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HAUSDORFF DIMENSION OF THE 
DOUBLE POINT SET OF THE '

WESTWATER PROCESS""

Zhou X ian y in  (周先银) *

Abstract
Let X = {X j}ie(：〇(13 be the Westwater process which is the coordinate process under 

3-dimensional polymer measure v{g) constructed by J . Westwater. In this paper, th9 
Hausdorff dimension problem for the double point set of X is mrestigated. As a result, 
it is proved that

dim v(^)-a.ev
where £>2=：{a?SJS3： X ^ X 8=x  for some s<^S[0; 1]} is the double point set of X

§1. Introduction

Let X  — {^ } *e c 〇.i3 denote the Westwater proaess which is the coordinate process
under 8-dimensioaal polyrnsr maasare v{g) ooasfccuotei by M. J .  Westwater, In

' .• •*

[12], w© have proved that X  has interSQotiioa l〇3al titnia and its path lias double
v ■ • > > ： ' ' ' '

points. In. the samo paper, it is also obbained that th.3 Hausdorff dimension of the
_ V

get of double times for X  is 1/2. 、

Let jm be the Wiener measure in 3-dimensioriLS, aud be the Wiener
p ：-〇oe?s in  3-dimensions. It is well-kaowu that the path of B  has double points, 
and the Hausdorff dimension of the set of double points denoted by D2 is 1 (see [2 ], 
[10] ox [8 ]). Recently, Le GallC73 greatly improved their results. H© investigated 
ihe Hausdorff measure of D2 arid proved that the oorreot measure funotion of is

h2((c) =  x (log I logo?I) 2, a?>0.
We now denote tlid set ordoublQ points of Z  by 刀心 Then a natural problem is 

to compute the Hausdorif dimansioa of D2 and, further, to give iho oorreot measure 
function of D2- In  the present papar, we disouss the above problem. The main 
result as follows.

Theorem  1.1 WUft probaUU^r I  to v(g) • ’
dim D2= l

. . . . . .
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where dim D2 denotes the Hausdorff dimension of ^ 3| [〇? 1] ? cG^Xt^

Za}. '、，

We prove this theorem in  two steps» We estimate first the lower bound for 
dim D2, and then estitiiate the upp扯  bound。 Using Kaufman’s i<JeaC43 and 
imitating an argument in  [3, § 5 ] ， we can get the lower bound in Seotion 3. To 
get the upper "bound, we apply the method used in  [10] in Section 4〇 In  8eotion2? 
w© make some preparations for the proof in the last two sections.

§ 2. Preliminary

In the present section, w© state and prove several lemmas which are used in
the next sections. For JBrownian motion J5, [10, Lemma 3] play^ an important

. . , . .  • • • • • •

role in estimating the upper bound for dim jD2* To estimate the uppei* bound for 
dim J32, we need a result sim ilar to [10, Lemma 3] fov Westwater pi*ooess X . In  
fact, Lemma 2 .3  oan help us to get the sim ilar result. In [3, § 5] , Geman, Horowitz 
and Rosen apply a Kaufm an^ lemma in  [4] to get the lower bound fox" dim To 
oonolud© tli© deisii-abl© i*esult, we need also a sim ilar lemma for Westwatex* process 
X 〇 And Lemma 2.4, although the result is perhaps known, helps us to realize the 
goal* Siaoe [9, Corollary 2 ,1 .4] is used for many times, for oouvenienoe, state 
it  as follows。

Lem m a % t〇 Given a probability space (Q, P )y lei 〇>) be continuous fo r  
all wQQ} and X% [0, 1] x -> .B3 be a ^  ^ -m easw aih  funetion. I f  there eccisi 
numbers a > 0 , r > 〇  and 0 < 〇 〇  suoh that

JS p |X 〇) - X ( s ) i r< a | i » s I 1+rt, 〇< s } t < l f • 
then for any pQ. (2, 2 + a ) , and >,>0,

心 L  令 擎 ) 娜
where ^  — (y ~  2) / r  and

^ ° | o j o  d s d t，

F 01* "Westwater process X , we have the following property^3.
Lem ina：2.2. There exists a number 0(n , s )<〇〇  for eaph n > l  and (〇» 1) s 

suoh that
X t- X #| *»<〇 («, s ) \ t - s \n/2- ,  V t,sG  [〇, 1].

