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EXISTENCE OF RADIAL LIMITS OF HARMONIC
[FUNCTIONS IN BANACH SPACES
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Abstract

The following result iy established: let X be a Banach space without the Radon—
Nikodym property, there exists a uniformly bounded harmonic funstion f defined on
the open unit disk of € with values in X, such that for almost all 0€[0, 2], lnn
*(r¢*®) does not exist.

In the last twenty yeaurs, several remarkable results have been established in
the theory of infinite dimensional Banach spaces. Most of these results emphasize
the interplay between the topological, geometrical and measure theoretioal
structures of & Banach space. Here is & well known prototype of such interrelatiohs.
It is due to the combined efferts of several authors and we refor the reader to the

books [1], [6] and the paper [4] for a detailed account of its history and for the

notions mvolved in its statement.

Theorem (A). Let X be a Bamach space. The following properties are
equivalens. . _

1. For every clesed convew bounded sul set O of X, all O-valued martingales norm
converge almass surely.

2, For every non empty bounded subset O of X, O has linear slices of arbitrily
small diameter. | _ |

3. Ewery uniformly bounded harmonic function defined on the open unit disk of the
complew plane with values tn X has radial limits almost everywhere on the torus.
. A Banach space verifying the conditions of Theorem (A) is said to have the
Radon-Nikodym property. In ocontrast with the Radon-Nikodym property,

Bukhvalov and Danilevich have introduced the analytic Radon-Nikodym property |

in complex Banach spaces™, Recail that a complex Banaoch space X is said to have
the analytic Radon-Nikodym property if every analytio function f: DX, defined
on the open unit disk of C with values in X, has radial limits almost everywhere
on the torus, this means that for almost all o< [0, 2], lrlﬂl J(reé®) exists, As every
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analytio function is harmonio, a complex Banach spacé with the  Radon-Nikodym
property has also the analytic Radon-Nikodym property. Several remarkable
results have been established for the analytic Radon-Nikodym property, for
instance, we have an analogous theorem of Theorem (A) in the “analytio%’
setting, where “martmga,le is replaced by “pluusubhalmonm martingale” in the
first statement'®™ while “linear slices” is replaoed by “plurisubharmenio slices” in
the second ™, Among other results about the analytic Radon-Nikodym property,
we recall the following result™. |

Theorem (B) Let X be @ complem Banach space wq,thout the anwlytw Ra,don—
N@laodym propao'ty Tbefre ewists a wrw iformly bounded analysic’ funct@o«n, f DX,
deﬁned on the open unibh disk of 'C with values in X, such that fo'r almost all 06 [O 205] ,
hm J (fre“’) does not exist in X; more precisely, we have

hm sup I (re“’) -f (se“"> II >1.

The purpose of this paper is to establ:sh an analogue. of Theorem (B) in the
“Radon—-leodym property” setting, We shall show the followmg 1esu1t

Theorem 1. Lot X be @ Banach spcwe without the Rden—Nfblmdym property.
There ewists a umfoq*mly bounded hwrmomc Junction. f: D->X, defined on the . open unit
dish of C with mlues in X' such that for al most all 06 [0 2au], hm S(re") doss. not
ea:fost

“Let us recall somée notions and notations, Throughout this paper, o W111 de the’
torus {¢¥: 6¢& [O 2]} with normalized Lebesgiie _measure /2w, @ will be the
Lebesgué measure on [0, 20v] and D d‘en'otes the dp'eﬁ unit disk in the complex.
plane. Let X bé & Banach space, 1<p <o, We shall denote by #* (D X ) the spaoe
of all harmonio functions f: D—>X" satisfying - :

