FINITE GROUPS WITH SCHMIDT GROUP AS AUTOMORPHISM GROUP

CHEN GUIYUN(陈贵云)*

Abstract

This paper continues the work of D. MacHale, D. Flannery (Proc. R. Ir. Acad. 81A, 209—215; 83A, 189—196) and the author (Proc. R. Ir. Acad. 90A, 57—62; J. Southwest China Normal University 15, No. 1, 21—28) on the topic on "Finite groups with given Automorphism group". The following result is proved:

Let G be a finite group with Aut G a Schmidt group. Then G is isomorphic to S_3 or Klain 4-group, or D such that Aut $D=\operatorname{Inn} D$.

D is a Schmidt group of order $2^{\alpha}p$. $S_2(\in \operatorname{Syl}_2D)$ is a normal and special group except a superspecial group without commutative generators.

In this paper we shall prove the following

Theorem. Let G be a finite group with AutG a Schmidt group. Then G is isomorphic to S_3 or Klain 4-group or D such that Aut D = Inn D.

Lemma 1. Let G be a Schmidt group. Then following hold:

- 1) $|G| = p^{\alpha}q^{\beta}$, where p, q are distinct primes.
- 2) G has a normal Sylow subgroup and a cyclic Sylow subgroup, say, $S_q \triangleleft G$, $S_p = \langle a \rangle$.
- 3) Let N be a maximal normal subgroup of G contained in S_q . Then $N = \phi(S_q) = S_q'$ and $|S_q:N| = q^b$, where b is the order of $q \mod p$.
 - 4) Let $c \in S_q$. Then c is one generator of S_q if and only if $[c, a] \neq 1$.
- 5) If S_q is a non-Abelian group, then $N = Z(S_q)$ and N is an elementary Abelian group. If $q \neq 2$, then the exponent of S_q is q. If q = 2, then the exponent of S_q is q.
 - 6) If S_q is an Abelian group, then S_q is an elementary Abelian group.
 - 7) $Z(G) = \phi(G) = \phi(S_p) \times \phi(S_q)$ (see [1]).

Lemma 2. Sappose that Abelian group G has type

$$(p^{m_1}, \dots, p^{m_2}, p^{m_2}, p^{m_2}, \dots, p^{m_i}, \dots, p^{m_i}, \dots, p^{m_i}), m_1 > m_2 > \dots > m_t.$$
Then $|\operatorname{Aut}G| = p^u \prod_{i=1}^t \prod_{k=1}^{S_i} (p^k - 1), \text{ where } u = \sum_{i,j=1}^t S_i S_j m_{ij} - \sum_{i=1}^t \frac{S_i(S_i + 1)}{2} \text{ and } m_{ij} = m_{\max\{i,j\}} \text{ (see [2]).}$

Lemma 3. All Schmidt groups except S₃ and D have an outer automorphism.

Manuscript received December 20, 1989. Revised November 20, 1990.

Department of Mathematics, Southwest China Normal University, Chongqing, Sichuan 630715, China.

Proof Let G be a Schmidt group. Then by Lemma 1 we have $G = S_q \rtimes S_p$ with $|S_p| = p^a$ and $|S_q| = q^\beta$.

- 1) If $\alpha > 1$, then $\phi(S_p) \neq 1$. Since $\phi(S_p) \leqslant Z(G)$, there exists $z \in Z(G)$ with |z| = p. Moreover there is a homomorphism f from G to $\langle z \rangle$ such that $Z(G) \leqslant \operatorname{Ker} f$. Define $\overline{\sigma}(g) = f(g)g$ for any $g \in G$. It is easy to show that $\overline{\sigma}$ is a central automorphism. Since Z(G/Z(G)) = 1, G has no inner automorphism, which is a central automorphism. Then $\overline{\sigma}$ is outher automorphism of G.
- 2) If $\alpha=1$ and $q\geqslant 3$, then by Lemma 1 the exponent of S_q is q. Since G/Z(G) is a minimal non-nilpotent group, we have

$$G/Z(G) = \langle a, c_1, c_2, \cdots, c_b | a^p = c_1^q = c_2^q = \cdots = c_b^q = 1, [c_k, c_l] = 1, a_i^q = c_{i+1}, \\ 1 \leq k, l \leq b, 1 < \hat{c} \leq b - 1, c_b^q = c_1^q \cdot c_2^q \cdot \cdots c_b^q \rangle,$$

