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HAUSDORFF DIMENSION OF THE
DOUBLE POENT SET OF THE
| WESTWATER PROCESS™

| ZHOU XIANYIN GEX N

Abstract
Let X={X,}icp,n be the Westwater process which is the coordinate process under
3-dimensional polymer maasure »(g) eonstructed by J. Westwater. In this paper, the
- "Hausdorff dimension problem for the double point set of X is investigated. As a result,
it iy proved that
dim Dy=1, v(g)-a.e.,
where Dy={sc R?: X,=X,=% for some s<t& [0, 11} is the double point set of X

§ 1 . In_,troduction

Lot X = {X ,},Em '1, denote the Westwater prooess which is the coordinate process
" under -dlmensmna,l polymer moasure »(g) consiruoted by M. 7J. Westwater In
[12], we ha vo proved tha.t X has intersestion losal tims and its path has doub]e
points. In the same paper, it is also obbamed that ths Hausdorff dlmensmn of the
get of double times for X is 1/2. o 0 '

Let w be the Wiener measure in 3-dimensions, and B= {B;:}t»0 bo the Wiener
process in 8-dimensions. It is well-known that the path of B has double points,
and the Hausdorff dimension of the set of double points denoted by D, is 1 (see [2],
[10] .or [8]). Recently, Le Qall™ greatly improved their results. He investigated -
the I—Ia,uqclolﬁ' measure of D, and proved that the correct measure funotion of D, is

k() = :v(logllogml )3, @>0, _

Wo now denote the set of double points of X by D,. Then a natural ploblem is
to compate the Hausdorfl dlmensmn of D, and, further, to give the correot measure -
functlon of D,. In the present papal, we. dlsauss the above ploblem 'I‘he main
result is as follows. C ' |

Theorem 1.1 With probwbv,lq;ty 1 towv( g)

dlm .Dg-‘—
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where dim D, denotes the Hausdorff dimension of Dz—-{we R3|3s<t€ [0, 1], o=X;=

X} | .
‘We prove this theorem in two steps. We estima,i_;e' first the lower bound for
dim D, and then estimats the upper bound. Using Kanfman's idea™ and
imitating an argument in {3, § 5], we can geb the lower ‘bound in Sestion 3. To
get the upper bound, we apply the method used in [10] in Seotion 4. In Section2,
we make some preparations for the proof in the last two sections.

§ 2. Preliminary

In the present section, we state and prove several lemmas which are used in
the next sections. For Brownian motion B, [10, Lemma 3] plays an 1mportant
role in estlma.tmg ‘the upper bound for dim D,. To estimate the upper bound for
dim D,, we need a result similar to [10, Lemma 3] for Westwater process X. In
fact, Lemma 2.3 can help us to get the similar result. In [3, § 5] Geman, Horowitz
and Rosan apply a Kaufman 8 lemma in [4] to get the lower bound foir dlm D.. To
oondlude the desirable result, we need also a similar lemma for Westwater process
X. And Lemma 2.4, although the result is perhaps known, helps us to realize the
goal. Since [9, Corollary 2.1.4] is used for many t1mes, for convenience, we state
it as follows. '

Lemma 2.1. G‘wen @ probwb@l@ty space (.Q 37 P), let X (o, w) be contmuous far
all wEQ, and X: [0, 1]xQ2—> R bea BoyX F —mewsumbls funotwn If there ewmist
aumbers >0, r>0 and O <oco such that

EPIX(t) X (s) ['<0|t —s|i*e, 0<s, 1<,
-tlum for any v € (2, 2+a), and A>0,

P( sup AXD =X > 8. > (8)) <O/

O<a<i<l | et |4

where B=(v—~2)/r and

101 _
=J J It-—s[“"f"’ dsdt.
F01 Westwa.ter process X, we have the followmg property
Lemma 2.2. There emfbsts @ number O(n, 8) <oo for each n>1 and sE&. (O 1e
suoh that -