Now we prove the next two lemmas.
Lem m a 3.3. , There exists a constant O (s) <〇〇 fo r each s 6  C〇> 1/2) suoh that]
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fo r any m > l,



i@ OHIN. ANN, OF MATH. Vol. 13 Ser, B

Proof 'Note [9, Lemma 3], then

/ * ( _U x I <2-<^2-8)w> ) < 0 32- a / 2 -8)M〇
* >

Acoording to [6, Theorem 2.1] (or see [11]), we have2»»

J{|B(i2-*n)|<2̂ V8"c,m» .:.:¾
{J5«2-w»)U2"<V,*e,m»)

^ 〇 (S)pm2~(1/2~a)m(1~a>

■ where pi=21/28+48> l > and S is ohosen to be s. Moreovex*, the definition of 1? ；
• ' • * .  - . . . .  .  •_ • •  .*

given in  [6]， and satisfies that tl^ere existg a ¢7(5) <〇〇  foi* each ]〇> l  suoh that
^ d< 〇1/5(8 )(p ^ )-  V m >l. ： ； . ；' \ ；

, •.> - . •. ... . . . - , •. '； ■

This completes our proof,
- •  • "  '  -  " • '  .  • . .  .  . - V_ 1 • • » • • • .  - \ •.  .  • .

L6m m a 2.4. For S-dimensional Wiener proofs B  ^  (5 f)0<t<eo, i f  F  denotes th& 
set of J8(*) for wfdch there exists an N  such that for any inter ml I  of length 2 "wr 
m ^ N j H [Qj 1] oontamed in the UTdfm of less thm m2 wtervah of} the form

1 * K F ) - 1 . .......................... : : ■ (2 .1》

- Proof The following argument is quite similar to that iu  . [4]. In  faot, for one 
dimensional Wiener process W =  we have ., ,.,

lira sup \ WS—Wt | / V21s- i| lo g l/Js ~ t \  ==1, a.e。
8— •.> ! , ! s'

Hence, for three dimensional Wiener,process B^= (Bt)〇ki<'〇〇ŷ
lim sup [J5 f~5s I/ V  2 | i - s | ' I lo g l^ -V ff<V  3 。 . , ,  ^ts-*0

It follows that for.anyi?«0j 1, 4 ^ - 1 , ， … .—
sup |5 *~5 ft4-m| < n/ 64"*771 m lo g4 < V l2 N /2  w2"*m, . a.o.

Therefore, it is sufl&oient to prpv© that
(2#2>

• . ,  . . . . . .

可here 6? denotes tlie set of B (» )  for whlcli there exists an iV*s such that for any
interval V  of length 5 V ^  2"m, m > N 7 H contains less than points
of the form for ^ -0 ,1 ,

To prove (2 :2 ) ， we now oonoern tlie number pf 饥 -tuples 0 < ^ < …< ^ » < 4 *  
for which

：，；! ： |J3(ftj+14-M) - 5 ( M ~ ^ i < l 〇V w 2 - M, • (2 .3 )

Obviously, the probability which appears suoh m-tuple Is that

< ( 〇w ，n  …( n ) - 3，a 〇 、
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where (0, 〇〇) is a 6dnstant. The sum of this probaliility for all w-tuple ia
^OsCOtm1̂ - 1 4TO< ( a 3w1/2) m 

vhere 0 2, (〇,〇〇) are oorustants.
Now, we denote by Cs，(,fc(+1 tlie event that (2.3) occurs. Then, the number of 

•m-tuples is

s Lm - iA0ktm*i0<fci<-<fcm<4w>

By Ohebyshev inequality, we have

^Tlius, Borel-Oantelli lemma implies that almost surely there exists an. N  suoh 
ihat

Vm>iVr,
However, if  there exists an interval F  of length 5%/ m 2'® suoh that ^

I / for s values of 1o} then

、 ( S ) k m 2(〇s ^ z) m.- *; ). ? ■： \rrb/ ,  . : . . .  '

I t  is not difficult to jS6e that 5¾¾¾2. Olearly, b ©iaotly what w© wanted.
The proof is finished. --

§ 3. Lower Bound for dim Da

In the present seotlon, we b«egii. with fa leiiima wliioh Is used again in til© iiext 
section.

