A NECESSARY AND SUFFICIENT CONDITION THAT BIHOLOMORPHIC MAPPINGS ARE STARLIKE ON A CLASS OF REINHARDT DOMAINS***

Gong Sheng (卖 升)* Wang Shikun (王世坤)**
Yu Qihuang (余其煌)**

Abstract

This paper studies the Reinhardt domains B defined as

$$B = \left\{ Z = (s_1, s_2, \dots, s_n \in C^n \middle| \sum_{i=1}^n |s_i|^{p_i} < 1, 2p_n > p_1 \ge p_2 \ge \dots \ge p_n > 1. \right\}$$

The Schwartz lemma for B is established. Using it the authors give a necessary and su fficient condition that a local biholomorphic mapping from B to C^n is starlike. It is reduced to the Suffridge's theorem in the case $p_1 = p_2 = \cdots = p_n > 1$.

§ 1. Introduction

Some problems and topics related to biholomorphic starlike mappings have been considered in [1-5]. In particular, using the principle of subordination T. J. Suffridge has established the necessary and sufficient condition that a mapping be local biholomorphic and map the bounded domains in C^n

$$D_{p} = \left\{ Z = (z_{1}, z_{2}, \cdots, z_{n}) \in C^{n} \left| \sum_{i=1}^{n} |z_{i}|^{p} < 1, p > 1 \right\} \right\}$$

onto starlike domains in C^n .

In this paper we will deal with the following Reinhardt domains

$$B = \left\{ Z = (z_1, z_2, \cdots z_n) \in C^n \, \left| \, \sum_{i=1}^n |z_i|^{g_i} < 1, \, 2p_n > p_1 \ge p_2 \ge \cdots \ge p_n > 1 \, \right\}.$$

First of all, we establish the Schwartz lemma for B which extent the Schwartz lemma for D_p in $C^{n[6]}$. The Schwartz lemma can be applied to study the biholomorphic starlike mappings instead of the principle of subordination in references [1, 2, 5]. By the way, we have a counterexample to show that if the condition $2p_n > p_1$ was dropped, then the Schwartz lemma would be not true. The remaining part of

Manuscript received March 13, 1990.

^{*} Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026,

^{**} Institute of Applied Mathematics, Academia Sinica, Beijing 100080, China, and a single of the sin

^{***} Projects supported by the National Natural Science Foundation of China.

this paper is devoted to generalizing the Suffridge's theorem for D_p to B by using Schwartz lemma for B.

We introduce some notations in this paper.

Let $u(Z) = \sum_{i=1}^{n} |z_i|^{p_i}$. We denote the distance function from the origin in O^n by $\rho(W)$, the segment rW, $0 \le r \le 1$, joining the origin and the point W in O^n by $\sigma(W)$. The unit disk in O will be denoted by D, the disk central at the origin with radius r by D(r), if central at t by D(t, r).

§ 2. A Schwartz Type Lemma

Theorem 1. Suppose $\phi: B \to B$ is a holomorphic mapping with $\phi(0) = 0$ and $J_{\phi}(0) = \nu I$, $0 < \nu \le 1$, where I is unit matrix. Then

$$u(Z)\geqslant u(\phi(Z))$$

holds for all $Z \in B$.

At frist, we prove a lemma.

For a fixed $Z \in B \setminus \{0\}$, u(Z) < 1, we can choose two positive real numbers r_0 , r and a system of rational numbers $\frac{l_i}{m_i} \le p_i$, l_i and m_i are mutually primitive integers for $i=1, 2, \dots, n$. They satisfy

$$\frac{l_1}{m_1} \geqslant \frac{l_2}{m_2} \geqslant \cdots \geqslant \frac{l_n}{m_n} > 1, \quad 2 \frac{l_n}{m_n} > \frac{l_1}{m_1},$$

$$r_0 |z_i|^{\frac{l_i}{m_i}} \leqslant r |z_i|^{p_i}, u(Z) < r_0 < r < 1,$$
(1)

if $\frac{l_i}{m_i}$ are sufficiently close to p_i for all $i=1, 2, \dots, n$. Fix $\frac{l_i}{m_i}$ and take

$$Y(t) = ZTU, \quad Y^{*}(t) = Z\overline{T}U \tag{2}$$

where

$$T = \operatorname{diag}((r_0 t^L)^{\frac{m_1}{l_1}}, (r_0 t^L)^{\frac{m_2}{l_1}}, \cdots, (r_0 t^L)^{\frac{m_n}{l_n}}),$$

$$U = \operatorname{diag}(u^{-\frac{m_1}{l_1}}(Z), u^{-\frac{m_2}{l_2}}(Z), \cdots, u^{-\frac{m_n}{l_n}}(Z)),$$

$$L = l_1 l_2 \cdots l_n, t \in D(r_1), r_1 = \left(\frac{1}{r}\right)^{\frac{1}{L}}.$$