Eiilg

) Ev(a)' Xt_X [ ”<O('ny 6) l “'T—vs'l ”/2_;‘“.) v tl’se [Ovr 1].
" Now we prove the next two lemmas,
Lemma 2.3. There exists a constant 0(s) <oo for each & E (0, 1/2) suck tkwt]

v(g)( U {Ix (%2""')l<2—(1/2-e)m})go(s)z—(i/z-ns)m B

Jor any m>1,
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. Proof ~ Note [9, Lemma 8], then R
w( 1), (|B(zm) | <z ¥-m) )<o g-a/a-om,
Accmdlng to [6, Theomm 2.1] (01 see [11]), we have
'v@KLJﬂX@WN<2W“Wﬂ

=5 "{f m « u 1mwz "')|<2'ﬂ/”mn

1/8 18
M{fm }Ell: (I (‘ ’LZ_‘(IB("Z"")I<2°“/"""')))
=1 :

<O(5)pma-/2-om=)

A <O(s)2"1/2"2“’" .
where p= 21/ 2"“"°>1 and 8 is chosen to be s. Moreovel the deﬁnltlon of { f,,.},,m is
given in [6], and f,,, satisfies that there ex1sts a 0’(8) <oo f01 ea.oh p>1 suoh tha.t

. B,fY 1"’<01"’(3) (pi"’)"‘ Vm>1

ThlS completes our ploof N : .
Lemma. 2 4. For 3—dr1,mens%onwl Woener proaess B= (Bt>o<t<¢m g f F denotos tka

g0t of B(- ) for 'wh/wh ﬁwm emsts an N such that for cmy interval I of lepgth 2""
m>=N, }.2“1 (I) n [o, 1] b8 oontamed in the umon of Zess thzm m? @ntam)als 0 f the fm'm
[Ia4‘?", (k+1)4‘”‘] 0<k<4’" then L S PR ‘
u(F)=1. T 1)

Pfroof The followmg argument is quite similar to that 1n, [4} In fact f01 one

_ dlmensmna.l Wlener plooess W (W,)o,sk,,, we ha.Ve L -
]Jm.sup A AN tllogl/ls tl —1 a.e.

Henee, for three dimensional Wiener: pTosess B=(By)oitosr. _
lim sup |B;—B, |/~ 2It s| lloglt sfI</8: o 0w

It follows that for any ]o==0 1, ses, 471, ~
sup | B,— BW.| <J‘64'-m" m‘“log i< «/12\/ 2 m 2—m ,

t€ [k4-m, (76+1)4 kid |
Therefore, it is sufficient to pr ove that ',
(@ =1 (2.2}
where G denotes the set of B(.) for ‘which there exists an N - such that for any
interval I’ of length 5~/ m2" "’, m>N, BIHn [O 1] oontaing less than m” pomts
of the form k4™" for b= O 1, o, 4™, - -
‘ To prove (2. 2), We now conoeln the number of m—tuples 0<k1< <k,,,<4"'
for whmh :

| | B(lgdm) ~ ~B(k; 4-'") I <10Jm 2 i<i<m, - - (2.8)
Obviously, the probability which appears suoh m~tuple is tha,t . " |
< (Om%) ™ (k- 701)‘“” (b —bma) 2 Coomer
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where 0, € (0, oo) is a ¢onstant, The sum of this probability for all m-tuple is
<O2(0m*/2)™1 4n< (0 mm)"’
where O, 0'3€ (0,00) are constants, .
Now, we denote by ¢y, the event that (2 3) oocours. Then, the number of
m~tuples is A
| ,: A,,,_—_ S In

T
0<ky<inr <km<4"' o "wm:

By Ohebyshev mequahty, we have
M(Am>m2(03m1/2) "’) <m™?
Thus, Borel—Oantelh Iemma 1mphes that almost SUlely there ex1sts an N such
that _ ’
: A,,,<m2(03m1’2)'” Vm>N
-~ However, if there exists an interval I’ of Iength 5\/ m 2"" such tha.t B(Ia4‘”‘) E
I’ for s values of %, then T . .

. ( s ) v<m2(03'}n17 2) "_’.

