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EXISTENCE OF RADIAL LIMITS OF HARMONIC

FUNCTIONS IN BANACH SPACES
. . . .  . . . .  '. . '

Bu Shangquan (步尚全) * * *. ■■ . .  . • • . .

Abstract

The fol lowing result is established： let X be a Banach space without the Eadon-
Nikodym property, there exists a uniformly bounded harmonic function f  defined on
the open unit disk of C with values in X,  such that for almost all 0S [0̂  2〇c]^ lixn
^(re*0)  does not exist.

In  the last twenty years， several remarkable results have been established in  
the theory of infinite dimensional Banaoh spaces. Most of these results emphasize 
the interplay between the topological, geometrical and measure theoretical 
structures of a Banaoh space. Her© is a well known prototype of such interx-elatioriig,, 
I t  is due to the combined ©fferts of several authors and we refer the reader to the 
books [1] y [6] and the paper [4] for a detailed account of its history and fox* the 
notions involved in  its statement, '

Theoxeua (A). Lei X  he a Banach space. The following properii^s me 
equivalent.

1. For every clcsed comex bounded ml set O of all O-mlued martingales norm 
converge almcsi surely.

2. For every non empty hounded subset O of X , O has linear slices of arbiirily 
small diameter.

3 . Every uniformly bounded harmonic function defined on the open unit dish of ihe 
complex plane with mlms m X  has radial limits almost everywhere on the iorm^

A Banaoh space verifying the conditions of Theorem (A) is iSaid to have the
Radon-Nikodym property. In  contrast with the Radon- Nikodym property,
Bukhvalov and Danileyioh hay© introduced the analytic Radoa-Nikodyrd property
in  complex Banaoh spaces1143. Recall that a complex Banaoh space X  is Said to have
the analytic Eadon-Nikodym property if every analytic function /： D(->X, defined
on the open u n it disk of 0 with values in  X , has radial lim its almost everywhere
on the torus, this means that fox* almost all 0G [0, 2?r], lim exists. As ©veryrt t

Manuoript received February 11,1991,
* Department of Mathematics, Wuhan University, Wuhan, Hubei 430072, Ghina*



No. 1 But S.Q. EXISTENCE OF RADIAL LIMITS OF HAEMONIO FUNCTIONS 111

analytic function is harmdnio, a complex Banach space wiiJi the Radon-Nikodym 
property has also the analytic Radon-Nikodym property. Several remarkable 
results have been established fox- the analytic Eadon-Nikodym pi'operty, for
instance, we hay© an analogous theorem of Theorem (A) in  the “analytio?* -setting, where tftfmartingalew is replaced by ^plurisubtarmonio martingale^ in  the 
first statementC3> 73 while tfclinear slices^ is replaced by ^plurisubharmeiiio slices^ in  
the second C73. Among othex* results about'tfie analytic Radon-Nikodym property, 
we recall the following resultC2：l.
.: ■ • • . . *

Theorem (B). Let X  be a complex Banach space without the amtytic Badon-
Nihodym property. There exists a uniformly bounded ancdytic funcUon f:  D->X,

. .  • • • . ' .  •  ,defined on the open dish of 0  wUh values in X y szioh that for almost all OQ, [0, 2nr], 
lim does not exist in X； more precisely} we ham
r  f l

lim sup \\f(reie) —/(se<e) |> l .‘ .r>s fl . . .  . , ■ . ■
The purpose of this paper is to establish an analogue of Theorem (B) in. the

^^Radon-Nikodym property^ setting. We shall show the following result:
. . . . .  . .  ,Theorem 1, Let Xbe a Banach space without the Radon-Nikodym property. 

There exists a uniformly, bounded harmomc function-f; defined on the open unit
dish of G with values in X y such that for al most all 0 € [0, 2or], lim f(re ie) does not

r f lexist.
Let us recall some notions and notations. Throughout this paper, T w ill de tlie* 

torus {ê x 6^： [0, 2;nr]} with normalized Lebesgtie measure dd/2^y (Jb will be the 
Lebesgue measure on [0, 2or] and D denotes the opefi unit disk in  the complex 
plane. Let X  be a Banaoh. space, < 〇〇, we shall denote by W (Df X ) the spao© 
of all harmonic functions/： D—>X satisfying

ll/l舻- | / 〇ew) 丨丨獅/2 i7f) /P< 〇〇,
. . .for l< j ) < 〇〇, and for^p—〇〇

||/||ft. =  sup 1/ ( 8!) | | . .. zee
I t  is easy to verify that for ^ (D , X)czhp(B, X )  and with tHo norm
I • llftpj hv(D7 X )  becomes a Banaoh space.

