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ON THE DUALITY OF GENERALIZED
GEOMETRIC PROGRAMMING

ZHAné JIANzZHONG (3% 3¢ %) * Zmu DEToNG (% 8:8)*

g A,bstra.ct

It is found that generalized geometric programming (GGP) is in fact & &pecial case

of generalized convex programming. By selecting & suitable bifunction and calculating

*its adjoint function, the dual form of the standard GGP problem is derived. Some duality

" theorems are also obtained with this point of view. The method used is simpler and more
genera] than what appeared in the literé.ture.b _

§ 1 Introductlon

Generalized geometnc plogram is a class of extremum problems deﬁned a.s'

follows,

Let ¢x(a”) be convex functlons for k€ {O} UI ud, where I and J are two non-

intersesting (possibly empty) positive integer sets with finite cardinality |I| and
}J |, respeotively; o€ R™. Denote the conjugate function of g, by Ay, i. e., :

I () = grc(y")"sup {<y’° > — g}, - @

Denoise by Oy and Dy the eﬁ’etlve doma.ms of gy and hy, respeohvely |
,Ok—dom Grr D;o_.dorp e - (1.2)

For each j€J, define ) o
O‘“_-{(a:’ Kj) ]K;-—O and sup Lo, @< o0, or K,>O and a;’EK,O;} (1.8)

Let 3
o= (2 a;’, ar’) € R™,

where m=mo+ X my+ 22 mj,
, N iex g o
. | K=(Ky +, Ky)€RY,
O={(a, K)|a*€0y hE€{0} UI and (o, K;) €0F, jET}.
Lettmg X be'a olosed convex cone in R™, we define -
B={n K)| (@, K)EO s€X, a.nd g;(m‘)<0 zEI}
Furthel more,’ deﬁne functlons | : |
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sup <, &) 1fK,—-O and (o, Ky) EO}":

d€Dy

91 (@, K;)=1 K,9,(a?/K;) if K;>>0 and (o, K,) 60;, (1.4)
I otherwise '
and _ o »
Ga, Ky=g(a) + ot K). (1.5
The extremum problem P
(P) ¢= inf G(wx, K)
’ (& K)ES

is called a generalized geometrio proglammmg ploblem and is expressed as GGP
for short in this paper: : ) .

GGP is a olass of important optimization problems, which mcludes ‘many
typical extremun problems: as its ‘special cases, such as the minimization of
signomials, quadratio programming, best J~norm approximation; optimal Io‘ea,ﬁién,
multicommodity fra,nsportation networks, minimum diserimination information,
diserete optimal control with linear dynamies, dynamic programming with linear
transition equations and so on (sée [1] and [2] for detail), Peterson has made
a systematio study on GGP (see [8—6]). One of the very important properties is
that the dual of GGP has nioe symmetry—-—it is still a GGP problem As shown by
Peterson, the dual of problem (P) is

| D) b= inf H(y, A),

o  wwer
where , ,
Di={(', &) I.?;""’—'O and sup <yt o< +oo, or >0 and y* €MD},  (1.6)
 D={(y, M) |9*E Dy, k€ {0} UJ, and (¢, M) €D}, ¢€ I},
_ Y={y|<s, yp=>0, Vo € X},
T={(y, M)| (v, M) €D, yE€Y and hy(y") <0, j€T},
' . sup(y,o‘) if A;=0 and (¢, x)eD

k¢ (s M) = hh,(yi/?\.i) if A>0end (¢, MEDE (1.7)
+o0 otherwise,
H(y, M=ho(y’) + Z b (0 M) (1.8)

Woe found that in fact the duality property of GGP can be derived as a special
oase of tho general generalized convex programming theory. More exactly, if we
seleot a suitable. bifuncbion, express problem (P) as a génera.l;ized- oonvex program
associated with this bifunotion, and find ifs adjoint bifunc%ion, then ‘the
generalized convex program associsted with the adjoint bifunction is just problem
(D). This method is much simpler and more general, and also can be used to
- derive dual for some problems which are more oomphca.ted than standard GGP
Fulthermme, with this pomt of vmw, ’ahe proof of the duahty theorem of GGP
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will be olearer and simpler,

In section 2 we construct a blfunctlon F corresponding to problem (P) and-
derive dual problem (D) based on F. In section 3 we prove a strong duality
theorem between problems (P) and (D). The notation for. bifunotion and adjoint
funetion in this paper is similar to that used in [7] of Rockafellar.