17tw= sup ([ 17 (re®) i/ )1”’<oo

_ B A O<r<1iNJ O ) ) v’
for 1<p<oo, and for p=o

A=

It is easy to verlfy that for 1<p<g<oo, hq(D X )Ch"(D X) and w1th the norm
I+l 22 (D, X) becomes a Banach space.
- Let 0€ [0, 2n], 0<a<wm/2 and 83(0) = {z€D: Alg{(z e")/e‘“} <a}, where for
"every 2€D, Arg(z) denotes the unique point & [0, 2%] such that z=re®. Recall
that if f€2*(D, X), f is said to have nontangentlal limit on: e¥, if for every; 0<
a<av/2 (f (%) Jun1 convelges 1n X ‘whenever (#n)n>1 18 & Sequence of D such that 2,

belongs to §;(9) when n is big enough and that z,—>6". Tt will be useful to notice
that every harmonio funetion fE hi(D X) has nontangentla.l limits almost
everywhere on T ' 3
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If :€D, z=re", the Poisson kernel at 2 on [0, 2] is defined by -

1—q2?
P, (6)= 1— 2rrcos(0 o) +r?’

Lot bi be an integr able funotion with values in some Bana.ch space X, fe L ([o,
20::], X ), its harmomo extensmn by the .PO.ISSOD kernel in D is deﬁned by

5[ 5O P02,

It is known that - such a harmomo funotion ha,s radml hmJts f (0) almost
everywhele on T in Xt Inversely, if h€h1 (D, X) has radial limlts and if g(0) =
hm k(re'?), then the harmonm extension by the Poisson kernel of ginD eoinoides

Wlth R4, S . .
Firstly, we discuss the 1elat10n between the existence of radial limits and the
existence of nontangential limits of ha,rmomo funotlons in Banach spaces.

" Theorem 2. Let X bé a Banach space tmd let f€ (D, X). I ff has radial
limits almost ewfry'whem on the toms rm X, then f has also nonmngentwl Z@m@ts wlmost
eq)afryfwhere on the torus fm X

" Proof 1Ifh is any eiement of 5 (D X) havmg 1ad1al 11m1ts almost everywhere
on in X and- y(e") -—llm h(fre“"), ‘the#i ‘the halmonlo extension - by. the Pmsson

kernel in D of ¢ oon01des with h and g€ L‘(T X), If g LY(T, X), its harmonio
extenmon by the P01sson ker nel m D hag radial llmlts almost- ever ywhere on T in
X ‘with g(e“’) lnn g(vre“) If h is any element of (D, X) havmg radial limits

almost: ever ywhele on T in: X, we shall denote. by #(e") its radial limit on ¢, If
g is any functson in I*(T, X), its harmonio extension by ths Poisson kernel in D
will be denoted by the same letter..,, ‘
Let n€ N. There exists an X —Valued s1mple funotlon k. in L*(T, X), such
that [k, —f|1<27%". Put f,=h,—f and gn=1Sall, 50 f.€ LT, X) and g, € LA (T, R)
It is easy to verify that for each X -valued simple function in L? (T, X), its
harmonio.extension by the Poisson kernel in D has nontangential limits almost
ever yWhele on T in X, so h.€ (D, X ) .has nontangentlal limits almost
everywhhere on. T in X Let B.={0€ [O 2ar] Hf,. (e"’) | <27}, It is easy to see that
w(B,)=>2m —2" \a,nd A ﬂi ( p By). is of mea,sule 2av If we denote O,={0€ [0, 2 av]
A N =0
hm 9n (re*) exists}, we have w(0,)=2w and wiAd n ( ﬂ 0,)=2m.
Let 9 eAﬂ) ﬂ O,,), 0<a<w/2 and (Z,,),,>1 1s any sequence of D 1nS1de the
reglon Sa(ﬁ) sueh that Z,,—ae" F01 evely nGN 06 U By, there exlsts then me

N ,m=>n, such that 96 B,, and
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lim sup llf (Zy) —f(Z)]
<hm . Sup [[n(Z) — h,,,(lq) I +hm  SUD “fm(zp> ~fu(Zl

<llll}1_)§up 1fm(Z) | +1H§L sup I!fm(Z ]
<lim sup g (%,) +1ita sup gn(Z,) -
P-oo g—roo
=29 (e*)<27,
‘where, in the last hne, we have used the well known fact that each funoction 1n

hl(D B) has nontangentlal limits almost evel ywhele on T. Smoe nEN is
ar'bltra.ly, we get ' ' ’ ' '

lm sup 15 (Zp) =f(Z1=0,
‘which shows that S has nontangentla,l limit on 4% and ﬁnlshes the ploof of Them om
2. o
" The followmg “localization” of Theomm 9 is also brue,