Since

$$\sum_{i=1}^{n} |y_{i}|^{\frac{l_{i}}{m_{i}}} = r_{0}|t|^{L} \frac{\sum_{i=1}^{u} |z_{i}|^{\frac{l_{i}}{m_{i}}}}{u(Z)} = r|t|^{L} < 1,$$

$$\sum_{i=1}^{n} |y_{i}^{u}|^{\frac{l_{i}}{m_{i}}} = r_{0}|t|^{L} \frac{\sum_{i=1}^{n} |z_{i}|^{\frac{l_{i}}{m_{i}}}}{u(Z)} = r|t|^{L} < 1.$$

Further, because of $\frac{l_i}{m_i} \leq q_i$

$$\sum_{i=1}^{n} |y_{i}|^{p_{i}} \leq \sum_{i=1}^{n} |y_{i}|^{\frac{l_{i}}{m_{i}}} \leq 1,$$

$$\sum_{i=1}^{n} |y_{i}^{*}|^{p_{i}} \leq \sum_{i=1}^{n} |y_{i}^{*}|^{\frac{l_{i}}{m_{i}}} \leq 1.$$
(3)

In light of (3), (2) defines a holomorphic mapping and an antiholomorphic mapping from $D(r_1)$ to B. We have

Lemma 1. Suppose $\phi = (\phi_1, \phi_2, \dots, \phi_n)$ is a holomorphic mapping from B to B with $\phi(0) = 0$. If $1+\mu < r_1$ then the sets

$$N_i = \{t \in D(1+\mu) \mid \phi_i \circ Y(t) = 0 \text{ or } \overline{\phi}_i \circ Y^*(t) = 0\},$$

$$N = \bigcup_{i=1}^n N_i,$$

are all finite. Or $\phi \circ Y(t) \equiv 0$, $\overline{\phi} \circ Y^*(t) \equiv 0$.

Proof Otherwise, there is at least a zero of $\phi_i(ZTU)$, or $\overline{\phi}_i(Z\overline{T}U)$, which is not isolated in $D(r_1)$. It is not possible because of the fact that the combinational mappings $\phi_i \circ Y(t)$ and $\overline{\phi}_i \circ Y^*(t)$ are both holomorphic functions in $D(r_1)$.

Call the finite zeros in N_i by $t_j^{(i)}$, $j=1, 2, \dots, n_i$.

Consider the following n complex functions of one complex variable t

$$\mathscr{A}^{i}(t) = \phi_{i} \frac{l_{i}}{2m_{i}} (ZTU) \overline{\phi_{i}} \frac{l_{i}}{2m_{i}} (Z\overline{T}U),$$

$$0 \leqslant \arg \phi_{i} (ZTU), \ \arg \overline{\phi_{i}} (Z\overline{T}U) \leqslant 2\pi, \ i = 1, 2, \cdots, n.$$

Obviously, $\mathscr{A}^{i}(t)$, $i=1, 2, \dots, n$, are holomorphic function of t in $D(1+\mu)\setminus\{N\}$.

Now let us prove Theorem 1.

For a fixed $Z \in B \setminus \{0\}$, suppose $\mathscr{A}^i(t)$ is not identically vanishing. Take a sufficient small $\delta > 0$ satisfying

$$\delta < \frac{1}{2} \min\{|t_1 - t_2|, \frac{1}{2} \operatorname{dist}(t_3, \partial D(1 + \mu)), \forall t_1, t_2, t_3 \in N \cup \{u^{1/L}(Z)\}.$$
 (4)

Now construct a system of C^{∞} functions $f^{(j)}$ in $D(r_1)$ satisfying the following conditions:

1.
$$f^{(i)}(\eta) \in [0, 1], \text{ if } \eta \in D(r_1),$$

2.
$$f^{(i)}(\eta) = \begin{cases} 0, & \text{if } \eta \in \bigcup_{t \in N_i} D\left(t, \frac{1}{2} \delta\right), \\ 1, & \text{if } \eta \in D(r_1) \setminus \{\bigcup_{t \in N_i} \overline{D(t, \delta)}\}. \end{cases}$$
 (5)

We know the gradients of the functions obey^[7]

$$|\nabla f^{(i)}(\eta)| \leqslant \frac{C_i}{\delta}, \quad i=1, 2, \dots, n,$$
(6)

where C_i 's are some constants only depending on the given Z. Let

$$\mathscr{B}^{(i)}(t) = \frac{1}{2\pi i} \int_{D(1+\mu)} \frac{1}{\eta - t} \cdot \frac{\partial (f^{(i)}(\eta) \mathscr{A}^{i}(\eta))}{\partial \overline{\eta}} d\eta \wedge d\overline{\eta}, \ t \in D(1+\mu). \tag{7}$$