-'§2." Dual Problem Derlvatlon

We introduce blfunotlon F hom R? to R™:
(FW) (v, K)=go(a®—2°) +2 9; F (o~ &, K;—m) +8((w, K) |g:(o* -—z‘)

| <, oEI)—l—b‘((m, K)|s+£€X), o : (2.1)
where 8( |0) is the mdlcatm funotlon of set O, i. e., Lo
' 0 if a;EO
5(a|0 { 2

and , .
W=(, § w0 €ER,
a=(2° &, ') € R",
£= (€ &, E)eRm,
- w=(ta; -+ pan) € B, |
N= (7, **, ")m)ER'J'y o
é=2m+|I|+|J|.
It is easy to see that now problem (P) oan be expressed as
(P inf (FO)(w, K). L
By Section 80 of [7], the adjoint blfllD.O‘blOIl of F is deﬁned as
(F*(a*, K) (W)= 3ot {((FW) (@, K) e, a*) — 3@ o= 3!, o
~2 KK+, 8%+ 31, o+ 3¢, 2% |
<G 60+ mm+2 /wsm}, | (2.3)
where '
(z f*r ' 7/')
If there is a u;<0(4 € I), then we can let p;—>+4co whloh keeps the value of
(.FW) (w, K') finite, so that puf—> — oo, 1ndmat1ng that C
(F*(a*, K*)(W*)=—oo, (2.0
Beoause the dual problem will be sup (F*(a*, K*))(W*), obvmusly we can ignore
this oase, i.’e,, in What follows, we only need o consider the case
: i i ug=0, Vel - (2.5)
On the other ha.nd 1f &Y, then there exists v€ X such that '
' & v)<0 '
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Takmg a foasible solution of problem (P): (s, K ) €S and takmg 2=0, 1=0,
m>g,(m) for 4€ I, and - :
L éi=h—a (A>0)

80 that o-+¢&,€ X we seo that for this pa.ll of (m, K) and W=(2, &, W 77);
(FW) (s, K) is finibe, : -

But . '

(o E5=1K0, €= o, £D>—c0 (k> +o9),
The ahove facts and (2 8) indicate that when £*C Y,

(F*(a*, K*))(W*)=——oo : o (2.8)
Therefore, we only need to consider the case . | T
grer. @0

In fact when £*€Y, we ha.ve (v, §"=0 for any v in X, Thus - o
min <§, £*)=mindv—g, £ =miny, E) <w, £ = —<a, £ (2.8)

{€Xmg
and the minimum is attained at & = —a(v= 0)

By (2.1), (2.8) and (2.8),
(F* (o K*))(W*)" mf {go(w ~Z°) <a®, w’°>+<z“ 2% —<a £

+E[91(m’ #) Ky=m;)—~ -<dt, w’> — KK

<, 2 — Lo, £ ]
- + B~ Loty @ +<, B — <o, E+uig(@—#)]}. (2.9)
o I,,J()tv . .

