HAUSDORFF DIMENSION OF THE DOUBLE POINT SET OF THE WESTWATER PROCESS**

ZHOU XIANYIN (周先银)*

Abstract

Let $X = \{X_i\}_{i \in [0,1]}$ be the Westwater process which is the coordinate process under 3-dimensional polymer measure $\nu(g)$ constructed by J. Westwater. In this paper, the Hausdorff dimension problem for the double point set of X is investigated. As a result, it is proved that

dim
$$D_2=1$$
, $\nu(g)$ -a.e.,

where $D_2 = \{x \in \mathbb{R}^3: X_t = X_s = x \text{ for some } s < t \in [0, 1]\}$ is the double point set of X

§1. Introduction

Let $X = \{X_t\}_{t \in [0,1]}$ denote the Westwater process which is the coordinate process under 2-dimensional polymer measure $\nu(g)$ constructed by M. J. Westwater. In [12], we have proved that X has intersection local time and its path has double points. In the same paper, it is also obtained that the Hausdorff dimension of the set of double times for X is 1/2.

Let μ be the Wiener measure in 3-dimensions, and $B = \{B_t\}_{t>0}$ be the Wiener process in 3-dimensions. It is well-known that the path of B has double points, and the Hausdorff dimension of the set of double points denoted by \overline{D}_2 is 1 (see [2], [10] or [8]). Recently, Le Gall^[7] greatly improved their results. He investigated the Hausdorff measure of \overline{D}_2 and proved that the correct measure function of \overline{D}_2 is

$$k_2(x) = x(\log |\log x|)^2, x>0.$$

We now denote the set of double points of X by D_2 . Then a natural problem is to compute the Hausdorff dimension of D_2 and, further, to give the correct measure function of D_2 . In the present paper, we discuss the above problem. The main result is as follows.

Theorem 1.1 With probability 1 to $\nu(g)$ dim $D_2=1$

Masuscript received September 12, 1989. Revised May 19, 1990.

^{*} Department of Mathematics, Beijing Normal University, Beijing 100875, China.

^{**} projects supported in part by National Natural Science Fundation of China.

where dim D_2 denotes the Hausdorff dimension of $D_2 = \{x \in \mathbb{R}^3 | \exists s < t \in [0, 1], x = X_t = X_s\}$.

We prove this theorem in two steps. We estimate first the lower bound for dim D_2 , and then estimate the upper bound. Using Kanfman's idea^[4] and imitating an argument in [3, § 5], we can get the lower bound in Section 3. To get the upper bound, we apply the method used in [10] in Section 4. In Section2, we make some preparations for the proof in the last two sections.

§2. Preliminary

In the present section, we state and prove several lemmas which are used in the next sections. For Brownian motion B, [10, Lemma 3] plays an important role in estimating the upper bound for dim \overline{D}_2 . To estimate the upper bound for dim D_2 , we need a result similar to [10, Lemma 3] for Westwater process X. In fact, Lemma 2.3 can help us to get the similar result. In [3, § 5], Geman, Horowitz and Rosen apply a Kaufman's lemma in [4] to get the lower bound for dim \overline{D}_2 . To conclude the desirable result, we need also a similar lemma for Westwater process X. And Lemma 2.4, although the result is perhaps known, helps us to realize the goal. Since [9, Corollary 2.1.4] is used for many times, for convenience, we state it as follows.

Lemma 2.1. Given a probability space (Ω, \mathcal{F}, P) , let $X(\cdot, \omega)$ be continuous for all $w \in \Omega$, and X: $[0, 1] \times \Omega \to R^3$ be a $\mathcal{B}_{[0,1]} \times \mathcal{F}$ -measurable function. If there exist numbers $\alpha > 0$, r > 0 and $C < \infty$ such that