"Theorem 8. Lei X bo a Banach spwce, AcCT bs a Lebesgue measumble wbset
with posrotfwe méasure and lot f € h""(D X ), suoh thwt for efvem/ e“’EA lu:n f (re®)

Aemsts Then for almosf, aZZ e"’e A T has nonmngentwl limit on 6%,
Proof Let g€ L“(T X ) be the funotion defined on T by

lim f (fre“’) if g% EA
g<ew) { rr1»

0, o otherwise, :
Then; the ha,rmonlo extensmn of g by the P01sson kernel has nontangential limits
almost everywhere on T in . X ~by Theorem: 2, .and for 'almost: all. e c 4
lim {f(re?) —g(re®)} =0. So, without loss of generality; we can suppose that for
every e?€ 4, hmf(m“’) 0. . . Yy
| Let hEL“(T) e the funetlon ‘defined by _
M, ifé" A°
- h(e®) = { L Bes
_ 0,"" Cif 6”€A
where M = |hlls-. T.et B= {e“’EA hm h(re®) =0, If e"GB 0<oa<m:/2 and (Z,,),,,,X

is any sequenoe of D ingide thé region S (0) suoh that z,.—-»e“’ we have

7 1= [ 7 P <a>«za/2as[j
for each O<s<1 So for every ne N N
Lf @l =lim 1o -

.=11m IU i (se'“)P,,‘,ﬂ(os)&dz;/%vni;ni. -' :

<j tm [ (50) u | @/
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J h(e) P, () dos/ 30 = (2,).
We get 11m If )l <11m h(z ) =0, which completes the proof since BCA and the

measure of B equals to that of A.
Theorem 1 is an easy consequence of the theorem above and the su.bsequent
result,

- Theorem 4, Let X be a Banach space without the Rwdon—N@kodym propersy.
Tkea‘e exists f € 7=(D, X ) such that for almest all 6 € [0, 2av] S has not nontangential
limit on 6*; this means that there ewists 0<a<w/2, and & sequence (Z,)ns1 on D inside
the region 84(0), such that Z,—>¢* and lim £(Z, ) does not ewiss.

The proof of Theorem 4 w111 .use the suksequent two lemmas which may be, we
hope useful in other situations.

Lemma 1. Let a €D and let h, be the conformal mapping from D onto D deﬁneot
by ho(2) = (2— w) /(- az) There exists 0<,3<m;/ 2 such that for every 6¢c [0, 2w],
ho(r6®) belongs to the region Sg(ha(e®)) whenever 1—r.is small enough. _

Lemma 2. Let A be o Lebesque mewsumble subset of [0, 2m] with posw ve
measure and, let e>0. There ewists €D, such that @f P is the confo'rmwl mapp@ng from
D onto D defined by ha(z) (z a) /(1= az), ;1,({06 [0, o]: 69=he(e®) “for some
o€ A}) is more than 2m—s.

Before proving these two lemmas, we will give the ploof of Theorem 4.

 Proof of Theorem 4 Let X be a Banach space without the Radon-Nikodym
prperty. There exists €2~ (D, X) and a Lebesgue measurable subset -Ac [0, 2a]
" with positive measure, such that for every € 4, 11m g(re®?) does not exist.