Recalling the definition of $f^{(i)}(\eta)$ and the analytic property of $\mathscr{A}^{i}(t)$, we have

$$2\pi |\mathscr{B}^{(i)}(t)| = \left| \int_{D(1+\mu)} \frac{1}{\eta - t} \cdot \frac{\partial (f^{(i)}(\eta) \mathscr{A}^{i}(\eta))}{\partial \bar{\eta}} d\eta \wedge d\bar{\eta} \right|$$

$$= \left| \sum_{j=1}^{u_{i}} \int_{B_{j}} \frac{\mathscr{A}^{i}(\eta)}{\eta - t} \cdot \frac{\partial (f^{(i)}(\eta))}{\partial \bar{\eta}} d\eta \wedge d\bar{\eta} \right|$$

$$\leq \sum_{j=1}^{u_{i}} \int_{B_{j}} \frac{|\mathscr{A}^{i}(\eta)|}{|\eta - t|} \cdot \left| \frac{\partial (f^{(i)}(\eta))}{\partial \bar{\eta}} \right| d\eta \wedge d\bar{\eta}, \tag{8}$$

where

$$E_{j} = \{D(t_{j}^{(i)}, \delta)\} \setminus \left\{ D\left(t_{j}^{(i)}, \frac{1}{2} \delta\right) \right\}.$$

Substituting (6) into (8), we have by mean value theorem

$$\begin{split} 2\pi \left| \mathscr{B}^{(i)}(t) \right| &\leqslant \sum_{j=1}^{u_i} \left| \mathscr{A}^i(\eta_j^{(i)}) \right| \int_{B_j} \frac{1}{|\eta - t|} \cdot \left| \frac{\partial (f^{(i)}(\eta))}{\partial \overline{\eta}} \right| d\eta \wedge d\overline{\eta} \\ &\leqslant \sum_{j=1}^{n_i} \frac{O_i}{\delta} \left| \mathscr{A}^i(\eta_j^{(i)}) \right| \left(\int_{B_j \cap |\eta - t| > \delta} \frac{1}{|\eta - t|} d\eta \wedge d\overline{\eta} + \int_{B_j \cap D(t,\delta)} \frac{1}{|\eta - t|} d\eta \wedge d\overline{\eta} \right) \\ &\leqslant \sum_{j=1}^{u_i} \frac{O_i}{\delta} \left| \mathscr{A}^i(\eta_j^{(i)}) \right| \left(\frac{1}{\delta} \int_{\frac{1}{2}\delta < |\eta - t|^{(i)} < \delta} d\eta \wedge d\overline{\eta} + \int_{|\eta - t| < \delta} \frac{1}{|\eta - t|} d\eta \wedge d\overline{\eta} \right) \\ &= \sum_{j=1}^{u_i} \frac{O_i}{\delta} \left| \mathscr{A}^i(\eta_j^{(i)}) \right| \left(\frac{3}{4} \delta \pi + 2\pi \delta \right) \\ &= \sum_{j=1}^{u_i} \frac{11O_i \pi}{4} \left| \mathscr{A}^i(\eta_j^{(i)}) \right|, \end{split}$$

where $\eta_{j}^{(i)}$ satisfy $\frac{1}{2} \delta < |\eta_{j}^{(i)} - t_{j}^{(i)}| < \delta$. Thus we obtain

$$|\mathcal{B}^{(i)}(t)| \leq \mathcal{K} \sum_{j=1}^{u_i} |\mathcal{A}^i(\eta_j^{(i)})|,$$

$$\sum_{j=1}^n |\mathcal{B}^{(i)}(t)| \leq \mathcal{K} \mathcal{M},$$

$$\mathcal{M} = \sum_{j=1}^n \sum_{j=1}^{u_i} |\mathcal{A}^i(\eta_j^{(i)})|,$$

$$(9)$$

where $\mathcal{K}=\max\{11/8\cdot O_i,\ i=1,\ 2,\ \cdots,\ n\}$ only depends on the given Z. From (7) and by using the Theorem 1.1.3 in [8]

$$\overline{\partial} \mathscr{B}^{(i)}(t) = \overline{\partial} (f^{(i)}(t) \mathscr{A}^{i}(t))$$

in $t \in D(1+\mu)$. This implies for a given $\varepsilon > 0$,

$$C(t) = \sum_{i=1}^{n} \frac{\mathscr{B}^{(i)}(t) - f^{(i)}(t) \mathscr{A}^{i}(t)}{t^{J}}$$

is a holomorphic function of t in $D(1+\mu)\backslash D(s)$, $u^{1/L}>s>0$. Now let us estimate the maximum absolute value on the boundaries $\partial D(1+\mu)$ and $\partial D(s)$. Since

$$|O(t)| \leq \sum_{i=1}^{n} \left(\left| \mathscr{B}^{(i)}(t) \right| + \left| f^{(i)}(t) \mathscr{A}^{i}(t) \right| \right) \cdot \frac{1}{|t|^{L}}, \tag{10}$$