 $E_P|X(t) - X(s)|^r \leq O|t-s|^{1+\alpha}, \quad 0 \leq s, t \leq 1,$

then for any $\nu \in (2, 2+\alpha)$, and $\lambda > 0$,

$$P\left(\sup_{0<\mathfrak{s}<\mathfrak{t}<\mathfrak{l}}\frac{|X(\mathfrak{t})-X(\mathfrak{s})|}{|\mathfrak{t}-\mathfrak{s}|^{\beta}} \ge \frac{8\nu}{\nu-2} (4\lambda)^{1/r}\right) \le CA/\lambda$$

where $\beta = (\nu - 2)/r$ and

$$A = \int_0^1 \int_0^1 |t-s|^{1+\alpha-\nu} \, ds dt.$$

For Westwater process X, we have the following property⁽¹¹⁾.

Lemma 2.2. There exists a number $C(n, s) < \infty$ for each $n \ge 1$ and $s \in (0, 1)$ s such that

$$E_{\nu(g)}|X_t - X_s| \stackrel{n \leq C(n, s)}{|t-s|^{n/2-s}}, \quad \forall t, s \in [0, 1].$$

Now we prove the next two lemmas.

Lemma 2.3. There exists a constant $O(s) < \infty$ for each $s \in (0, 1/2)$ such that

$$\nu(g) \Big(\bigcup_{i=2^{m-1}}^{2^m} \{ |X(i2^{-m})| \leq 2^{-(1/2-s)m} \} \Big) \leq O(s) 2^{-(1/2-2s)n}$$

for any $m \ge 1$.

Proof Note [9, Lemma 3], then

$$u\left(\bigcup_{i=2^{m-1}}^{2^{m}} \{ |B(i2^{-m})| \leq 2^{-(1/2-\varepsilon)m} \} \right) \leq C_{3} 2^{-(1/2-\varepsilon)m},$$

According to [6, Theorem 2.1] (or see [11]), we have

$$\begin{split} \nu(g) & \left(\bigcup_{i=2^{m-1}}^{2^{m}} \left\{ \left| X(i2^{-m}) \right| \leq 2^{-(1/2-s)m} \right\} \right) \\ &= E_{\mu} \left\{ f_{m} I_{\left\{ \bigcup_{i=1}^{3^{m}} 1(|B(i2^{-m})| < 2^{-(1/2-s)m})\right\}} \\ &\leq E_{\mu}^{\delta} \left\{ f_{m}^{1/\delta} \right\} E_{\mu}^{1-\delta} \left(I_{\left\{ \bigcup_{i=1}^{3^{m}} (|B(i2^{-m})| < 2^{-(1/2-s)m})\right\}} \\ &\leq O(\delta) \rho^{m} 2^{-(1/2-s)m(1-\delta)} \\ &\leq O(s) 2^{-(1/2-2s)m} \end{split}$$

where $\rho = 2^{1/2s+\delta s} > 1$, and δ is chosen to be s. Moreover, the definition of $\{f_m\}_{m>1}$ is given in [6], and f_m satisfies that there exists a $C(\delta) < \infty$ for each $\rho > 1$ such that $E_{\mu} f_m^{1/\delta} \leq O^{1/\delta}(\delta) (\rho^{1/\delta})^m$, $\forall m \geq 1$.

This completes our proof.

Lemma 2.4. For 3-dimensional Wiener process $B = (B_t)_{0 < t < \infty}$, if F denotes the set of $B(\cdot)$ for which there exists an N such that for any interval I of length 2^{-m} , $m \ge N$, $B^{-1}(I) \cap [0, 1]$ is contained in the union of less than m^2 intervals of the form $[k4^{-m}, (k+1)4^{-m}], 0 \le k \le 4^m$, then

$$\mu(F) = 1.$$
 (2.1)

Proof The following argument is quite similar to that in [4]. In fact, for one dimensional Wiener process $W = (W_t)_{0 \le t \le \infty}$, we have

 $\limsup_{s \to t \to 0} |W_s - W_t| / \sqrt{2|s - t|\log 1/|s - t|} = 1, \quad \text{a.e.}$