By Lemma 2, for every n€ N there exists a,€ D suoh that if 7, is the confor mal
mapping from D onto D defined by 4,(2) =(z—a.)/(1—a.z), w({#€ [0, O /: €=
h,(e*) for some o€ A}) >2mw —1/n. _ - o

For fER*(D, X), n€ N and 6¢ [0, 2ar,] let us consider

B(f)(m, 0) =1im sup |f oha(re®) —foha(se®)],-

whele e < 'T ig such that A (e‘“) e”" It ig easy to verify that the application f—
B(f)(n, 6) is measurable for eaoh nE N. Put
Ny={0€ [0, 20]: Sup E(f)(n, )0}

and

Gh={f€r™(D, X): p(Ny)>2m— 1/n}.
We olaim that for each n & N, G, is o - -empty. Indeed. w({6€ [0, 2x]: 6"
ki.(¢") for some € 4}) >2az:-1/n, if 6% = h,(&™) for some a€ 4.
E(gohat) (m9) hmsup lgohvt(hn (1)) — goha™ (ha(se™)) |

-=hm Sup Ilg(re‘“) 9(s6*)|>
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We get sﬁp B(gok;*y(m, 0)>0 and {06 [0, 2x]: €¥=h, (@‘“) for some «€ A}

N yor» . Thig shows that goh;' € G, and so G, 1s not empty, .
G, is an open subset of h™(D, X'). Indeed, let f € G-, then N;= U Di. Where]

Dy={0€ [0, 2w]: sup E(f)('n, 8)>1/8}.

There exists then £€ N, such that M(Dk)>2au 1/n. Hence for any = h“(D X )
with |A|-<<1/4%, f+h belongs to G,. >
We shall show that for each nE€ N, G‘ is dense in h""(D X). Let f E (D, X)
and A€ @y, With |A]s<1. Then §+ah belongs to &, if «>>0 is small enough; this
proves that G, is denge in 2~(D, X). In deed, let >0 be sufficiently small so that
w({0€ Ny: sup E(f)(n, 9)<8} <1/2n,

If we take a=8/4 we get . '
= ( [0’ 2”] \Nf> nNhCNf-l-ah i

and _ - . , :
O':" {96 [0, 2w]: g‘égE(f) (n, 6) >6}CNf+ab.
We have . _ ' » '
w(Ntsan) <p(BUO)=pu(B)+u(0)
> (3 — () =1/ 30+ (V) =1/ 20)
=2w—1/n.
This proves that f+ah € G,.

‘Now as 2~(D, X ) is a Banaoh space, by Bane categoay theorem, ﬂ G‘,, is not
empty Let f€ ﬂ G.. We have /w(N 1) =2; thls means tha,t for a.lmost all 0€ [O

2w], there exists nGN such that
E(f)(n, §) =limsup 12 (766‘“) —JSha(s6™) H

where ¢ & T is such that 4,(6") =6, Since A, is continuous from D onto ]5, we get
that h,(re**) converges to ¢¥ when r tends to 1, and by Lemma 1, there exists 0<
B<w/2, such that k,,(rre“")_;E_:S'B_(O')_if 1—r is small enough, f is then a uniformly
bounded harmonie function deﬁﬁed on D with values in X sati_éfying Theorem 4,
This finishes the proof of Theorem 4, . L

The argument used in the PlOOf of The01em 4 is smnla.l to tha,t given in [5],
where the author has shown that if X is'a Banach spaee without the Radon-
Nikodym property, there exists a Llpsohltz map f: [0 1]->X, such- that the set of
points of non differentiability of f is of measure 1. : SR S

By the proof of Theorem 4, the set of funotions in h°° (D X ) satisfying
Theorem 4 is a G~dense subset of 2~(D, X) and so.the sét of harmonic- funotions in
a(D, X) satifying Theorem 1 is also a Gy-dense’subsst of 4=(D, X) "'bvavhe'orem‘. 2
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© 'We end this paper: by giving the proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1 Without loss of geneLa,hty, Wwe can suppose that wE [0 1[.