where $f(x) = x^b - d_b x^{b-1} - \dots - d_2 x - d_1$ is irreducible on F_q and $f(x) \mid x^p - 1$, b is the order of $q \mod p$. Therefore we may set

$$G = \langle a, c_1, c_2, \dots, c_b, Z(G) | a^p = c_1^q = c_2^q = \dots = c_b^q = 1, [c_k, c_l] = z_{kl}, c_i^q = c_{i+1}, c_b^q = c_1^{d_1} c_2^{d_2} \cdots c_b^{d_b} z_b, z_b, z_{kl} \in Z(G), 1 \leq k, l \leq b, 1 \leq i \leq b-1 \rangle.$$

Put $c_b^{-d_b}c_{b-1}^{-d_{b-1}}\cdots c_1^{-d_1}=c_1^{-d_1}c_2^{-d_2}\cdots c_b^{-d_b}z'$, where $z'\in Z(G)$. Since f(x) is irreducible on F_q , $f(1)=1-d_b-\cdots d_2-d_1\not\equiv 0\pmod q$. Hence there exists an integer r such that $r(1-d_b-\cdots d_2-d_1)\equiv 1\pmod q$. Set $\overline{z}=(z'^{-1}z_b^2)^r$. Define

$$a \mapsto a$$
 $\sigma: c_i \mapsto c_i^{-1}\overline{z}, 1 \leqslant i \leqslant b$
 $z \mapsto z, \text{ for any } z \in Z(G).$

Because $z_{kl} = c_k^{-1} c_1^{-1} c_k c_l = c_k c_l c_k^{-1} c_l^{-1} = [c_k^{-1}, c_l^{-1}], (c_l^{-1} \overline{z})^a = (c_{l+1}^{-1} \overline{z}), 1 \le k, l \le b, 1 \le b-1$, and

$$\begin{split} (c_b^{-1}\overline{z})^a &= (c_b^a)^{-1}\overline{z} = (c_1^{d_1}c_2^{d_2}\cdots c_b^{d_b}z_b)^{-1}\overline{z} = c_b^{-d_b}c_{b-1}^{-d_{b-1}}\cdots c_1^{d_1}z_b^{-1}\overline{z} \\ &= c_1^{-d_1}c_2^{-d_2}\cdots c_b^{-d_b}z'z_b^{-1}\overline{z} = (c_1^{-1}\overline{z})^{d_1}\cdots (c_b^{-1}\overline{z})^{d_b}\overline{z}^{-(d_1+d_2+\cdots+d_b)}\,z'z_b^{-1}\overline{z} \\ &= (c_1^{-1}\overline{z})^{c_1}\cdots (c_b^{-1}\overline{z})^{d_b}\overline{z}^{1-d_1-d_2-\cdots-d_b}\,z'z_b^{-1} \\ &= (c_1^{-1}\overline{z})^{c_1}\cdots (c_b^{-1}\overline{z})^{d_b}z_b \text{ (this comes true by defintion of } \overline{z}), \end{split}$$

we see that a, $c_i^{-1}\bar{z}$, $1 \le i \le b$, z satisfy the defining relations of G. So σ can be extended to an automorphism of G.

If $\sigma \in \text{Inn}G$, then there exists $g_{\bullet} \in G$ such that $\sigma(g) = g^{g_{\bullet}}$ for any $g \in G$. Set $g_{\bullet} = xy$, where $x \in S_{g_{\bullet}}$, $y \in S_{q_{\bullet}}$. We have $e^{iy} = a^{g_{g_{\bullet}}} = \sigma(a) = a$, that is to say, $y \in G_{g_{q}}(S_{g_{\bullet}})$. By Lemma $1 \ y \in G_{g_{q}}(S_{g_{\bullet}}) \leqslant \phi(S_{g_{\bullet}}) \leqslant Z(G)$. Hence $\sigma(g) = g^{g_{\bullet}}$, $g \in G$. Then $c_{i}^{x} = c_{i}^{-1}\overline{z}$, $c_{i}^{x^{i}} = (c_{i}^{x^{i}}\overline{z})^{x} = (c_{i}^{x^{i}}\overline{z})^{-1}\overline{z} = c_{i}$, $1 \leqslant i \leqslant b$. This implies $x^{2} \in G_{g_{g_{\bullet}}}(S_{q_{e}}) \otimes G_{g_{e}} \cap Z(G)$. Since $\alpha = 1$, $S_{g} \cap Z(G) = 1$ and $x^{2} = 1$. Hence g = 2. By the definition of b we know b = 1, |G| = 2q. Exactly $G = \langle a, b | a^{2} = b^{q} = 1$, $a^{-1}ba = b^{-1}\rangle$. At this time $|\operatorname{Aut}G| = q(q-1)$. Then except $G = S_{3}$, G has an outer automorphism.