L e t0 g [〇, 2?r], 0< a< (7ir/2 and Arg{(«—̂ w) / 0<0}<«}, where for
e v e r y  D, Arg(ig) denotes the unique point 〇£  [0, such that z^re*6. Recall
that i f X ) ,  /  is said to haye nontangential lim it on if for every； 0<. • ：a < 5ir/2, (/(« n))„>i converges in  X  wheneyer (»„)n>i is a sequence of D suoli that e„ 
belongs to ^ ( 6̂ ) when n is big enough and that It w ill be useful to notioo
that eveiy harmonio funption X )  has noxxtangehtii.1 limits almost

everywhere on T, •-
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If «G®, = theiPoisson kernel at j» on [0, 2cir3 is defined by
p  ______ 1—r2_____

夕 1—2rc〇s {Q—a) +  f3 *
. . .Let /  "be an inWgrabl© function with yialues in  some Banaoh space X, / € i 1([0 >

. - . . : 1 • ■2i?jr], X ), its harmonic extension by the Poisson kernel in  D is defined by
f ( s ) ^ r / ( & ) p e(0)d0/2^Jo

It is known t|iat 叫oli a harmqnio function has radial limits / (0 )  almost 
everywhere on T in  X C4K Inversely, if h^,hx(J }̂ X )  has radial limits and if g(9) 
lim ^(r6<e), then the harmonic extension by tho Poisson kernel of gr in  P  ooinoides
with hm.

Firstly, we discuss tho relation between the existence of radial limits and the 
existence of nontangential lim its of harmonio functions in  Banaoh spaces.

T h eo rem s. LH X  be a Banach space and let /G^°°(D, X ). I f  f  hĉ s radial
.  • . ..................................................... *-limits almost everywhere on the torus in X y then f  has also noniangeniial Umits almost.V . . . .  :every where on the torus m"X\

. • , . .； •. • ■■Proof If is 啟ny eleme:^ dfW (1 ) ,1 )  having radial limits almost evbiywhiere
on in  X  attd — h(rei9) } then the harmonic extension by the Poissonr tl
kernel in H of g ooiioides with h artjd' g^I^CTy X ) .  If ^ ) } its harmonio
g^ension by Po細 on kea^令1, j n  D h徉s Radial limite al辦ost everyw
X  with a(ei0) ==lim gird9). If  h is any element of ^ (D , X ) having i*.adial lim its

almost eYQrywkere on T w© shall denote by h(ei$) its radial liinit on ei&. I f
g is any funotson in  ^ ( T ,  X ), its harmonic extension by tha Poisson kefiiel i n  D
will be denoted by the same1 letter „ . .,

； . . . . .  .Let There exists an X-valued simple function hn in  ^ ( T ,  X ), suoh
that l^n- / | | i < 2 '2n. P u t / n= ^ „ - /a n d  ^n-=||/n|, so/nG^CT, X )  a n d ^ G iH T , R ). 

It is easy to verify that for eaoli X-yalued simple function in  ^ (T ,. X ), its
harmonJ^a exten^iop* by tho Poisson kernel in  D has nontangenliial liinit曰 almost
, .  . . : • < ；, . . . • . . • - . .■ ■ • ■ *everywhere on T in  X , so X )  has nontangential; limits almost
everywhhere on T in  X . Let = [0, 2ar]: ||/»Cei0) || < 2 ''n}. I t is easy t〇 see that
jj>(Bn) > 2 jf—2-n, and = 〇 C U  is 0：f measure 2jc. If we denote 〇„={0〇. [0, 2 sr]：

〇 . ----- ; «>1 h>n ；
lim g^re1?) exists}/ we and /^(^4 fl ( f ] O ny=2!ie.
r f l

Let 0 n  ^»)； and (^ n) n>i is any sequence of D inside the■, ; ：； ：, .. -r： . .  I：；-;： :
region Sa(0) Fox* every w£ W；'. 〇€  Lj ther? exists, then