•； •

Lem m a 3.1. There exist fimte positive constants Ox and 〇2 for any given 
4m& s G (〇> 1/2) suoh that . , . '：

v(g)(  sup \X t - X s\ > 0 2̂ 2+3) < 0 ^ - ^  Vw>l. (3 .1 )

Proof Actually, (3.1) is obtained immediately from.Lemma 2.1 and Lemma 
2.2. More precisely, i a  Lemma 2.1, w：e olxpoae r  ̂ M / s ,  X -nu. By Lemma 2.2, We 
«an choose a = 2 i f / (2 s )  - 1 —s. Thus, v^JM /s -  M + 2 , 8)/2, and

the left hand side of (3.1)

v —2

where w© pick

《 OAn、

Sv
v — 2 ê m} and g x ^ G A

Bemark.2* 1* Sin愧  8€ 富 诚 ai，Mtrary, tlie ooti纳 紐 t <72 in
t(S.l) may be chosen to be 1; Moreoyei% from the above proof w© easily see that



OHIN. ANN. OF MATH. . Tol. 13 Ser. B

p(g)( t sup^ | X (〇  - X ( s )  I > .Ln -y^e)

Vn>l
for any L > 1  and J f > l ,  where (0, 〇〇) does not depend on L  and n〇 

Haying Lemma 2.4 and Lemma 3.1, we oan prove the next lemma.
Lem m a 3.2. For the Westwat&r process any given (0r

1 /2 ), i f  F  denotes the set of X (> )  for wMch there exists an N  such that for  owy 
int&rml o f length m > N , X -^ T ) 〇 [0, 1] is contained in the uvdon o f Uss thrn̂  
22sm intervals o f the form  [M_m, ( ^ + l ) 4 -m] , 0 < ^ < 4 OT, then

v ( g ) ( F ) ^ l .  (3 .2)
Proof Actually, Lemma 3.1 tells us that for any given i l f > l

v (g )(  sup \ X ( t ) - X (s) I > 2 ~ a -a)m) < 0 ^ 2 _afm, V m >lI ¢-81 <4_m
where the constant (〇» ° ° ) *  According to this property^ we easily see that for 
proving (3.2) it  is sufficient to prove that

(3.3)
Tŝ her© & denotes the set of X  (.)foi* which there exists an N  such that for any interval
T  of length 2 .2 "(:t' 8)m, m > N } 〇 [〇, 1] contains less than points of the
form M *m, for ^ =  0, 1, •**,

To show (3 ,3 ) ，we also conoem number of m-tuples 0 < 知 < … for 
which

|X ( ^ +14-Jft)*X (i5?i4"m) I
Meanwhile, let denote the event that (3.4) ooooux-s, and

2  Iv，
where

¢=1
Thus [6, Theorem 2.1] tells us that

(3 .4 )

v ( g ) ( J m> 2 2em(Ox29m) m)

^  f  *»)}

< a dpw[ ^ ( ^ > 2 3s?n( a 12sm) w] 1̂ , (3 .5 )
where p > l  a n d ^  is got from Z m only when is replaced by whiob
denotes tlie ©vent (3.,4) as 日oon as X  is changed into 5 . Since

a Q  〇 ' ^ ] < (〇 i2em) m( h - h ) -8/a-

by a sim ilar argument in Lemma 2.4, we have
A〇CJ.OT> 2 28m(0,128?n)^ )< 2 - 2<，w.