bo== it {go(a~4) — <o, 20, B, £
-—mf{go(m —2%) —<{a® — 20, 20+ {a®, #*0~ "0 — £}
= — sup {(a; ~2°, '*°> ~ go(2° —z")}—}-mf(m" z*°——a; ——5‘)
— B (2" if "0 20__() M0 D,
_{ho(z)lz 70— OZEo. (2.10)
{—oo. © . otherwise, _
bi=inf {uigi(a'—2) = <o, a*H <2, 2D~ <, 5">} |
= inf (uigy (o)~ i—sh, #5}+inf G, -t g}, (2.11)
Obviously, .~ ﬁ. L 5
. 0 1fz“--a: 5‘—0 .
. i M L) . - (2:12):
o 1gf<m, ? §> {—oo otherwme (2.12)
HM>0wm L . .jﬁﬁ,,:ﬂﬂ_.,-.pfzﬁ -
a8 (uioCet )~ @i, ) gup (e o (Wi W}
o o = (e (@) = — () (2%)
: Lo etk ) ifeptDy, e
.;{ m.h;(z /1) 2 6'.“‘ b (2.13)
oo otherwise, . '
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If ,Lpf ={0, then . ) . |
- inf {wigi(a* —2¥) — o' — 2, "’)}_—.':-sup‘(w‘«_ APOR

Wheén deriving (2 9) from (2. 3), we take w;=gi(m—2), Whloh means o' —#' €0,
and hence :

ggg{@‘-z‘, z"‘>}=§}ég{<<>", I (2.14)
_ Oombining' (2.18) and (2.14), we see that |
-— wjﬁ; { M?g;(wf-z‘)“—~<a;‘—-z‘,~ zm>} :
wihi(2%/ ™) if pH>0 and 2¥€ Dy, -
- 1 sup ety oy if pti=0 and sup <o, £"y< -+oo,
+o0 - otheirwise, - ,_ |
By" defining ' .
Df={(", w))|wi=0and 3161?‘ (z"‘ m>< +o0; or w; >0 and z*‘e p,fD,} (2 15)
and
{sup <z" o if ui=0and (2", uy) GD;*, "
h*(z"’, g ) ==4 o0 S - (2.18)
Y T e/ o >0 and (4, ud) € DF
for each (z”, M,)ED", we obtain S - S
R, wp) i (2% wi) €DY

it i) o, 5 { .47

o {mg;(m @)= (a; B @ >} +o0 otherwise , (2.17)
a.nd thelef01 o, for each @EI _ o

3= { hi (e, w) ifg%—-§"=a® and (2%, w) € DY, (@.18)

) otherwise. - »= < .

‘We now condsider .
b= inf {gf(s/—#, K;—mn)— (a:’ a*y — K;K'* O > (a;’ gy +nmit.

ody2d, Ky,ns

A . - (2.19)
As in (2. 19) an mﬁmum is wanted, we only need to ohserve the case K;~ 3= M=0
(othervnse the ﬁ1st ‘term. in the braoes W111 be +00) For notatlona,l 51mp1101ty,

let
L t’-=w.’——z’, .'v»,=K,~m, ‘VjEJ.
Then we have : _ :
b= inf  {g} (#’ ; ‘F’) —F -+, & +E47) — (o 4m;) K5 K20, 2%) +nmi}

,71,29,m4

=inf {g} (. 7).~ <, D TRy .
- +infd, 2%~ M~ £y Hintn (- K3). | o (2.20)
P . . - 79 . .

COlearly, :
i ' -'if':zn;_'_gu;::_ m”=0 '

1 mf(zj z’—w 5*’> { i‘ (221)

oo -otherwise,
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0 if nj— K* =0, _
i f 1 (0 — K ={ B 99
. - m ‘77:("‘7._1 ) _L—co otherwise, - (2.22)
lnf{gf (#) 7)) =<F, oM +E¥)— 7K} 4
= “SHP{W:K 4+Sup{<t’ *’+§*’> 97 (¥, 7;)}}9 ._ (2.23)
and
mp(CH, D -gh W}
sup{<¥, "+ £~ SuP H, &y if 7;=0,
{sup{(ﬁ’ a £ = (gmp) ()} if""l>0’
0 E 1fa;*’+£*’€D,, 7=
_J T Af e L EM e Dy, wi= (2.20)
Thy(a¥+£%) if ¥+ £¥ED,, w>0 R
+o0 ' if. m”+§*’€Dn %;>0. .