Hence, for three dimensional Wiener, process $B = (B_t)_{0 < t < \infty}$,

$$\limsup_{t-s\to 0} |B_t - B_s| / \sqrt{2|t-s| \log |t-s|} \leq \sqrt{3}.$$

It follows that for any $k=0, 1, \dots, 4^m-1$,

$$\sup_{t \in [k4^{-m}, (k+1)4^{-m}]} |B_t - B_{k4^{-m}}| \leq \sqrt{64^{-m} m \log 4} \leq \sqrt{12\sqrt{2} m 2^{-m}}, \quad \text{a.e.}$$

Therefore, it is sufficient to prove that

arts have t

$$\mu(G) = 1$$
 (2.2)

1. 64 60

2.8 . . .

where G denotes the set of $B(\cdot)$ for which there exists an N such that for any interval I' of length $5\sqrt{m} 2^{-m}$, $m \ge N$, $B^{-1}(I') \cap [0, 1]$ contains less than m^2 points of the form $k4^{-m}$ for $k=0,1, \dots, 4^m$.

To prove (2.2), we now concern the number of *m*-tuples $0 \le k_1 < \cdots < k_m \le 4^m$ for which

$$|B(k_{i+1}4^{-m}) - B(k_i4^{-m})| \le 10\sqrt{m} 2^{-m}, 1 \le i < m.$$
 (2.3)

Obviously, the probability which appears such *m*-tuple is that

 $\leq (C_1 m^{1/2})^{m-1} (k_2 - k_1)^{-8/2} \cdots (k_m - k_{m-1})^{-3/2}$

where $O_1 \in (0, \infty)$ is a constant. The sum of this probability for all *m*-tuple is $\leq O_2(O_1m^{1/2})^{m-1} 4^m \leq (O_3m^{1/2})^m$

where O_2 , $O_3 \in (0,\infty)$ are constants.

Now, we denote by $c_{k_i, k_{i+1}}$ the event that (2.3) occurs. Then, the number of *m*-tuples is

$$A_{m} = \sum_{0 < k_{1} < \cdots < k_{m} < 4^{m}} I_{m-1} \prod_{\substack{i = 1 \\ i = 1}}^{m} c_{ki} \cdot ki^{+}_{i}$$

By Chebyshev inequality, we have

$$\mu(A_m \ge m^2(O_3 m^{1/2})^m) \le m^{-2}$$

Thus, Borel-Cantelli lemma implies that almost surely there exists an N such that

$$A_m < m^2 (O_3 m^{1/2})^m, \quad \forall m \ge N.$$

However, if there exists an interval I' of length $5\sqrt{m} 2^{-m}$ such that $B(k4^{-m}) \in$ I' for s values of k, then 11.15

$$\binom{s}{m} \leqslant m^2 (O_3 m^{1/2})^m$$

It is not difficult to see that $s \leq m^2$. Clearly, s is exactly what we wanted.

The proof is finished,

1...

<u>ر</u> ب

§ 3. Lower Bound for dim D_3

In the present section, we begin with a lemma which is used again in the next section.

Lemma 3.1. There exist finite positive constants O_1 and O_2 for any given $M \ge 1$ and $s \in (0, 1/2)$ such that 4.10

$$\varphi(g)(\sup_{|t-s| \leq n^{-1}} |X_t - X_s| \geq C_2 n^{-1/2+s}) \leq C_1 n^{-M}, \quad \forall n \geq 1.$$
(3.1)

Proof Actually, (3.1) is obtained immediately from Lemma 2.1 and Lemma 2.2. More precisely, in Lemma 2.1, we choose $r=2M/\varepsilon$, $\lambda=n^{M}$. By Lemma 2.2, we can choose $\alpha = 2M/(2s) - 1 - s$. Thus, $\nu = M/s - M + 2$, $\beta = (1-s)/2$, and the left hand side of (3.1)

$$\leq \nu(g) \left(\sup_{\substack{|t-s| \leq n^{-1} \\ |t-s| \leq n^{-1}}} \frac{|X_t - X_s|}{|t-s|^{\beta}} \geq O_{2n^{\beta/2}} \right)$$

$$\leq \nu(g) \left(\sup_{\substack{0 < t < s < 1 \\ |t-s|^{\beta}}} \frac{|X_t - X_s|}{|t-s|^{\beta}} \geq \frac{8\nu}{\nu - 2} (4n^M)^{s/2M} \right)$$

$$\leq OAn^{-M}$$

where we pick $C_2 = \frac{8\nu}{\nu - 2}$ and $C_1 = CA$.