we obtain

$$\varepsilon^{L} |O(t)|_{t \in \partial D(s)} \leq \mathcal{K} \mathcal{M} + \sum_{i=1}^{n} |\mathcal{A}^{i}(t)|_{t \in \partial D(s)}$$

$$\tag{11}$$

by (9) and $f^{(i)} \le 1$ when $t \in \partial D(s)$, for any $i=1, 2, \dots, n$. Similarly, when $t \in \partial D(1+\mu)$, $f^{(i)}(t)=1$, we have

$$\begin{split} \sum_{i=1}^{n} \left| f^{(i)}(t) \mathcal{A}^{i}(t) \right| &= \sum_{i=1}^{n} \left| \mathcal{A}^{i}(t) \right| \\ &= \sum_{i=1}^{n} \left| \phi_{i}^{\frac{l_{i}}{2m_{i}}}(ZTU) \overline{\phi_{i}^{\frac{l_{i}}{2m_{i}}}}(Z\overline{T}U) \right| \\ &\leq \sqrt{\sum_{i=1}^{n} \left| \phi_{i}(ZTU) \right|^{\frac{l_{i}}{m_{i}}} \sum_{i=1}^{n} \left| \overline{\phi_{i}}(Z\overline{T}G) \right|^{\frac{l_{i}}{m_{i}}}}. \end{split}$$

Therefore, when $\frac{l_i}{m_i}$ is sufficiently close to p_i , for all $i=1, 2, \dots, n$,

$$|\mathscr{C}(t)|_{t\in\partial D(1+\mu)} \leq 1 + \mathscr{K}\mathscr{M}. \tag{12}$$

Based upon the maximal principle of analytic functions, we can get

$$\left|\sum_{i=1}^{n} \left[\mathcal{B}^{(i)}(t) - f^{(i)}(t) \mathcal{A}^{i}(t) \right] \right| \leq |t|^{L} \max \left(1 + \mathcal{K} \mathcal{M}, \frac{\left(\mathcal{K} \mathcal{M} + \sum_{i=1}^{n} |\mathcal{A}^{i}(t)|_{t \in \partial D(s)} \right)}{8^{L}} \right). \tag{13}$$

In particular, we take $t=u^{1/L}(Z)$. Then (13) becomes

$$\left| \sum_{i=1}^{n} \left[\mathscr{B}^{(i)}(u^{1/L}(Z)) - f^{(i)}(u^{1/L}(Z)) \mathscr{A}^{i}(u^{1/L}(Z)) \right] \right|$$

$$\leq u(Z) \max \left(1 + \mathcal{K} \mathcal{M}, \frac{\left(\mathcal{K} \mathcal{M} + \sum_{i=1}^{n} |\mathcal{A}^{i}(t)|_{t \in \mathcal{D}(\varepsilon)}\right)}{\varepsilon^{L}}\right).$$
 (14)

Recalling the definitions of $f^{(i)}(t)$ and $\mathscr{A}^{i}(t)$, we have

$$f^{(i)}(u^{1/L}(Z)) = 1, |\mathscr{A}^{i}(u^{1/L}(Z))| = |\phi_{i}(ZR)|^{\frac{l_{i}}{m_{i}}},$$
 (15)

where $R = \operatorname{diag}\{r_0^{\frac{m_1}{l_1}}, r_0^{\frac{m_2}{l_2}}, \dots, r_0^{\frac{m_n}{l_n}}\}$. Therefore

$$\sum_{i=1}^{n} |f^{(i)}(u^{1/L}(Z)) \mathcal{A}^{i}(u^{1/L}(Z))| = \sum_{j=1}^{n} |\phi_{i}(ZR)|^{\frac{l_{i}}{m_{i}}}.$$
 (16)

Thus we obtain

$$\sum_{i=1}^{n} \left| \phi_{i}(ZR) \right|^{\frac{l_{i}}{m_{i}}} \leq \sum_{i=1}^{n} \left| \mathscr{Z}^{(i)}(u^{T}(Z)) \right| + u(Z) \max \left(1 + \mathscr{K} \mathscr{M}, \frac{\left(\mathscr{K} \mathscr{M} + \sum_{j=1}^{n} \left| \mathscr{A}^{i}(t) \right|_{t=|s|} \right)}{s^{L}} \right)$$

$$(17)$$

Here we suppose $u^{1/L}(Z)$ is not a zero point of some $\phi_i(ZTU)$. If $u^{1/L}(Z)$ is a zero point of some $\phi_i(ZTU)$, (14) still holds. At the beginning of the proof we suppose $\mathscr{A}^i(t)$ does not identically vanish. If $\mathscr{A}^i(t) \equiv 0$ it is not necessary to construct the function $\mathscr{B}^{(i)}(t)$, and (17) still holds.