3) Let $\alpha=1$, q=2. If S_2 is an Abelian group, then

$$G = \langle a, c_1, c_2, \cdots, c_b | a^p = c_1^2 = c_2^2 = \cdots = c_b^2 = 1, c_i c_j = c_j c_i, 1 \leq i, j \leq b, c_k^a = c_{k+1}, \\ 1 \leq k \leq b-1, c_b^a = c_1^{a_1} c_2^{a_2} \cdots c_b^{a_b} \rangle,$$

where $f(x) = x^b - d_b x^{b-1} - \dots - d_2 x - d_1$ is irreducible on F_2 and $f(x) \mid x^p - 1$ with b the order of 2 mod p. Define

$$au: rac{a \mapsto a^2}{c_i \mapsto c_j^{a^{m{s} \cdot -1}}}, \ 1 \leqslant i \leqslant b.$$

Then τ can be extended to an automorphism of G. If τ is inner, then there exists $g_0 \in G$ such that $\tau(g) = g^{g_0}$, $g \in G$. Hence $a^{g_0} = a^2$, $[a, g_0] = a$, a contradiction to $G = S_2$.

If S_2 is non-Abelian and superspecial group without commutative generators, then by [3] we have

$$G = \langle a, c_1, c_2, \cdots, c_b, z | a^p = c_1^4 = c_2^4 = \cdots = c_b^4 = z^2 = 1, [c_i, c_j] = z, c_k^2 = z, i \neq j,$$

$$1 \leq i, j \leq b, 1 \leq k \leq b, c_i^2 = c_{l+1}, c_b^2 = c_1^{d_1} c_2^{d_2} \cdots c_b^{d_b}, 1 \leq l \leq b-1 \rangle,$$

where d_i is as discribed in previous paragraph. By $\tau \in \operatorname{Aut}(G/Z(G))$ in above paragraph, we have $c_1^{a_1b} = c_1^{d_1}(c_1^{a_2})^{d_2}(c_1^{a_1})^{d_2}\cdots(c_1^{a_1^{a_1(b_1)}})^{d_2b_2}$. Since f(x) is irreducible on F_2 , $f(1) \equiv 1 \pmod{2}$. Define

$$a \mapsto a^{2}$$
 $\delta: z \mapsto z$
 $c_{i} \mapsto c_{1}^{a^{2(i-1)}}z', 1 \leqslant i \leqslant b.$

Because

$$\begin{aligned} & \left[c_1^{a^{(b-1)}}z'\right]^{a^2} = c_1^{a^2b}z' = \left[c_1^{d_1}(c_1^{a^2})^{d_2}\cdots(c_1^{a^{2(b-1)}})^{d_b}z'\right]z' \\ & = (c_1z')^{d_1}(c_1^{a^2}z')^{d_2}\cdots(c_1^{a^{2(b-1)}}z')^{d_b}(z')^{f(1)}z' = (c_1z')^{d_1}(c^{a^2}z')^{d_2}\cdots(c_1^{a^{2(b-1)}}z')^{d_b}, \end{aligned}$$

the other defining relations of G are obviously satisfied by a^2 , c_1z' , $c_1^{a^2}z'$, ..., $c_1^{a^{ab-b}}z'$, z. Then δ can be extended to an automorphism of G. By the same resean as τ we know δ is an outer automorphism. The Lemma is proved.