Remark 2.1. Since $s \in (0, 1/2)$ and $M \ge 1$ are arbitrary, the constant \mathcal{O}_2 in (3.1) may be chosen to be 1. Moreover, from the above proof we easily see that

$$\nu(g) (\sup_{|t-s| \le n^{-1}} |X(t) - X(s)| \ge Ln^{-1/2+s})$$

$$\leqslant C_1 L^{-M} n^{-M}, \quad \forall n \ge 1$$

for any $L \ge 1$ and $M \ge 1$, where $O_1 \in (0, \infty)$ does not depend on L and n.

Having Lemma 2.4 and Lemma 3.1, we can prove the next lemma.

Lemma 3.2. For the Westwater process $X = (X_t)_{0 < t < 1}$ and any given $s \in (0, 1/2)$, if \overline{F} denotes the set of $X(\cdot)$ for which there exists an N such that for any interval of length 2^{-m+s} , $m \ge N$, $X^{-1}(I) \cap [0, 1]$ is contained in the union of less than 2^{2sm} intervals of the form $[k4^{-m}, (k+1)4^{-m}], 0 \le k \le 4^m$, then

$$v(g)(\overline{F}) = 1.$$
 (3.2)

Proof Actually, Lemma 3.1 tells us that for any given $M \ge 1$

$$\nu(g)(\sup_{t} |X(t) - X(s)| \ge 2^{-(1-s)m}) \le C_M 2^{-Mm}, \quad \forall m \ge 1$$

where the constant $C_M \in (0, \infty)$. According to this property, we easily see that for proving (3.2) it is sufficient to prove that

$$\nu(g)(\widehat{G}) = 1, \tag{3.3}$$

where \overline{G} denotes the set of X(.) for which there exists an N such that for any interval I' of length $2 \cdot 2^{-(1-s)m}$, $m \ge N$, $X^{-1}(I') \cap [0, 1]$ contains less than 2^{2sm} points of the form $k4^{-m}$, for $k=0, 1, \dots, 4^m$.

To show (3.3), we also concern the number of *m*-tuples $0 \le k_1 \le \cdots \le k_m \le 4^m$ for which

$$|X(k_{i+1}4^{-m}) - X(k_i4^{-m})| \leq 4 \cdot 2^{-(1-s)m}, \qquad (3.4)$$

Meanwhile, let $\vec{C}_{k_0,k_{0+1}}$ denote the event that (3.4) occours, and

$$\overline{A}_m = \sum_{0 < k_1 < \cdots < k_m \leq 4^m} I_{\mathcal{U}},$$

where

$$U = \bigcap_{i=1}^{m-1} \vec{C}_{k_i, k_{i+1}}.$$

Thus [6, Theorem 2.1] tells us that

$$\begin{aligned}
\nu(g) \left(\overline{A}_{m} \ge 2^{2sm} (O_{1} 2^{sm})^{m} \right) \\
&= E_{\mu} \{ f_{2m} I_{(A'_{m} \ge 2^{s^{gm}} (O_{1} 2^{em})^{m})} \} \\
&\leq E_{\mu}^{\delta} f_{2m}^{1/\delta} \cdot E_{\mu}^{1-\delta} I_{(A'_{m} \ge 2^{s^{em}} (O_{1} 2^{em})^{m})} \\
&\leq O_{\delta} \rho^{m} [\mu(A'_{m} \ge 2^{2sm} (O_{1} 2^{sm})^{m}]^{1-\delta}, \end{aligned}$$
(3.5)