The first onclusion of (2.24) is obvious as we can take #=0; the second one is
derived by separation property of convex sets. Notlpg that as h; is a closed convex .
~ function, its effective domain D; is a olosed convex set, By (71, for 7;>0, (gsw;) ()
._wg,(t’/qr,) and (g7v;)* ( Y=w;95(.), thus the third and the fourth conclusions of
(2.24) are obta,lned aeomdmg as o™ §Y belongs to the eﬁ'ectNe domain of By or
not, - . L .
| (2.24) tells us that to guaranteé that this supremum value is finite, we must
have ' _ ' R
S "+ &M e Dy o » - (2.25)
and when (2.25) holds, : ' | '
Sup{<t’ o £y —g7 (¥, v} =ik (0" +E€M),
from whioh we Soe that ' - ' ' o
Sup{<t’ *’+§”>+wK* gi (@ v)}= Sup{'b‘:(K +hy(aM+£))}.

‘Substmutmg this 1esult into (2 23), wo obtain. J
inf {9} (¥, w) —<F, @+~ K ;}=~sup{w(K +hi(a"+£))}

g0 if " £9) <0
_{0 if K% +h5(w +§ )< (2 26)

_ \—oco otherwise.
Oombining (2.20), (2;21)', (2.22) and (2;26)',;-and n"otioing' (2.25), we see

that
0 1f z*j___guj_w*j 'x]j"‘ * §j+§uE‘D!

— b= -and K,+h(w"’+§*’)<0 SN ¢ B
: 400 otherwise, . .
By (2.9), (2 10); (2.18)," (2. 27),. (2 5) and (2 7), we obtam the adJomt
bifunction of F:
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(F“(w K*)) (W") bo +2 b+ b; ,
"'h0<zm) 2h+(2*" wi) if2*0€ Dy; wi=0, (2", wi) E-D
el " +£9€D;, ;=K and
- ‘ | K+ hy(a%+£) <0, jEJ-
‘ ' ' . L= and £rey,
—oco o otherwise. N
| - | (2.28)
By seotion 30 of [7], we know that the dual of problem (P') is
sup (F7(0, 0) ()
or equivalently, . - | _
| - inf — (F*(0, 0))(W™. | (2.29)
Setting a*=0, K* 0 in (2 28) and hence z*=£*, we can Wu’oe problem
(2.29) as : R
inf {Ae(a") + 2 A (2, wi)|#0€ Do, (2, uf) €D, wi>0, vJE_I,

€D, hy(2¥) <0, jEJ, # €T}, o (2.30)
It is easy to find that the above extremum problem is exactly the probleni
(D) in Seotion 1 if we replace z* by y, and w; by A |
The method used in the above derivation is more direct and more geneiai
than what used in [8] and [6] This method can also be employed to denve dual
, ploblems of some more comphcated convex ploglams ’ '

§ 3. Duality Theorems

Peterson gave a duality theorem for constrained GGP, the proof of which is
divided into two parts, i. 6., [5] and [6]. Here we give some different results based
on generalized convex programming theory. '

Theorem 8.1 If there emisis (z, K) such that

- B€ri 0, R  (8.1a)
(z', K;) €ri Of, jEJ - (3.1b)
Z'€ri 0; and g(z)<0, s€I, (8.1¢)
L gEeriX, 2 (8.1d)

then GGP problem (P) and 4ts dual (D) have no gap, 8. 6., d+h=0.
‘Also, of problem (D) és feas'able, ‘o8 must hcwe an opt@mwl solute,on
" Proof Weonly need to prove that for the ‘bifunction F given 'by 2. 1),
. OgridomF, o (8.2)
because (3.2) means that problem (P)is strongly consistent (see-Seotion 29 of [7] ),
and therefore by Theorem 80.4 of [7], program (P) is normal, which means that
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the two conclusions of this theorem holds.
In order to prove (8.2), by Theorem 6.4 of [7], 1’6 sufﬁces to prove that for
| 'any W=z, £ w,n) € dom F, there exists p>1 such that .
| (L=p)W +p 0=(1~p)W Cdom F.. (3.8)
In fact W= (z, € uy m) Edom F implies dom (FW) #CJS, i. e., there is (@, K)
Safblsfylng ‘ |

a®—20 € 0,, . ' (3.4&) _
(o —o, K;~ny) €0F, jEJ, S (3.4b)
gi(@*~e) <y, 1€1, (3.40)
oréEX. (3.4d)