Let ¢ € T To 1‘ 1, a.nd e"E T is such that hw(e“’) =¢*, Then .
(e’“+a)/(1+aa‘“),
and 2\ 50
| ho(r2®) = Y:;}q,{‘f:;gfg e
Letting ,= (he(r.6") —6*) /e, we get '
: ‘ :  (ro—1) (a+ (a®+1)6" —ae®)

: (1—-a®ro+a(l—r,)e%)e* " - . ‘
To show that. ha (r.6*®) belongs to the reglon Sﬁ(“) for some, 0<B <m/2 when g 18 big
enough, it suffices to show that :

. =

a+ (wz—i—l)e*“—a@z’“
(1 ﬁ")em i

for some constant M >0 dependmg only on g€ D, A sumple caloulation shows that
we can take M =2/(1+a?) whioh completes the proof of the lemma, '

In the proof of Lemma 2 we shall use the fOHOWingfﬁotati‘ovn: let &, BE [0, 2w [,
then [, 8] ={0€ [0, 2x]: a<<0<B} if a<B and [a, B]={0€ [0, 2n]: 2w >0>a or
0<O<B} if a>B. Let s, tE€ R,.e“_:_e‘“’,.e"’-;-.e"’,,_0<,a,.,B<2mz, [s, #] will denote the
dnterval [a«, B8] of [0, 205[

Praof of Lemma 2 It is not hard to Venfy that the confcnma,l mapping A, is

tg Arg <M

one to one continuous mapping from T onto T, and %, maps intervals of T to
intervals-of- T. If we denote by g, the application from [0, 2w ["defined Dby g.,(0j -

.Alg (k.,(e‘”)), then for every a, B€ [O 2w, 94( [e, ,B]) [ga(a) ga(,B)] to show the
-lemma,, it is Suﬁi(ﬂeﬂt to show that for overy Lebesgue measurable' subset Ac [O 2m]
with positive measure and for every >0 there exists aED; such that Jo(4) is of
measure more than, 2w — ¢, Fix then 4 and sas above,
L A sunple ca.loula,tlon shows that

Lt (gu8)) = tg<A1g(a)+Aot s (1&2;;3,:23‘0;"2%)

Ha= rs‘“ Lét G be an open subset of [0, 2w] containing a. We claim that /.o( 7 (@)
~ eonverges to 2w when ¢ tenids to 1. ‘Indeed, if >0 is such thbt [oa—n, oa+?7] C:G
. and 6>0 there ex1sts o<r <1, such that Arccos {2r/ (1+fr2)}E [o, n] and '

(1—¢7%siny
(1+¢2)’r<>0: 9171 5y <tg(m— 8/2)

F01 suoh 0<rr<1 a+at/2€g 2([a=n, at+1]), a€gi(fa—n, a+"7]) and therefore
[, a+m—8/2] Cgia([a~n, a+n]) since g¢i; maps any interval [s, ] to [¢ix(s),
o(4)]. An analogous argument shows that, for suoh 0<r<1, [a+m+8/2. -’a]c:
gu¥([a—7 a—n]). We get [at+w+5/2, w+av~8/2]cy ([a 1, o- n])
- w(gls(@)) =u(gi(la—n, a—n])) =208, - - S i




No.

1  Bu, 8.0. BXISTENCE OF RADIAL LIMITS OF HARMON IO'FUNGTIONS' 117

It is eagy to verify from the special expressmn of Ya that there exists in tegrable

funotions f,€ L*([0, 2w]), such that for almost.all (e, 0) € [0, 2712, fi%(0)=fi*(ax)

and for any measurable sudset B of [0, 2x].

w(gis(BY) = [, Fa0)as.

We leave the verification of this fact to the interested reader.

Now if (@,),»1 i8 a Sequence of open subsets of [0, 2w], suoh that Ga1CGh,

| Aca, for every n€ N, and ,uK QG,.) w(4d), we ha,ygl

lim | p (gt )aa

| =1imj j £(0)d0 dos

r-1

-=j lim £ %(9)d0 da
jG mj F4(8)d8 dox

=lim im | G,f1(0)d0 do

flsoo 711

.=1imnmj ja F42(9)des 09

fiaco 11

=lim J jG‘ Si2(a)do df

=00

=lim | 2m:d0 =2mu(4),

fiyco

where, in the last line, we have used the faoh that for 0€ A=@Q,, hﬁx L (@) do=

151111 w(9%(G,)) =2m. There exists then 0<r<1 and 0€ [0, 2], such that w(gis(A4))
rl ;

> 2w — 6. This finishes the proof of Lemma 2,

{1l
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L7l
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