< L et Nem

Tt is not difficult to see that s<m?. Olearly, s is ‘exactly Wha,t we wanted,
The proof is ﬁmshed :

§ 3 Lower Bound for dlm .Dz

In the present seotion, we begin. Wlth“a leinina vhich is used again in the néxt
section, . ' o |
Lemma 3.1. There evist finite pDSbf/b'vB oconstants Oy and Oy for any given M>1
and & € (0, 1/2) such that T

v(g)( Sup | X~ X, !>O2n'1/2+") <01n"” Vn>1 o (3 1)

Proof Aotually, (3.1) is obtained 1mmed1a.te1y from Lemma 2.1 and Lemma.
2.2, More precisely, in Lemma 2.1, we choose r=2M/s, A=n¥. By Lemma 2.2, we
can shoose a=2M/(2s) —1—~s. Thus, v=M/s — M—lj2,v‘,8v== (1—8)/2, and

the left hand side of (3.1) ~ : :

Lol 'Xt Xal | 3/2 | Tt ot T
* . <v(g)(|t—s,<n‘l -—--‘———-'-———>O ) ‘. o
| ' lXt ~X | j 7S a/zx :
<2)(',q>(0<t~<s<1 lt 8[6 /- V- 2 (4% ) ) _. :
<OAn™* o

where we pick O,= stz 2 and 01—0A

Remark R.1. Sinces€ (0, 1/2)and’ M>1.are albltra.ly, the "conistant Op in
3.1 ma,y be ohosen to be 1. Moreovel from the akove proof we easily see tha.t
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v(y)( sup IX (8) — X (s) | = Im™3/%*)

<01Lt" M Va1
for any L>1 and M>1, where 0:€ (0, o) does not &epend on L and ",

Having Lemma 2.4 and Lemma 3. 1, we can prove the next lemma,

Lemma 3.2. For the Westwater process X=(Xt)octcs and any given & (0
1/2), if F denotes the set of X (=) for whick there ewists am N such that for any
interval of length 2-™°, m>N, X1(I) N [0, 1] és contained én the union of less tkam
25" jntervals of the form [k4™™, (k+1)4™], 0<k<4™, then

| v (F)=1. SERNCE )
Proof Actually, Lemma 8.1 tells us that for any given M>1 :
w(g)( sup X=X (5)|>270M) <027, Ym>1

where the constant 0 € (0, 00). According to this property, we easuly see that for
proving (8.2) it is sufficient to prove that o
() (@) =1, (3.3
where & denotes the set of X (.)for which there exists an N such that for any interval
I’ of length 2.2 m>N, X*(I")N [0, 1] contains less than 2%™ points of the
form #4~", for k=0, 1, -.-, 4™,
To show (3.3), we also concern the number of rm—tuples o<k <- <Iom<4 for

which ' o _ :
| X (Bigad™) — X (Bd™™) | <40270-00m, (3.4)

Meanwhile, let Cy, 1, denote the event that (3.4) occours, and
' 4,= Iy,
0k < <HmG4™
where 3y ' .
U= Cuut

Thus [6 Theorem 2.1] tells us tha,t
| 2(g) (Ap=>22m(0:2™)™)
= Eu{ fzmI(Am>2'°m(012m) "')}
<E, f2: B L apoan™ 0rzomymy
<Op" [ (47,=2%"(0.2°") ], | S (8.B)
where p>1 and 4, is got from'Z,, only when C,x,, is replaced by C%.4., Which
denotes the event (3 4) a8 soon as X is changed into B. Since

: {ﬂ Oh, k‘u}<(012"")"'(7‘72 by) /2. (70 - m_l)-s/a
‘bya 81m11a.r argument in Lemma 2.4, we have
“(Am>223m(0 zsm)m) <2—28m.

Thus, choosing suitable 3€ (0, 1/2) and p>-1, we get_ that i
' ~ the right hand side of (3.5)<02™°",
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From the discussion in Lemma 2.4, we know that the above estimation leads-us to

the desirable result (8.3). ' '

- The proof is completed.