where $\rho > 1$ and A'_m is got from \overline{A}_m only when $\overline{C}_{k_i,k_{i+1}}$ is replaced by $C'_{k,k_{i+1}}$, which denotes the event (3,4) as soon as X is changed into B. Since

$$\mu \left\{ \bigcap_{i=1}^{m-1} O'_{k_i, k_{i+1}} \right\} \leq (O_1 2^{sm})^m (k_2 - k_1)^{-3/2} \cdots (k_m - k_{m-1})^{-3/2},$$

by a similar argument in Lemma 2.4, we have

 $\mu(A_m \ge 2^{2sm} (C_1 2^{sm})^m) \le 2^{-2sm}.$

Thus, choosing suitable $\delta \in (0, 1/2)$ and $\rho > 1$, we get that

the right hand side of $(3.5) \leq C2^{-s_m}$.

From the discussion in Lemma 2.4, we know that the above estimation leads us to the desirable result (3.3).

The proof is completed.

Now we prove that

$$\dim D_2 \ge 1, \nu(g) - a.e. \tag{3.6}$$

Otherwise, we can assume that

$$\dim D_2 = \alpha < 1 - \varepsilon_0. \tag{3.7}$$

Then for any $\delta > 0$ and s > 0, we can find arbitrarily large *n*, and a sequence of discs B_i of raddi $\leq 2^{-(1-s)n}$ such that $D_2 \subset \bigcup B_i$ and

 $\sum (\text{radius } B_i)^{1-s_0} \leq \delta.$

Define n_i by $2^{-(1-\epsilon)n_i} \leq \text{radius } B_i \leq 2^{-(1-\epsilon)(n_i-1)}$, and let \overline{B}_i be the disc centered at B_i with radius $2^{-(1-\epsilon)(n_i-1)}$. Meanwhile, we let

$$M_0 = \{(t, s) | X_t = X_s\}$$

and

$$\overline{X}(t_1, t_2) = (X_{t_1}, X_{t_1})$$

then

 $M_0 \cap [0, 1]^2 \subset \bigcup_i \overline{X}^{-1}(B_i^2) \cap [0, 1]^2$

 $\subset \bigcup_{i} \{ \text{the union of } 2^{43n_{i}} \text{ oubes of the form} : \prod_{i=1}^{r} [k_{1}4^{-n_{i}+1}, (k_{1}+1)4^{-n_{i}+1}] \}.$

Let I_{ij} , $1 \le j \le 2^{4s_{n_i}}$, denote these outes. By (3.7) we have for large n_i

$$\sum_{i,j} [\theta(I_{it})]^{1/2-\epsilon_{1}/2} \leq \sum_{i} 2^{4\epsilon_{ni}} 4^{-(1/2-\epsilon_{1}/2)(n_{i}-1)}$$

$$= 4^{1/2-\epsilon_{1}/2} \sum_{i} 2^{-(1-\epsilon_{1}-4\epsilon)n_{i}}$$

$$\leq 4^{1/2-\epsilon_{1}/2} \sum_{i} 2^{-(1-\epsilon_{0})n_{i}} \leq \sum_{i} (\text{radius } B_{i})^{1-\epsilon_{0}}$$

$$\leq \delta$$

where we choose $s, s_1 \in (0, 1/2)$ such that

 $s_1 - 4s \leqslant s_0$.

This implies dim $(M_0 \cap [0, 1]^2) \leq 1 - \varepsilon_1$.

However, [12, Theorem 5.2] tells us that

dim $(M_0 \cap [0, 1]^2) \ge 1, \nu(g)$ -a.e.

This contradiction shows that we must have (3.6).

§ 4. Upper Bound for dim D_2

We begin with a lemma.

Lemma 4.1. There exists a constant $O(\varepsilon) \in (0, \infty)$ for any $\varepsilon \in (0, 1/2)$, such that

 $u(g)\{|X(t)| \leq 2^{-(1/2-s)m} \text{ for some } t \in [1/2, 1]\} \leq O(s)2^{-(1/2s)m}$ (4.1) for any $m \geq 1$.