Now we let $\delta \to 0$. Then $\eta_j^{(i)} \to t_j^{(i)}$. Since $\mathscr{A}^i(t)$ is continuous with respect to t, it follows that

$$\mathscr{A}^{i}(\eta_{i}^{(i)}) \to \mathscr{A}^{i}(t_{i}^{(i)}) = 0.$$

From (9) $\mathcal{M} \rightarrow 0$ and $\mathcal{B}^{(i)}(u^{1/L}(Z)) \rightarrow 0$. Therefore (17) becomes

$$\sum_{i=1}^{n} |\phi_{i}(ZR)|^{\frac{l_{i}}{m_{i}}} \leq u(Z) \max \left(1, \frac{\sum_{i=1}^{n} |\mathcal{A}^{i}(t)|_{t \in \partial D(e)}}{\varepsilon^{L}}\right). \tag{18}$$

The relation holds for any fixed s, $u^{1/L}(Z)>s>0$. It is easily seen that

$$\begin{aligned} &|\phi_{i}(ZTU)|_{t\in\partial D(s)} \\ &= s^{L\frac{m_{i}}{l_{i}}} \left| \left(\nu z_{i} \left(\frac{r_{0}}{u(Z)} \right)^{\frac{m_{i}}{l_{i}}} + \sum_{j,k=1}^{n} s^{L\left(\frac{m_{j}}{l_{j}} + \frac{m_{k}}{l_{k}} - \frac{m_{i}}{l_{i}} \right)} a_{jk} z_{j} z_{k} \left(\frac{r_{0}}{u(Z)} \right)^{\frac{m_{j}}{l_{j}} + \frac{m_{k}}{l_{k}} + \cdots} \right) \right| \\ &\leq s^{L\frac{m_{i}}{l_{i}}} \left(\left(\frac{r_{0}}{u(Z)} \right)^{\frac{m_{i}}{l_{i}}} \nu |z_{i}| + O(s^{L\left(\frac{m_{j}}{l_{j}} + \frac{m_{k}}{l_{k}} - \frac{m_{i}}{l_{i}} \right)} \right). \end{aligned}$$

In condition (1) we have $\frac{m_i}{l_i} + \frac{m_k}{l_k} - \frac{m_i}{l_i} > 0$. Thus

$$\lim_{s\to 0}\sum_{i=1}^n\frac{|\mathscr{A}^i(t)|_{t\in\partial D(s)}}{s^L}\leqslant 1.$$

We conclude

$$\sum_{i=1}^n |\phi_i(ZR)^{\frac{l_i}{m_i}}| \leqslant u(Z).$$

Let $\frac{l_i}{m_i} \to p_i$ for all $i=1, 2, \dots, n$. Then $r_0 \to 1$. This completes the proof of the theorem.

Remark. If the condition $2p_n > p_1$ is dropped then Theorem 1 is not true. To explain it we give an example.

We take n=2, $B \equiv \{(z_1, z_2) \in O^n | |z_1|^5 + |z_1|^2 < 1, \}$ and $\phi(z_1, z_2) = (\varepsilon z_1, \varepsilon z_2 + (1-2\varepsilon)z_0^2)$, where ε is a sufficiently small positive number. Then $\phi(0) = 0$, $J_{\phi}(0) = \varepsilon I$, $\varepsilon > 0$, and $u(\phi(Z)) = |\phi_1|^5 + |\phi_2|^2 = \varepsilon^5 |z_1|^5 + |\varepsilon z_2 + (1-2\varepsilon)z_1^2|^2 \le \varepsilon^5 |z_1|^5 + (\varepsilon |z_2| + (1-2\varepsilon)|z_1|^2)^2$. On $|z_1| = 1$, $|z_2| = 1$, the right hand side of the previous inequality is not greater than $\varepsilon^5 + (1-2\varepsilon)^2 = 1-2\varepsilon+\varepsilon^2+\varepsilon^5 < 1$. Thus $u(\phi(Z)) < 1$ when $|z_1| = 1$, $|z_2| = 1$. But $B \subset \{(z_1, z_2) \in O^2, ||z_1| \le 1, ||z_2| \le 1\}$. Therefore $\phi: B \to B$ is an intomapping. On the other hand, if we take $z_2 = 0$ then

 $|\phi_1(z_1, 0)|^5 + |\phi_2(z_1, 0)|^2 = s^5|z_1|^5 + (1-2s)^2|z_1|^4 \le |z_1|^5 = u(z_1, 0)$ is not true when we take $|z_1| = 1 - 5s$ and s is sufficiently small. So the Schwartz-lemma fails if the condition $2p_n > p_1$ is dropped.

This counterexample was given by Professor Carl H. FitzGerald.

§ 3. The Necessary Conditon for Biholomorphic Mapping to be Starlike in B

Now we can use the Schwartz lemma for B in the above section to give the necessary condition for a biholomorphic mapping to be starlike in B.

Theorem 2. Suppose $f: B \rightarrow C^n$ is a starlike biholomorphic mapping. Then

$$\langle du \cdot f^{-1}, d\rho \rangle |_{W=f(Z)} \geqslant 0$$

holds for any $Z \in B^p \setminus \{0\}$, where \langle , \rangle is the inner product in C^p .