Now we prove that ,

| dim Dy>1, »(g)-ae. . | (3.6)

Otherwise, we can assume that - o o

- dim Dy=a<l—s,. . (3.7)

~ Then for any 8>0 and >0, we can find arbitrarily large n, and a sequence of
dises B; of raddi<<2-%~*" guch that D2CU B;.and

2 (radius B,) *<S8.

Define n, by 9-G-om pad us B,<<2-@-8)n=1) and let B‘ be the dlSO oentered at B,
with radius 2" @redne=1), Mea.nwhﬂe, we let
Mo—‘{(ty s) IXt“‘ X}y

and o
X(‘J'I) tz) = (XtuXt.)y

then
Mon [0, 11*=J XA (BH N [0, 1]°

. . 2
| {the union of 2¢™ cubes of the form:l'[l[kfi’"‘“, (By-+1)4mn¥1]3,

Let I;, 1<j<<2%™, denote these cubes. By (3.7) we have for lafgé 7y
S [6(Ly) ]i/z'—s./zgz Qsnid~(3/2~01/2)ne=1)
Wi .4 . . B - .
== 4A/2-61/2 2 2—(1—9:-48)1'4

<4YEn/2 2 g (L=sens <§_} (radius B;) 1-%.
<o
where we choose &, & € (0, 1/2) such that
—~4s<< so

This Jmphes dim (M o [O 1] 2)<1 1.

However, [12, Theorem 5.2 ] tells us that

dim (MoN [0, 112 >1, »(¢)-a.e.

This contradiotion shows that we must have (8.6).

§4. Upper Bound for dim Ds
We begin with a lemma, : : ‘ '
Lemma 4.1. There evists o constwnt 0 (8) = (0 oo) for any 8€ (0, 1/2), such
that

(X @ <2"<1/2‘°)’" fm‘ -S0mhe tE [1/2 1]}<0(8)2‘(1/2”’” (4.1
. 'f0'l' any m=>1, . ,
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Pfroof Aotua.lly, the left hand side of (4. 1) :
=v(g)< U {1 X ®) | <279/2~mf}or some t€ 327", (3+1)27"] )
However, Lemma 3.1 tells us that it is sufficient to prove that
v L), 1 X @) | <2.2-0va-0m }<a<e>2‘<1/2-2°>"°

for any m>=1, This is just the conelusmn of Lemma 2.8,
The proof is finished.
Remark 4. 1. Similarly, we have for any fixed s€ 1(0,‘ 1/2),
»() {| X (¢) — X (s) | <2-%2-* for some ¢ € [1/2, 1]}
<O(s, 8)2 /2=2m \Im =1,
Proof Wlthout loss of the genera.hty, We assume that (this is reasonable

because of Lemma 8. 1) s$= @ .27™ for some $=0, 1, 2’”‘1 Obsmvmg the proof of
 Lemma 2.3 and Lemma 4.1, we See that it 1s sufﬁment to show

am=-1

”( lEJu {lB (32"”)—36@2‘"‘)|<2 2"(1/2—6)7)1})
<O, q,)g (1/2-8)m(d— », - 4.2)
Singe AN Ve
o [s—~d27m| <2°™,

|y2 '"-q,2 ’"[>O’(s)>0 ]

for any j=2""1, .. 9'”"1 Noting thls ploper’uy, We geﬁ (4 2) immediately from

[10, Lemma 8]. :
Aotually, from:the above proof we also see that for -any fixed s&€(0,1) and

v({| X () = X (s)| <229 for some te (s—!—so,l]} S
<O(s, 8o, 8)2~ W22 \m>1. - (4.8)
Remark 4.2. It is not dlfﬁoult to get the following from y(4.8)
v(D{| X () ~X(8)| <m~**; for:some $€ (s+¢,, 11} -
<O0(s, 8, s)m“‘i/ 2=3), Ym=1,

where s€ (0, 1) is any fixed point, and s & (0 1 ) _

"We are now in a position to estimate the upper bound of dim.D, Let

_ ,S”(s,t )= {X(u, w): s<u<t}

for any s, ¢€ [0, 1] and s<¢, and,
Qu()= 20, 1/ &) NL(1/2 1, 0.