Thus, choosing suitable S €  (0, 1/2) and /〇> l ,  we get that
the right hand side of (3.6)
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From the discussion in Lemma 2.4, we know that the above estimation lead&-us to 
the desirable result (3.3) 〇 

The proof is completed*
Now we prove that

dim D2> 1 } p(g)-^.Q〇 (3 .6 )
Otherwise, we can assume that

dim Z>2= a < l —s〇. (3.7)
Then for any S > 0  and s> 0 , we oan find arbitrarily large and a sequence of 
discs B{ of r a d d i< 2 '(1'"8)n such that D2cz[J  and

S  (radiusi
Define ^  by radius 5 *< 2 -(1-6)(,,<~1>, and let Bt be the disc centered at Bi

- . * ；
with radius Meanwhile, w© let

2̂)
and

then.
M0f] [〇, n [〇, 1 ] 3

i 2
c U  {the union of 243n, cubes of theform：n [^ i4 "n«+1, (^a+l)4*"n,+1J } e

i

Let I i}, l < ^ '< 24sn<, denote these oubes. By (3.7) we have for large nt
S  0 (I<*)]1/2-s*/2< S  24en,4_(V2~Sl/2Xw-1>\,i i

i
< 4i/2-e,/2 2  < 2  (radius Bd1' 9*

i i<8
where we choose 8, SiG (〇> 1/ 2) suoh that

S i—■4s《 8〇.
This implies dim ( J f〇n [〇> 81.

However, [12, Theorem 5.2  ] tells us that
dim ( i f 〇fl [〇> v(g)-a.Qe

This oontradiotion shows that we must have (3,6).

§ 4 • Upper Bound for dim Da

"W© begin with a lexama.
Lemma 4.1. There exists a comia^t ^  (0, 〇〇) for m y  «€ (〇, 1/2), iu6h

that
p (gy {\X (tf\ fo r srne [1/2, l ] } < 0 ( s ) 2 " (:t/28̂

fo r  emy w > l .
(4.1)
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Proof . Actually, the left hand side of (4.1) . . ■ . .

■ flX W I some [i2~^  (¢+1)2-91] .)

However, Lemma 3*1 tells us that it is suffioient to prove that
f 2̂ -1 1 _ . ■‘

U  |Z ( i2 ， ）| < 2 .2 - (1Z2-s)mi < a ( s ) 2 - _ - 23)m
U=2則 J

for any w > l .  This is just the oonolusiou of Lemma 2.3.
The proof is finished.
R em ark 4 . 10 Similarly, we have for any fixed s€  (0, 1/2),

p (g ){\X (t)  — X (s )  I < 2 "(1/2~s)ot for some t G [1/2, 1]}
< 0 ( s } S) 2 ^ 2"2s>my V m >l.

Proof? Withojit loss of the generiality, we assume that (this is reasonable 
because of Lemma 3.1) for some i  —0, 1,, •••, Observing the proof of
Lemma 2.3 and Lemma 4 .1 ， we see i七每 3uffi!〇：Lent to show

/ 2則 \

_y^ { -£ @ 2 -饥) I < 2 .2-(1’2〇 } )

< 0 ( 8 } (4 ,2)
• r ■ ■ . . • . \ } r > . • • • •:

Since : . : i / ! .  ̂ : i ' ...
|s—

w© easily know that ........................ ■ • .

for any j  =  2m_1, **v S"*-1. Noting this property, we get (4.2) immediately from 
[10, Lemma 3 ].

Actually, from： tile above proof we alsij see that for any fixed s g  (0, 1) and 
6〇G (〇，1 —s) ， .::

<G (s, So, s)2-»/2-2«>*,tV m >l. (4 .3)
R em ark  氮  It is not diffioult to get the followiag ft-oia '.(4.3)

v ( g ) { \ X ( t ) - X ( s ) \ <  m ^ 2~s>, for some if €  (s+ s〇r 1 ] } . . . .
< 0 ( s ,  s〇, 8) 971^2 - 2 8 p , 

where sG (〇> 1) is any fixed point, aad  s〇G (〇> l ~ s ) .
We are now in a position to estimate the upper bound of dim.jDa Let

Sf(s, i, w) =  {X (u , w): s < u < t )  
for any s, ¢6 [〇> 1] and s< t ,  an d；

Q2(6 > )- ^ (0 , 1/4, o ) 0 ^ ( 1 /2 ,  i, ¢¢),
We fiyst piw e for almost, surely o> Q.Q -,  ̂ .