A.S. A. M. A.

(4.4)

Proof Actually, the left hand side of (4.1)

$$=\nu(g)\Big(\bigcup_{i=2^{m-1}}^{2^m-1}\{|X(t)|\leqslant 2^{-(1/2-\epsilon)m}f\}\text{ or some }t\in[i2^{-m},\ (i+1)2^{-m}].\Big)$$

However, Lemma 3.1 tells us that it is sufficient to prove that

$$\nu(g) \left\{ \bigcup_{i=2^{m-1}}^{2^m-1} |X(i2^{-m})| \leq 2.2^{-(1/2-s)m} \right\} \leq O(s) 2^{-(1/2-2s)m}$$

for any $m \ge 1$. This is just the conclusion of Lemma 2.3.

The proof is finished.

Remark 4.1. Similarly, we have for any fixed
$$s \in (0, 1/2)$$
,
 $\nu(g) \{ |X(t) - X(s)| \leq 2^{-(1/2-s)m} \text{ for some } t \in [1/2, 1] \}$

$$| \Delta(t) - \Delta(s) | | \geq 2^{(1/2 - 2s)m} \text{ for some } t \in [1/2, 1] \}$$
$$\leq C(s, s) 2^{-(1/2 - 2s)m}, \forall m \geq 1.$$

Proof Without loss of the generality, we assume that (this is reasonable because of Lemma 3.1) $s=i\cdot 2^{-m}$ for some $i=0, 1, \dots, 2^{m-1}$. Observing the proof of Lemma 2.3 and Lemma 4.1, we see that it is sufficient to show

$$\begin{split} \iota \bigg(\bigcup_{j=2^{m-1}}^{2^{m-1}} \left\{ \left| B(j2^{-m}) - B(i2^{-m}) \right| \leq 2.2^{-(1/2-s)m} \right\} \bigg) \\ \leq & O(\delta, i) 2^{-(1/2-s)m(1-\delta)}. \end{split}$$

$$(4.2)$$

Since

$$|s-i2^{-m}| < 2^{-m}$$
,

we easily know that

入口 教授 とう

$$|j2^{-m}-i2^{-m}| \ge C'(s) > 0$$

for any $j=2^{m-1}, \dots, 2^{m-1}$. Noting this property, we get (4.2) immediately from [10, Lemma 3].

Actually, from the above proof we also see that for any fixed $s \in (0, 1)$ and $s_0 \in (0, 1-s)$,

$$\nu(g)\{|X(t) - X(s)| \leq 2^{-(1/2-s)m} \text{ for some } t \in (s + \varepsilon_0, 1]\} \\ \leq C(s, s_0, s) 2^{-(1/2-2s)m}, \forall m \ge 1.$$
(4.3)

Remark 4.2. It is not difficult to get the following from (4.3)

$$\nu(g)\{|X(t) - X(s)| \leq m^{-(1/2-s)}, \text{ for some } t \in (s+s_0, 1]\}$$

$$\leq O(\mathbf{s}, \mathbf{\varepsilon}_0, \mathbf{s}) m^{-(1/2-2\varepsilon)}, \forall m \geq 1, \cdots$$

where $s \in (0, 1)$ is any fixed point, and $s_0 \in (0, 1-s)$.