| ‘We first prove that.for almost surely ®€Q -

dim Qy(0)<1. - (4.4
~ .. Split up the interval [0; 1/4] into m equal pieces by the time points
L=1+6/(4m) (=0,1, -, m).
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The maximum displacem;ant of X(#) —X (%) in 4<t<#;;1 will be of the order less
than m~@/%+*) for any s € (0, 1/2). More preoisely, if
Yim=m™/%" sup |X(¢) "X(ti) ly

te<tatis
then Yy g, 4=0, 1, -, m—1, are random variables and by Remark 2.1
(Y > L}<OL¥m™ - =
for sufficient large M>1. Just as in [10, § 5], we deﬁne a disorete random variable
Pi.m a8 follows, : » - ' ’
if Y, w<l, put p;m=m (1/2“’" :
if 2S<Y¢.m§23+1; put Pivm= (1-+2s+1)¢/t’§1/273),'s.f~* 0, '15 ., i
Now we consider the points of & (0, 1/4, ®) which are approached within
m~%/=*) by the piece £ (1/2, 1, w). Qlearly, if we cover this set of near—m~@/2-%)
- returns then we will certainly have covered Qs(w). If any point :of Z(4, fis1, ®)
is to be a point of near —m~%2-) return, then the piecé £ (1/2, 1, ») must at least
enter the sphere S,,,, with center X (#;) and radius p;, . By Remark 4.2 we know
that the proba ility p;,m of a return 8. m in the 1ntelval [1/2, 1] satisfies
Pun<O p,m*m
Set R |
& m(w) =0 if in [1/2, 1] no reéturn occurs; =
vl, n(®) = 2p, m(w) if the return ocours,

ln(w) = 2 (., (w)]”"

for any fixed 8¢ (0 1/2). Then .the random variable I,(w) is the sum of the
1+38— th powers of the diameters of the spheres §;,,, which are re-entered at least -
one times in the intervals congidered. '

Obviously, by Remark 2.1.. . - -

" B (G52 <Byp[2p0m] ¥ , | A

<O I ] ot - 51 (o (1+2s)m"1/2"”)
o [(1420)m~@/2-o)]1ts, (1+23)m“‘1/2““’~m

| <O {tn V248 em” + 3} 04 (1+27) Fm . [(1+2")m“‘1/2’”]2+"}°m

<03m—1—(6/6—8?/9) Vm>1 - :
where we pick e= 8/ 9. Fma,lly,
B [Z,,,(co)] = 2 By [d, m(w)]“"<0 m-O/0-8/9)

It is-easy. to see that there is almost surely a ﬁnlte 1ea1 number .M (w) such that for

a subsequence m;, Mgy +>0 ' - R e

T @<M@), =L (45
On: the other hand,-if’ % T
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g’":—.—ogﬁni Pivmy
noting the definition of p,,, we have from Lemma 31
" v(9) (gm=01/2) <m-Om™, Vmz=1
for some constant 0, & (0, o0), where M>1 is a large enough constant and 8,>0 ig
any fixed constant. Then the Borel-Oantelli ‘l'emma implies that only finitely
many of the events {¢,=>8:/2} oeccur, so we may -assume that all the covering
spheres have diameter less than 8. Therefore (4.5) leads to
dim @,(w)<1-39.
Since 8 € (0, 1/2) is arbitrary, (4.4) is correct.-
By the same argument as before, we can show
dim Q§?(w) <1, v(g) —a.e.,
where s<#, and s, $€ (0, 1), and
QP (@) =2(0, s, ») ﬂﬂ(t 1, w)
Thus, 1t 1s not difficult to get
dim Q¥ (@) <1, v(g)-a e.

where A
QP () ={o=X (s,0) = X (t, ) for some s, ¢€ [0, 1] with[s —¢| >5}.

Obviously, QY™ (w)1D; as nToo Smce X (¢, w) is continuous with respect to

t€ [0, 1], we easily see
diam (Qé“'”(w), Dz\Qé””“’(w))>0 Vn>1
[1, Lemma 1.4] helps us to obtain
dim D,<1; v(g)-—a. e.
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