Because of (8.1a) and (3.4a), according t0 Theorem 6.4 of 71, ‘there ex:Lsts
}Oo *>1 buch that 1f 1<p<po, theén
ot ety c (L—p)(0®—=2°) +px° €0,
or eqﬁiVa,lently, _ | L
. [(L~p)a®+pa%] — (L—p)2°€Cs. -+ - (8.50)
’ Slmllarly, by (8.1b) and (8.4b), there are p;>1, geJ such that when 1<p
:\Ph

(1-p) (@, Kr—m) +o(@, Ry €0 |

or : : g N
" [(1-P>(w’ K +p(@, K;)] 1+ p)('a" n,)EO”’ © . (3.85b)

By (8.1d) and (8.4d), there is p>1 such that o :

A—-p)(@+&) +pze X

or equivalently S | L -
[(1~'p)w+p3:]+(1~p>§€X | - (8.5d)
for 1<p<p :

As g,(a: )<O thele oxists pi >1 for eaoh %EI such tha,t When 1<p<p¢,

(1- P)M>94(w‘)/2 :
On the other hand, since convex function g; is continuous at 1ela,1uve 1nteuor
pomt ', there is p} >1 such that when 1< p<p‘,
l9:((1—p) (w — &) +ort) - g:(a) | < —g:(z")/2.

Flom the above two 1nequa11tzes we know that i 1<p<p;=min{p}, pt}, then
co 9i((L—p) (' —2) +pw‘)<gz<w)/2<(l P) s
or equivalently, : S TR T
| ye([(lv-p)w‘+pw‘] (1-p)'~"><(1 p)m. w0 u(8.80)

Gombmmg (3 5a) (3 5d), we see that When 1<p<1c nolir; J{p, TN for the pertur~
€(yury

batlon veotor Lol |
AW =(1-p @ g mm

thereexists . 7 .t
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(w,,, K”)E(l“P.) (, K) +P(51 K—) 4

. (FA-pW)(a" K*)< oo,
Hence (1 p)WGdom F, which proves (3.8) and (8.2).
Symmetrioally, we have another ‘duality theorém, the conditions of whioh' afe

stated in terms of dual problem D).
Theorem 3.2. If there ewists (y, \) such that

y°Eri Dy, , (3.62)

(7, R)Eri D, 4€I, (3.6b)

v’ €ri D; and h(3y) <0, jEJ, . (8.60)
yeri Y, | (3.6d)

then G'G-P problem (P) and és dual (D) have no gap, 4. 6., p-+f=0.

Also, if problem (P) és feassble, &t must have an optimal solution.

Remark The conditions (8.6a)—(8.6d) of Theorem 3.2 are somehow different
from what Petenson imposed in [8] for his strong duality theorem. His conditiong
are: ’ '

(1) there exists (y’, ) such thatb

hi(y?")<0, § e;
(2) Problem (D) has a finite infimum 3
(8) there exists (y. &) satisfying
| . YEriY,
y*eri D, BE{O}UJ,
(g%, M)Eri D, 4€l.

Based on the generalized convex programming theory, we can obtain olher
duality theorems. For instance, by Theorem 30.4 of [7], we have

Theorem 8.83. If . |

(é,) the optimal solutions to (P) form a non-empty bounded set; or
(b) the optimal solutions to (D) form a nomemptg bounded set,

then ¢-+f=0.

Thloughoub this paper, we know that GGP problem is in faot a special case
ofgeneralized convex programming. By using the tool of bifunction and its adjoint
funotion, the study of the properties of GGP can be considerably eased.
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