and variance |af' |res
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