We are now in a position to estimate the upper bound of dim. D_2 Let

$$\mathscr{L}(\mathbf{s}, t, w) = \{X(u, w): s \leq u \leq t\}$$

for any s, $t \in [0, 1]$ and s < t, and

$$Q_2(\omega) = \mathscr{L}(0, 1/4, \omega) \cap \mathscr{L}(1/2, 1, \omega).$$

We first prove that for almost surely $\omega \in \Omega$

$$\dim Q_2(\omega) \leq 1.$$

Split up the interval [0, 1/4] into *m* equal pieces by the time points $t_i = 1 + i/(4m)$ ($i = 0, 1, \dots, m$). The maximum displacement of $X(t) - X(t_i)$ in $t_i \leq t \leq t_{i+1}$ will be of the order less than $m^{-(1/2+s)}$ for any $s \in (0, 1/2)$. More precisely, if

$$Y_{i,m} = m^{-1/2+s} \sup_{t_i < t < t_{i+1}} |X(t) - X(t_i)|,$$

then $Y_{i,m}$, $i=0, 1, \dots, m-1$, are random variables and by Remark 2.1

$$\nu(q)\{Y_{i,m} \geq L\} \leq OL^{-M}m^{-M}$$

for sufficient large $M \ge 1$. Just as in [10, § 5], we define a discrete random variable $\rho_{i,m}$ as follows.

if $Y_{i,m} \leq 1$, put $\rho_{i,m} = m^{-(1/2-s)}$;

if
$$2^{s} < Y_{i,m} \leq 2^{s+1}$$
, put $\rho_{i,m} = (1+2^{s+1})m^{-(1/2-s)}$, $s=0, 1, \cdots$.

Now we consider the points of \mathscr{L} $(0, 1/4, \omega)$ which are approached within $m^{-(1/-s)}$ by the piece $\mathscr{L}(1/2, 1, \omega)$. Clearly, if we cover this set of near $-m^{-(1/2-s)}$ returns then we will certainly have covered $Q_2(\omega)$. If any point of $\mathscr{L}(t_i, t_{i+1}, \omega)$ is to be a point of near $-m^{-(1/2-s)}$ return, then the piece $\mathscr{L}(1/2, 1, \omega)$ must at least enter the sphere $S_{i,m}$ with center $X(t_i)$ and radius $\rho_{i,m}$. By Remark 4.2 we know that the probability $p_{i,m}$ of a return $S_{i,m}$ in the interval [1/2, 1] satisfies

$$p_{i,m} \leq O \rho_{i,m} \cdot m^s$$

Set

 $d_{i,m}(\omega) = 0$ if in [1/2, 1] no return occurs; $d_{i,m}(\omega) = 2\rho_{i,m}(\omega)$ if the return occurs.

$$l_m(\omega) = \sum_{i=0}^{m-1} \left[d_{i,m}(\omega) \right]^{1+\delta}$$

for any fixed $\delta \in (0, 1/2)$. Then the random variable $l_m(\omega)$ is the sum of the $1+\delta-$ th powers of the diameters of the spheres $S_{i,m}$ which are re-entered at least one times in the intervals considered.

Obviously, by Remark 2.1 $E_{\nu(g)}(d^{1+\delta}_{i,m}) \leq E_{\nu(g)}[2\rho_{i,m}]^{1+\delta}$

$$\leq O_{2}\{[m^{-1/2+s}]^{1+\delta}[m^{-1/2+s}] \cdot m^{s} + \sum_{s=0}^{\infty} \nu(g)(\rho_{i,m} = (1+2^{s})m^{-(1/2-s)}), (1+2^{s})m^{-(1/2-s)}, m^{s}$$

$$\leq C_{2}\{m^{-(1/2-s)}[2+\delta] \cdot m^{s} + \sum_{s=0}^{\infty} C_{1}(1+2^{s})^{-M}m^{-M} \cdot [(1+2^{s})m^{-(1/2-s)}]^{2+\delta}\} \cdot m^{s}$$

 $\leq C_3 m^{-1-(\delta/6-\delta^2/9)}, \forall m \geq 1$

where we pick $\varepsilon = \delta/9$. Finally,

$$E_{\nu(q)}[l_m(\omega)] = \sum_{i=0}^{m-1} E_{\nu(q)}[d_{i,m}(\omega)]^{1+\delta} \leq C_3 m^{-(\delta/6-\delta^3/9)}$$