Proof of the Theorem At first we prove that the groups satisfying the condition of the Theorem are nilpotent groups or S_3 or D with Aut D = Inn D.

In fact, if $G/Z(G) \not \in \operatorname{Aut}G$, then G/Z(G) is nilpotent. Further G is nilpotent. Suppose $G/Z(G) = \operatorname{Aut}G$. Let $G = G_1 \times Z$, where $Z \not \in Z(G)$ and G_1 has no nontrivial Abelian direct factors. Then $Z(G) = Z(G_1) \times Z$ and $G_1/Z(G_1) \cong G/Z(G) \cong \operatorname{Aut}G$. Since $\operatorname{Aut}G_1 \times \operatorname{Aut}Z \not \in \operatorname{Aut}G$, $\operatorname{Aut}G_1 = \operatorname{Aut}G$ and $\operatorname{Aut}Z = 1$, $|Z| \not \in 2$. We assert that G_1 is a Schmidt group. Here we may assume $|G_1| = p^\alpha q^\beta$.

Let H be a proper subgroup of G_1 . Then $HZ(G_1)/Z(G_1) \leqslant G_1/Z(G_1)$. If $HZ(G_1)/Z(G_1) \leqslant G_1/Z(G_1)$, then H is nilpotent. Otherwise $G_1 = HZ(G_1)$. Hence H is a normal subgroup. Further G_1 has a maximal normal subgroup M such that there is an element z' which is not in M but in $Z(G_1)$. Suppose $|G_1/M| = r$, where r = p or q. Then $(z')^r \in M$. Suppose there is $z \in M \cap Z(G_1)$ such that |z| = r. Define $\sigma(g) = f(g)g$, $g \in G_1$, where f is a homomorphism from G_1 to $\langle z \rangle$ such that $M \leqslant \text{Ker } f$. Then $\sigma \in \text{Aut } G_1$. Since $\sigma(z') = f(z')z' \neq z'$, σ is an outer automorphism. This

contradicts Aut $G_1 = \operatorname{Aut} G = G_1/Z(G_1)$. Therefore $r \nmid |Z(G_1) \cap M|$ and we have $G_1 = M \times \langle z' \rangle$, a contradiction to supposition of G_1 . Then H is nilpotent, G_1 is a Schmidt group. By Lemma 3 G_1 is S_3 . If $G = S_3 \times Z_2$, $D \times Z_2$ then by [3] Lemma 4, G has an automorphism, a contradiction. Therefore $G = S_3$ or D with Aut $D = \operatorname{Inn} D$.

Secondly, if G is nilpotent, set $G = S_{p_1} \times S_{p_2} \times \cdots \times S_{p_\ell}$. Then Aut $G = \operatorname{Aut} S_{p_1} \times \operatorname{Aut} S_{p_2} \times \cdots \times \operatorname{Aut} S_{p_\ell}$. If there exist two Aut S_{p_ℓ} , $|\operatorname{Aut} S_{p_\ell}| \neq 1$, then as Aut G is a Schmidt group we know that all $|\operatorname{Aut} S_{p_\ell}|$ are nilpotent, and so is Aut G, a contradiction. Then we may set Aut $S_{p_\ell} = \operatorname{Aut} G$. Since $S_{p_\ell}/Z(S_{p_\ell}) \leq \operatorname{Aut} S_{p_\ell} = \operatorname{Aut} G$ and the nilpotent class of the Sylow subgroup of Aut G is at most 2, the nilpotent class of S_p is at most 3.

When S_{p_a} is commutative, suppose that S_{p_a} has type

$$(p^{m_1}, \cdots, p^{m_1}, p^{m_2}, \cdots, p^{m_s}, \cdots, p^{m_s}, \cdots, p^{m_s}, \cdots, p^{m_s}), m_1 > m_2 > \cdots > m_t.$$

If $s_i=1$, $1 \leqslant b \leqslant t$, then by Lemma 2, Aut G is a p-group, a contradiction. This implies that there exists an s_i , say s_1 , larger than 1. So S_{p_1} has a direct factor N of type (p^{m_1}, p^{m_1}) . Therefore $GL_2(p) \leqslant GL_2(p^{m_1}) = \text{Aut } N \leqslant \text{Aut } G$. Since $GL_2(p)$ is not nilpotent and Aut G is a Schmidt group, Aut $G = GL_2(p)$. If p > 3, then $GL_2(p)$ is unsolvable, a contradiction. If p=3, we have $SL_2(3) \leqslant GL_2(3)$, but $SL_2(3)$ is not nilpotent, a contradiction to the fact that all subgroups of Aut G are nilpotent. Then Aut $G = GL_2(2) = S_3$, this implies that G is the Klain 4-group by [4].