N ,m >nr suoh that 9QBm and
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sup \\f(Zv) - f ( Z a) Ic〇
<lim  sup \\hM(Zp) - h m(Zq) || +lim  sup \\fm(-ZP) - f m(Z9) 1p,q--¥〇〇 PtQ1-*00 «•
< lim sup \\fm(Zp) I +  lim sup ||/m(Za) ||p~»〇〇 g-»〇 〇

<lm i sup^(Z p) + lim  sup ffm(Zr)p—)〇 〇  Q—¥〇o
= 2 ^ (6 w)<2-»,

where, in  the last line, we have used the well known fact that each, function in
• • • . . . .  , • . * . \hx(D} B ) has nontangential lim its almost everywiter© on T. Since is-■ ； .1 : .  -. ■. . .... arbitrary, we get

' 11M sup 1=0, ' ;；

whioli shows that /  has nontangential lim it on ei& and finishes the proof of Theoi°em
. . .2.

.  - , - .

The following ^localization^ of Theorem 2 is also true.
Theorem 3. Lei X  be a Bandoh spacey A d T  le a Lelesgue measurable subset 

with positive measure and let hT(Jiy X ) }'~ such that "for every ei0^ A 7 lim f (r e i9){ r f l -
exists. Then for almost all ei9̂  A, f  hm nontangential limit on et&. . . - . -

Proof Let g £ L ^(T ^  X )  be the function defined on T by ' . .  .，、

r T i  *:'  otherwise,
rThen, the harmonic extension of ^ by the Poisson kerner has nontangential lim its 
almost everywKer© on T in  . X  by' Theorem. 2> and for 1 alm〇3t- iall ei0

= So1, without loss of generality, we oari suppose that for■ rtl
every ei9&A, lim./(-rew) ==0; , .L. 乂： 、 ’rtl

Let te  t ie  funotioii defined by
M, if A  ； _ ‘
0，

where Jf =  ||fe||fc.. Let jB={0*®g JL： lim ^(re^) =6}. If 0<«<5f/ 2 and (Z n) n>i
... . . .  .. rn ., .... . ； .■ ■ - ■ as any sequence of D inside the region S (6) suoh that we hay©

| , ( s 〇  丨丨气 I Jb 如(a)cfe/2sr|
for each 0 < s < l. So for .every

l/(2 j||= lim .||/(s« !n) |  v. S|1 *
-=lim j  f f(seM)P en((»ydccf^ 

lull ||/(s0to):|P*B(〇t)da/2jp

h(e^)
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/*2〇p
.<  I h (eia) P tn (e**) da/27v—h(z„).

Jo

We get 11m ||/ (2；n) || < litn ^(55n) = 0, which completes the proof since B dA  and th e»I 〇〇 n-»〇〇
measure of B equals to that of A9

Theorem 1 is an easy consequence of the theorem above and the subsequent 
result.

Theorem 4 . Let X  be a Banach space without the Radon-Niiodym property,,. . .  •
There emsis X ) such that for almost all [0, 2oir], /  hm not ncntangential

Umit on ; iMs means that there ecdsts 0< 〇：< ^ / 2, and a sequence (Zn) n>t ^  D mside 

the region 8〇(6)f such that and lira f (Z n) does not exist.W—〇〇
The proof of Theorem 4 will use the sutse^uent two lemmas whioh may be, we 

hope,, useful in  other situations.
Lemma 1. Lei a ^ ： D and let ha be the gôiformal mapping from D onto "D defined

byha{ z )^ (^ -~ a )/ (l- -a z ).  There emsis 0 < ,^ < ^ /2  such that for every
• - . . . . • ； • • • • .

ha(re^9) belongs to the region ^ (A a( ^ ) )  whenever l —r  is STnall enough.

Lemma 2 . Let A be a Lebesgue measurable subset of [0, 2诹] with pcsitive 

measure and let s > 0. There emsts a ^ D y such that i f  ha is ihe conformal mapping from  

D onto "D defined by ^ ( ^ ) - ( 55- ^ ) / ( 1 - ^ ) ,  [〇? 2^]: for some

a£A }) is more than 2〇ir —s.

Before proving these two lemmas, w© will giy© the proof of Theorem 4.
Proof of Theorem 4： Let X  be a Banach space without the Radon-Nikodym 

prperty. There exists (D, X )  and a Le*besgue measurable sutset Acz [0, 2%"]

with positive measure, such that for every lim gCre19)  does not exist.rtl
By Lemma 2, for every wg N there exists a>„G D7 suoh that if is the conformal 

mapping from D onto D defined by ^  (z—a„)/ .( 1 -ane)} [0, 2jf/:
hn(eia)  for some a^,A }) >23p—1/w.