Proof Let f(B) denote the image of B under f. For a fixed $Z \in B$, a subset of B is defined as

$$\varepsilon_a = \{Y \in B \mid u(Y) < u(Z) = a\}.$$

Obviously, ε_a or $\varepsilon_{u(Z)}$ is an open set. So is $f(\varepsilon_a)$ because of the open mapping theorem and $\{f(\overline{\varepsilon_a})\} = \overline{\{f(\varepsilon_a)\}}$. By the starlike hypothesis for the mapping f, the segment $\sigma(W) = rW$, 0 < r < 1, joining the origin and the point W = f(Z), is in f(B), i. e., $rW \in \{f(B)\}$ and $f^{-1}(rW) \in B$, for all $0 \le r \le 1$. We claim that if

$$rW \in f(\bar{s}_a),$$
 (19)

then the directional derivative of u along the direction $d\rho$

$$\langle du \cdot f^{-1}, d\rho \rangle \big|_{W=f(Z)} = \frac{\partial u}{\partial \rho} \geqslant 0.$$

The theorem holds. To show that (19) holds we suppose there is such an $r_0<1$ that $r_0W \notin \{f(\overline{s_a})\}$, i. e., $u(f^{-1}(r_0W))>a$. Define a new mapping K(Z) from B to B by $K(Z)=f^{-1}(r_0f(Z))$. By the hypothesis for f, K(Z) is holomorphic with K(0)=0 and $J_K(0)=r_0I$. Using the previous Theorem 1 we have

$$u(Z) \geqslant u(K(Z)) = u(f^{-1}(r_0W) > a.$$
 (20)

Then (20) contradicts $u(f^{-1}(W)) = a$. Thus (19) is true.

§ 4. The Sufficient Condition for Biholomorphic Mapping to be Starlike in B

In this section we give the sufficient condition for a biholomorphic mapping to be starlike in ${\cal B}$

Theorem 3. Suppose $f: B \rightarrow C^n$ is a holomorphic immersion with f(0) = 0 and $\langle du \cdot f^{-1}, d\rho \rangle |_{W = f(Z)} \geqslant 0$

holds for any $Z \in B$. The f is biholomorphic and starlike with respect to the origin in B.

To prove this theorem we need two lemmas. We denote

$$\varepsilon_a = \{Z \in B \mid u(Z) < a, a > 0\}.$$

Lemma 2. Suppose $f: B \rightarrow O^n$ is a holomorphic immersion with f(0) = 0. Let $\langle du \cdot f^{-1}, d\rho \rangle |_{W = f(Z)} \geqslant 0$

hold for any $Z \in B$. If f is biholomorphic on s_a then $f(\bar{s}_a)$ is starlike with respect to the **rigin** in C^n .

Proof We observe \bar{s}_a is a close set. Obviously, the image set $f(\bar{s}_a)$ is also closed under the holomorphic mapping. Thus, for a given $Z \in \bar{s}_a$, the intersection of the two closed sets, the segment $\sigma(f(Z))$ and $f(\bar{s}_a)$, is also closed. Call it r(Z).

Secondly we show that for the given $Z \in \tilde{s}_a$, there exists a $\delta_1 > 0$ such that

$$(1-t)f(Z) \in f(\bar{s}_a) \tag{21}$$

satisfies $\lim_{t \to \infty} \{t_i\} = 0$ and $(1-t_i)f(Z) \notin f(\bar{e}_a)$. Let $B(f(Z), \delta)$ be the open ball

centred at f(Z) with radius δ and $B(f(Z), \delta) \subset \{f(U_s)\}$. When i is sufficiently large.

$$(1-t_i)f(Z) \in B(f(Z), \delta).$$

Hence a point Z_i exists in the neighbourhood U_z such that $f(Z_i) = (1-t_i)f(Z)$ due to the biholomorphic condition of f in U_Z . But $f(Z_i) \notin f(\bar{s}_a)$, hence $u(Z_i) > a > u(Z)$. However, by the assumption of $\langle du \cdot f^{-1}, d\rho \rangle|_{w=f(Z)} > 0$, we can conclude when i becomes sufficient large $u(Z) > u(Z_i)$. So (21) is true.