When the class of nilpotency of S_{p_1} is 3, we see that $S_{p_1}/Z(S_{p_1})$ is a non-Abelian normal subgroup of Aut S_{p_1} = Aut G. By Lemma 1 2), 3), $S_{p_1}/Z(S_{p_1})$ is a Sylow subgroup of Aut S_{p_1} . Then $p_1 \not\models |\operatorname{Aut} S_{p_1}/\operatorname{Inn} S_{p_1}|$. But any p_1 -group with order larger than p_1 has an outer automorphism of order p_1 , a contradiction.

When the class of nilpotency of S_{p_1} is 2, if $S_{p_1}/Z(S_{p_1})$ is a Sylow subgroup of Aut S_{p_1} , we can obtain a contradiction by using the method in above paragraph. Otherwise by Lemma 1 2), 3), 7), we know $S_{p_1}/Z(S_{p_1}) \leqslant Z(\operatorname{Aut} S_{p_1})$. Therefore for any $\tau \in \operatorname{Aut} S_{p_1}$ and $I_{g_0} \in \operatorname{Inn} S_{p_1}$, $\tau I_{g_0} = I_{g_0}\tau$ holds. We have $I_{g_0}\tau(g) = \tau I_{g_0}(g)$, $g \in G$,

$$g_0^{-1} \mathbf{r}(g) g_0 = \mathbf{r}(g_0)^{-1} \mathbf{r}(g) \mathbf{r}(g_0),$$

 $\mathbf{r}(g) = g_0 \mathbf{r}(g_0)^{-1} \mathbf{r}(g) \mathbf{r}(g_0) g^{-1},$

which implies $g_0 \tau(g_0)^{-1} \in Z(S_{p_0})$ for any $g_0 \in G$. Then τ is a central automorphism, that is to say, Aut S_{p_0} consists of central automorphisms. Since $|\operatorname{Aut} S_{p_0}|$ has two distinct prime factors, by the formula of the order of the group of the central automorphisms of finite p-group displayed in [4] (p. 280) we know that S_{p_0} has a direct factor E of type (p_1^k, p_1^k) . Put $S_{p_0} = E \times D$. Then Aut $E \times \operatorname{Aut} D \leq \operatorname{Aut} S_{p_0}$. Since Aut $E = GL_2(p_1^k)$ is non-nilpotent and Aut $S_{p_0} = \operatorname{Aut} G$ is a Schmidt group, we have Aut $E = \operatorname{Aut} S_{p_0}$, Aut D = 1. Hence D is Abelian, and so is S_{p_0} , a contradiction to S_{p_0} having nilpotent class 2. This concludes the proof of the

theorem.

At the end of the paper I would like to say thanks to Prof. Chen Zhongmu and Shi Wujie for their concerning and supporting my work.

References

- [1] Chen Zhongmu, Inner and Outer $-\Sigma$ Groups and minimal Non $-\Sigma$ groups, Southwest China Teachers Univ. Press, Chongqing, 1988, 1—2.
- [2] Yu Shuxia, A note on the order of automorphism group of finite Abelian p-group. J, Math. (PRC), 3: 2(1983), 189-194.
- [3] Chen Guiyun, Finite groups with automorphism group having an order of $p_1p_2\cdots p_n$ pq^2 , J. of Southwest China Teachers Univ. 15: 1, 21—28.
- [4] Otto, A. D., Central automorphisms of a finite p-group, Trans. Amer. Math. Soc., 125(1966), 280—287.

and the second s

and the first of war in the contract of a second

and the second of the second o

The way of the last the parent of the act of the water that the terms

y jayyaya dayay ya ji gale dasabasa ke ya rebasa sa sa caba da ya gar

建乳油化物 医甲基二氏系统 化氯化二甲基苯