Foi' f ^ h M(D, X ),  91GK- and [0, 2av], let us consider
•® (/)(n, 0) =lim  sup \\f°hn(reM) -f^ K ise^)||, ■r.stl ^

where is suoh that ^„(6^) I t ig easy to verify that the appHoation
E (f ) (n ,  9)  is measurable for each Put

Nf={9 £  [0, 2sir]: sup E (f ) (n ,  0) > 0}n€Nand
& n ^ { f e h r (B y X )： ^{N f) > 2o t-l/n } .

We olaim thai for eaoh is n d e iiip ty . Indeed. jt6({0€ [〇，2亦]:
for some A } )^ 2tc—l/n r i i 6̂  — h n ^ )  for some

^(gohn1)  =lim  sup I g ^ ^ i K i r e ^ ) ) - g o ^ i K i s e ^ ) )  1
= lim i3up ||^(rela) — l > 〇.f»«U
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We get sup 0 )> 0  and {06 [0, 2m]: for some <xG ^}ci.m€H
Ngojc-i. Thla shows that g^h^^Qn and so is not empty,

Qn is an open subset of h~(D, X ). Indeed, let / G 〇■», then ^/== Z>ft. where]
•Dfc= { ^ €  [〇, 2w]： sup E (f)(n , 9 )> l/h }.n€N

Tlie;reexiststiie:a^GN，.'suoIit]iatjLt(Z)fc)>25zr —l/n_ Hence for any 
with ||^ |a-<1/4^, f + h  belongs to 〇■„.

We shall show that for each «G G~n is dense in X ). Let X )
aad h£ Q2n with | Then £+ah belongs to G„ if «> 0 is small enough; this：
proves that (?„ is dense in  A°°(D, X). In  deed, let 8>0 be sufficiently small so that

fJ>({d€ Nf. supJ7(/)(w, 0)<8}<l/2»i.«6H
If  we take «<=8/4, we get

B = ( [ 0 ,2 o r ] \ ^ ) n ^ c ：iV-f+aV
and

〇= 仅G [〇, 2卯] : su p S (/)(«， 敁。
«6H

We have
^ ( N f+an) <P>(B U 〇) -= K B ) + fi(〇)

>  (2印—fjb(Nf) - l/2n) +  —l/2?t)
= 2uv—l/n .

This prove目 th a t /+(¾¾ €  仏 .
Now as h°°(J), X )  is a Banaoh spaoe  ̂ by Baire categwy theorem, H  is not 

empty. L et/ €  门 We have 烊(友，）=2®; this means that for almost all. 0 ^ [〇,
2sr] , there exists « €  JV, such that

■ ®C/) (w, 0)  = lim  sup \hn(h6ia) —fh^se^ )  | > 0,r,sf 1
where T is such that h n ^ )  =  0̂ . Since hn Is continuous fx*om D onto D, we get 
that hn{re^) ooixverges to when r tends to 1, and by Lemma 1, there exists 0 <  
^ < qc/ 2j such that hn(re^ )^ 80(〇)/i£ 1—r  is small enough. /  is th©a a, uniforxnly 
bounded iiarmonio function defined on D with values in  X  satisfying Theorem 4, 
This finishes the proof of Tlieorem 4#

The argument used in  the proof of Theorem 4 is similar to that given in  [5] r
where the author has shown that if X  is a Banaoh space without the Eadon-
Nikodym property, there exists a Lipsohitz m ap/： [0, such that the set of* . • ' points of non differentiability of /  is of measure 1.

By tlie proof of Theorem 4, the set of functions in  A~ (D, X ) Satisfying
Theorem 4 is a ^ -d ense  subset of A°°(D, X )  and so the s6t df harmonic functions in
AW(D, X ) satifyiixg Theorem 1 is also a ^ -dense  subset of ^°°(D, X )  by Theorem 2.
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We end this papei' giving the proofs of Lemma 1 and Lemma 2.
Proof of Lemma 1 "Without loss of generality, we can suppo日e that a G [〇, 1 1。

Let eia^ T f rn f  1, and ei0̂ ： T is such that h^e^) Then . 

and
. …

Letting 2n== (haCr^) - 0̂ )/0̂ , we get
_  (rn — l )  (a + (0̂ + 1 )0̂  ~aem) 

n (1 — asr„ + a {l~ rn)eUx)eia , . .
?̂.o show that belongs to the region 8 /Ka) for some.0</8<5r/2 when to is big

enough, it suflSioes to show that
tg Arg 奸 (任2+ 1 )产 - ， < M  'lg  g ( l - a ^ ) 6 ia S  ■

for some oomstant M > 0  depending only on «G D. A simple oaloulation shows that
-we can take M ==2/(1+ a2) whioh completes the proof of the lemma.