Finally, for the given $Z \in \overline{s}_a$ we prove $\sigma(f(Z))$ falls in $f(\overline{s}_a)$. For that it is sufficient to explain that the coset $\nu(Z) = \sigma(f(Z)) \setminus r(Z)$ is an empty set. In fact, we know the coset $\nu(Z) = \sigma(f(Z)) \setminus r(Z) = \{\sigma(f(Z)) \setminus \{0, W\}\} \setminus r(Z)$ is an open set. If $\nu(Z)$ is not empty, we can assume $t^* = \inf\{t \in [0, 1] \mid (1-t)f(Z) \in \nu(Z)\}$. Since $\nu(Z)$, as a subset of the segment $\sigma(f(Z))$, is open, the point $Q(t^*) = (1-t^*) \cdot f(Z) \notin \nu(Z)$, i. e., $Q(t^*) = (1-t^*)f(Z) \in f(\overline{s}_a)$. In the second step of the proceeding proof we have already shown there is an $\delta_1 > 0$ such that

$$(1-t')(1-t^*)f(Z) \in f(\bar{\varepsilon}_a),$$

$$(1-(t^*+t'-t't^*))f(Z) \in f(\bar{\varepsilon}_a)$$
(22)

holds for any $\delta_1 > t' > 0$. However, the argument is contary to the definition of infimum. Thus $\nu(Z)$ is empty. The lemma is true.

Lemma 3 Suppose $f: B^{p} \rightarrow C^{n}$ is a holomorphic immersion with f(0) = 0. Let

$$\langle du \cdot f^{-1}, d\rho \rangle |_{w=f(Z)} \geqslant 0$$

hold for any $Z \in B$. Then the biholomorphic property of f on s_a can be extended to \overline{s}_a .

Proof If the statement is not true then there are two distinct points X, $Y \in \overline{s}_a$ such that f(X) = f(Y). By lemma 2, for all $0 \le r \le 1$

$$rf(X)$$
 or $rf(Y) \in f(\bar{s}_a)$. (23)

Because f is holomorphic immersion, we can obtain the curve X(r) with X(1) = X in B such that f(X(r)) = rf(X) by the method of analytic continuation. That is, $X(r) = f^{-1}(rf(X))$ is a univalent component of the inverse images of the segment: rf(X). Since

$$\frac{du(X(r))}{dr} = \frac{1}{r} \langle du \cdot f^{-1}, d\rho \rangle |_{w=rf(X)} \geqslant 0,$$
 (24)

for $0 \le r \le 1$

$$u(X(r)) \leq u(X(1)) = u(X) = a.$$

We have

$$X(r) \in \tilde{\varepsilon}_a.$$
 (25)

Suppose Y(r) is the univalent component of the inverse images of the segment rf(X), but Y(1) = Y. A similar argument shows

, with the equation
$$X(r)\in\overline{s}_{a}$$
 and with the equation $X(r)\in \overline{s}_{a}$

$$\mathcal{R} = \{ r \in [0, 1] \mid X(r) = Y(r) \}.$$

If \mathscr{R} is nonempty then the supremum r^* of \mathscr{R} exists. \mathscr{R} is a closed set. So $X(r^*) = Y(r^*)$, $r^* < 1$ because of $X(1) \neq Y(1)$, and $X(r^* + \varepsilon) \neq Y(r^* + \varepsilon)$ for $r^* < r^* + \varepsilon < 1$. But $f(X(r^* + \varepsilon)) = f(Y(r^* + \varepsilon))$. This is contrary to f being biholomorphic at $X(r^*)$. If \mathscr{R} is empty then $X(0) \neq Y(0)$. Since f is biholomorphic in ε_a , at least one of the two points X(0) and Y(0) must be a boundary point of $\overline{\varepsilon}_a$. Suppose $X(0) \in \partial \overline{\varepsilon}_a$. Let $B(X(0), \delta)$ be the open ball centred at X(0) with radius δ so small that $B(X(0), \delta) \cap \mathscr{U}_0$ is empty, where $\mathscr{U}_0 \subset \varepsilon_a$ is the neighborhood of the origin in B such that f is biholomorphic. Because of the open mapping theorem $f(B(X(0), \delta) \cap \varepsilon_a)$ is an open set, $f(\mathscr{U}_0)$ an open set including the origin of C^n and the origin is also a boundary point of the open set $f(B(X(0), \delta) \cap \varepsilon_a)$. So $f(B(X(0), \delta) \cap \varepsilon_a) \cap f(\mathscr{U}_0)$ is not empty. This implies for any $W \in f(B(X(0), \delta) \cap \varepsilon_a) \cap f(\mathscr{U}_0)$ it has two distinguished inverse images in ε_a . It is not possible due to the fact that f is biholomorphic in ε_a . The lemma is true.

Now we can prove Theorem 3. Let

$$\Omega = \{a \in (0, 1] \mid f(Z) \text{ is biholomorphic in } s_a\}.$$

First we prove Ω is nonempty. The hypothesis about f indicates that there is the neighbourhood of the origin in B (still call it \mathcal{U}_0) such that f is biholomorphic in the neighbourhood. We claim that there is a positive $\delta > 0$ such that $s_{\delta} \subset \mathcal{U}_0$. If it is not true, then we can choose a sequence of points $\{Z^{(i)}\}_{i=1}^{\infty}$ in B such that

$$u(Z^{(i)}) < \frac{1}{\hat{q}}, \quad Z^{(i)} \notin \mathscr{U}_0.$$

Since u(Z) is continuous with respect to Z, it follows that $\lim_{t\to\infty} u(Z^{(t)}) = u(Z^*) = 0$. $u(Z^*) = 0$ implies Z^* is zero. Thus $\lim_{t\to\infty} Z^{(t)} = 0$. This is contrary to the fact that $Z^* = 0$. is an inner point of the open set \mathcal{U}_0 .