dim Q2(6>)<1. (4 .4)
Split up the intei-val [0j 1/4] in；to, .w；equal pieoes by the time points

i i^ l+ i / ( 4 m )  (¢=0, 1, •••, m).
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The maximum displacement of X ( t )  in will be of the order less
than m-(1 2̂+8) for any s €  (0, 1/2). More precisely, if

sup \Z ( t )-X C td  I,

then Y {,m, i = 0 ,  1, •••, m —1, are random variables and by Remark 2.1
p C g H Y ^ L X O L ^ m ^

for suffioient large Just as in [10, § 5], we define a discrete random variable
pilfn as follows. " '

if F <lW< l ,  put
if  2s< y <>m< 2 s+1, put p<)W =  ( l + 2 ŝ ) m - ^ 2~e\  s== 0, %

Now we consider the points of (0, 1/4, a>) whioh are approached -within 
m-<1/-8>by the piece <5f(l/2, 1, &>). Olearly, if we coyer this set of near—w-(1/2-8) 
returns then, we will certainly have covered Qz(〇>). I f  any point of ti+\r 〇>)
;is to be a point of near —m_(1/2_s) return, then the piece 义 (1/2，1，to) must at least 
enter the sphere 8i,m with center X (ti)  and radius pitm. By Eemark 4.2 we know 
that the protalility  pUm of a return 8 {,„, in the interval [1/2, 1] satisfies

Pi,m<〇  Pi,m'ms
Set - ;

^¢^(0 ) =  0 if in  [1/2) 1] no return, occurs;
=2j〇ilOT(co) i f  the retux*n ooours.

4=0

for any fixed (0 ,1 /2 ). Then ..the random variable Zm(o>) is the sum of tlie 
1 + 8  —th powers of the diameters of the spheres S t,m which are re-entered at least 
one times in the intervals considered.

Obviously, by Remark 2.1

S s〇 ' ...• • 、：

* [(1+2 *)饥 -似 2-s)]1+〜 （1 + 2 s) to-似 2-s).ms

< 0 〇{ ^ - (1/2-8)[2+8] >me + S  ^ ( 1 + 2 ^ - ¾ ^ .  >ms
. ：' ； . 8=0 ' T ..

^Osm-1- ^ - 33̂ ,  V m > l '
' . - ■1. ' : 

where we pick 8 =  8/9. Finally,

■ .. .. ；•： , ：

It. is easy to see that there i s  aknost surely a finite real number M{a>) such that for
& subsequence mi, m2} •••

V - .. .  ；： ：； . (4 ：5)
On the other hand, if
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qm̂  max piim,
0«<m—1

noting the definition of p{,m we have from Lemma 3.1
*,Csf) ( s ,m >8i/2)<m *<74m~af, V m >l

for some constant (0, 〇〇), where M > 1  is a large enough constant and S2> 0  ia 
any fixed constant. Then the Borel-Oantelli lemma implies that only finitely 
many of the events {qm> d 1/2 }  Oootu*, 3〇 we may assume that all the oovering 
spheres have diameter less than §2. Therefore (4.5) leads to

dim -  S.
Since 8 ^ (0 , 1/2) is arbitrary, (4.4) is oorreot.

By the same argument as before, we can show
dim Q̂ s,{)(6>)<1, v(g) -a .e ., 

where s < t ,  and s, (0, 1), and
Q^n(〇i)= ^ f(0 , s, <〇) 1, » ) .

Thus, it is not difficult to get
dim Q ^(co )< l, ji(^)-a.e.

where
Q^(c〇) = { x = X ( s ,〇) ) = X ( t ,  〇>) for somes, [〇> 1] with(s — >8} .  

Obviously, Qz/n)(^>)\D2 as %f〇〇. Since X (t , co) is continuous with respeot to 
把 [〇, 1 ] ， we easily see

diam (〇>), D2\Qi1/n+1) (〇>)) > 〇, V «>  1.
[1, Lemma 1.4] helps us to obtain

dim D2< l i  ^(sr)-a.e.
. - .  . .
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