.. • . •In  the p:roof of Lemma 2 we shall u祕 the folio古ing notation: let <»，泠G [〇, 
then [ce, [〇, 2^]: if «<^6 and [oi, /8] =  [0, 2^1： or
■〇<0<^8} if 〇；> ^ # Let s, iG B, 0<a, /3<2OT：, [s, #] will denote the
in terval [a, of [0, 2]&r[；. 、 ' 、；）

Proof of Lemma 2 It is not hard to verify that t：h© conformal mapping ha is 
one to one continuous mapping from T onto T, and maps intervals of T to 
lateryals of'T. If  we ^ngte  by applioatiqn from. [0, 2?f [ ：detfipi.ed by ^ (0 )  =
Arg (haCe^y, then for eyery «, /36 [0, 2?f[, ga({a, ^]) = lga(a), ga(^ )] ,  tp show the 
lemma, it is sufi&oient to show that fox- ©very Lebesgue measurable subset A d  [ 0 , 2tw2 

with positive measure and for every e> 0  iihere esists a^ D ,: such that ga(Ay is of 
jtneasure more than/2^ — Fi x then A  and S 'as aliioye； ■；

A simple oaloulation shows that . ,
tg ( ^ W )；=tg(A rg(«) +  Act tg T1^ ^ ^ 2 r)>

.xia^re^. het 6? be an opeii subset； of [0, 2a?] containing a. We olaimthiat /t(i5rr«((?)) 
converges to 2sf wlien r teiids to 1. Indeed, if •»?>0 is suoh thbt {a—r), ¢¢-1-¾ cK?, 
And S>0. there exists 0 < r < l ,  suoh that Arooos { 2 r /( l+ r2)} €  [〇, vl and ‘!

： ： ； ： ：

.•For suoh .cb.+亦/2.g 你 (.[a:—”，a十”] ) ，a€:成（[os—>?，. a + 吸).，and.' th^fefore
[a, a+ or-8 /2 ]  c ^ ( [«-■ >?, a + n ]) sinpe maps any interval ,[s, i] to [g!^(s), 

. An. analogous argument shows that, for suoh 〇< r < l ,  ； [« + ^ + ^ 2 . « ]c： 
^ r ( [ « - %： «-»?])• We get [arHw+S/2, a+ sr-8 /2 ]c：̂([<»-J?, aad
^ - ( ^ ( ^ ) ) )  [ « - %  a-v~]))>2<jc~d. ,



It is easy to verify from the special expression of ga that there exists integrabis 
functions/ 〇€  ̂ (  [〇, 2(tp]) , suoh that for almost, all («, 6>)G [〇, 2〇p] 2, =fre(a)
and for any measurable sudset B of [0, 2ot?].

J b

We leave the verifioation of this faot to the interested reader.
Now if (Gn) n>1 is a sequence of open subsets of [0, 2ov]y suoh that 

AczQn for every and n ^ » )  » we ^ave. n>l

Hm f 弘(成 ⑷ ) —
rtl Ĵ

<=Iim f f ffe(9)d0 da
r->l J A J A

«= f Mm fircl(0)d9 da
J a r ni

■=lim f^nliin f f*r%d)d9dot 
rt-^〇〇 J rt2 jjL

= lim lim [ &nf  忠(fi)汹加1
n-~>〇〇 r t l

= lim lim f {Gn /re(^)^a ̂

=  lim f lim [〇■» f̂ (a)d〇idO 
«-»〇〇 J JL rtl J

=lim 2<nidd=2!n；[j>(A)f 
W-+00 J A.

where, in the last line, we have used the faot that for 9^AcGn, lim I ftlWdcx篇rti J 〇 n

lim There exists then 0< r < l  and 06 [0, 2or], suoh that ̂ (gr%A))
rTl

> 2?p — e.This finishes the proof of L e m m a  2„
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