Next we show Ω is a closed set. If $0 < a_1 \in \Omega$ then all $a \le a_1$ fall in Ω . Therefore it is sufficient only to prove that if $a^* > a$ and all a fall in Ω then a^* is also in Ω . That is to prove f is biholomorphic in s_{a^*} .

Assume f is not biholomorphic on s_{a^*} , then there exists two distinct points X, Y in s_{a^*} such that f(X) = f(Y). As $u(X) < a^*$, $u(Y) < a^*$, we can find an a^{**} which satisfies $u(X) < a^{**} < a^*$, $u(Y) < a^{**} < a^*$. The formulas above imply X, $Y \in s_{a^{**}}$. But $a^{**} \in \Omega$, $f \mid s_{a^{**}}$ is biholomorphic. Thus $f(X) - f(Y) \neq 0$ contradicts the assumption of f(X) = f(Y). This proves Ω is a closed set.

Finally, we prove the set Ω is also an open set. For that we only to verify that if f is biholomorphic in s_a then there is $\varepsilon > 0$ such that f is also biholomorphic in s_{a+s} . If it is not so then for any $s_n < 0$ and $\lim_{n \to \infty} s_n = 0$ there are two sequences X(n) and Y(n) in B such that they satisfy

$$X(n) \neq Y(n), \text{ for all } n=1, 2, \cdots,$$

$$f(X(n)) = f(Y(n)),$$

$$\lim_{n \to \infty} u(X(n)) = \lim_{n \to \infty} u(Y(n)) = a.$$
(27)

It is easily seen that X(n), Y(n) are boundary sequences. So there are the convergence subsequences $X(n_k)$, $Y(n_k)$ of X(n), Y(n). We have

$$\lim_{k\to\infty} X(n_k) = X, \lim_{k\to\infty} Y(n_k) = Y, \tag{28}$$

and (27) gives f(X) = f(Y). It is clear that X, $Y \in \partial \bar{s}_a$. If $X \neq Y$ then that is contrary to Lemma 3. If X = Y, (27) and (23) show f is not biholomorphic at $X \in B$. Therefore, there is a positive s such that f is biholomorphic in s_{a+s} .

The proceeding second step proof also implies Ω is a connect set. Since Ω is open, closed and nonempty, $\Omega = [0, 1]$. That is, f is a biholomorphic mapping in B. By Iemma 1 f(B) must be starlike.

Combining Theorem 2 with Theorem 3, we obtain the Suffridge-type theorem.

Theorem 4. Suppose $f: B \rightarrow C^n$ is a holomorphic immersion mapping with f(0) = 0. Then f is starlike if and inly if

$$\langle du \cdot f^{-1}, d\rho \rangle |_{W=f(Z)} \geqslant 0$$
, for any $Z \in B$,

where \langle , \rangle is the inner product in C^n , $u(Z) = \sum_{i=1}^n |z_i|^{p_i}$ and $\rho(W)$ is the distance function from the origin in C^n .

It is reduced to the Suffridge's theorem for D_p if $p_1 = p_2 = \cdots = p_n > 1$.

References

- [1] Matsuno, T., Star-like theorems and convex-like theorems in the complex vector, Sci. Rep. Tokyo Kyoiku Daigaku, Set. A, 5(1955), 86—95.
- [2] Robertson, M. S., Applications of the subordination principle to univalent functions, Pac. J. Math., 11(1961)315-324.
- [3] Fitz Gerald, C. H., Gong, S. & Barnard, R, W., The Growth and 1/4-Theorems for starlike mappings in Cⁿ, Chinese Science Bulletin, 34: 3(1989), 161—162.
- [4] Qihung Yu, Shikun Wang & Sheng Gong, The Growth and 1/4-Theorems for starlike mappings in Bp, Chinese Annals of Mathematics, 11B: 1(1990), 100-104.
- [5] Suffridge, T. J., The principle of subordination applied to functions of several variables, *Pac. J. Math.*, 33(1970), 241—248.
- [6] Harria, L. A., Schwartz's lemma in normal linear spaces, Proc. Hatl. Acad. Sci., U. S. A., 64(4) (1969), 1014—1017.
- [7] S. Y. Cheng & S. T. Yau, Differential equations on Riemannian manifolds and their geometric application, Communications on Pure and Applied Math., 38 (1975), 333—354.
- [8] Gennadi Henkin & Jurgen Leiterer, Theory of Functions on Complex Manifolds, Birkhause Verlag Basel.oBoston, Stuttgart, 1984.