It is easy to see that there is almost surely a finite real number $M(\omega)$ such that for a subsequence m_1, m_2, \dots

$$l_{m_i}(\omega) \leq M(\omega), i=1, 2, \cdots$$

On the other hand, if

$q_m = \max_{0 \le i \le m-1} \rho_{i,m},$

noting the definition of $\rho_{i,m}$ we have from Lemma 3.1

$$\nu(q)(q_m \geq \delta_1/2) \leq m \cdot C_4 m^{-M}, \forall m \geq 1$$

for some constant $O_4 \in (0, \infty)$, where $M \ge 1$ is a large enough constant and $\delta_2 > 0$ is any fixed constant. Then the Borel-Cantelli lemma implies that only finitely many of the events $\{q_m \ge \delta_1/2\}$ occur, so we may assume that all the covering spheres have diameter less than δ_2 . Therefore (4.5) leads to

$$\dim Q_2(\omega) \leqslant 1 - \delta.$$

Since $\delta \in (0, 1/2)$ is arbitrary, (4.4) is correct.

By the same argument as before, we can show

dim $Q_2^{(s,t)}(\omega) \leq 1, \nu(g)$ - a.e.,

where s < t, and $s, t \in (0, 1)$, and

$$Q_2^{(s,t)}(\omega) = \mathscr{L}(0, s, \omega) \cap \mathscr{L}(t, 1, \omega)$$

Thus, it is not difficult to get

dim
$$Q_2^{(\delta)}(\omega) \leq 1$$
, $\nu(g)$ -a.e

where

$$Q_2^{(\delta)}(\omega) = \{x = X(s, \omega) = X(t, \omega) \text{ for some } s, t \in [0, 1] \text{ with } |s - t| \ge \delta\}.$$

Obviously, $Q_2^{(1/n)}(\omega) \uparrow D_2$ as $n \uparrow \infty$. Since $X(t, \omega)$ is continuous with respect to $t \in [0, 1]$, we easily see

diam
$$(Q_2^{(1/n)}(\omega), D_2 \setminus Q_2^{(1/n+1)}(\omega)) > 0, \forall n \ge 1,$$

[1, Lemma 1.4] helps us to obtain

dim
$$D_2 \leqslant 1$$
, $\nu(g)$ -a.e.

References.

- [1] Falconer, K. J., The Geometry of fractal sets, Cambridge Tracts in Math., 85(1985).
- [2] Fristedt, B., An extension of a theorem of S. J. Taylor concerning the multiple points of the symmetric stable process, Z. Wahrsch. Verw. Gebiete, 9(1967) 62-64.
- [3] Geman, D., Horowitz, J., Rosen J., A local time analysis of intersections of Brownian paths in the plane, Ann. Prob. 12(1984), 86-107.
- [4] Kaufman, R., Une propriété métrique du mouvement brownien, C. R. Acad. Sci. Paris Sér. A-B 268, (1969) A 737-A 728.
- [5] Kaufman, R. Brownian motion and dimension of perfect sets, Can. J. Math., 22;3(1970), 674-680.
- [6] Kusuoka, S., The path property of Edward's model for long polymer chains in three dimensions, Res. Notes in Math. Pitman, London, (1985), 48-65.
- [7] Le Gall, J. F., The exact Hausdorff measure of Brownian multiple points, Seminar on Stoch. Proc. Birkhäuser, (1986), 107-137
- [8] Rosen, J., A local time approach to the self-intersections of Brownian paths in space, Comm. Math. Phys. 88(1983), 327-338.
- [9] Stroock, D. W., Varadhan, S. R. S., Multidimensional Diffusion Processes, Springer-Verlag, 1979.
- [10] Taylor, S. J., Multiple points for the sample paths of the symmetric stable process, Z. Wahrsch. Verw. Gebiete, 5(1966), 247-264.

[11] Zhou, X. Y., The Hausdorff dimension of the sample path of the Westwater process Acta Math. Sinice, New Series, 8 (1992), to appear.

[12] Zhou, X. Y., The local time of intersections of the Westwater process Prob. Th. Rel. Fields, to appear.