WEAKLY ALMOST PERIODIC POINT AND ERGODIC MEASURE**

ZHOU ZUOLING (周作领)*

Abstract

Let X be a compact metric space and $f: X \rightarrow X$ be continuous.

This pape introduces the notion of weakly almost periodic point, which is a generalization of the notion of almost periodic point, proves that each of f-invariant ergodic measures can be generated by a weakly almost periodic point of f and gives some equivalent conditions for that f has an invariant ergodic measure whose support is X and ones for that f has no non-atomic invariant ergodic measure, the latter is a generalization of the Blokh's work on self-maps of the interval. Also two formulae for calculating the togological entropy are obtained.

§ 1. Introduction

Let X be a compact metric space and $f: X \rightarrow X$ be continuous. When X = [0, 1], [1] has announced the following

Theorem A. The following (i) and (ii) are equivalent.

- (i) R(f) = P(f), that is, each recurrent point of f is periodic,.
- (ii) f has no non-atomic invariant ergodic probability measure.

For the general case, one may prove that in Theorem A (i) is only sufficient but not necessary for (ii). We hope to look for the necessary and sufficient condition for (ii) in Theorem A in general case. It involves the structure of ergodic measure and the levels of the set of recurrent points. [2] has introduced the notion of almost periodic point and proved that $x \in X$ is almost periodic iff $\overline{\text{orb}(x)} = w(x, f)$ is a minimal set of f. It is easy to prove that the existence of a minimal set which is not a periodic orbit implies the existence of a non-atomic ergodic measure. Thus, that each almost periodic point is periodic is necessary for the non-existence of non-atomic ergodic measure. One may conjecture that there is such a subset of R(f) that it coincides with P(f) is a necessary and sufficient condition for (ii) in Theorem A. In this paper, we introduce the notion of weakly almost periodic point

Manuscript received April 11, 1989,

^{*} Lingnan College, Zhongshan University, Guangzhou, Guangdong 510275, China:

^{**} Projects supported partly by NSFC and by FZUARC,

and give a characterization of the set mentioned above. We also obtain some other related results.

§ 2. Definitions and Lemmas

Let $f: X \rightarrow X$ be the same as in § 1. In the following we refer to [3].

Suppose that $\mathscr{B}(X)$ is the Borel σ -algebra of X. Denote by M(X) the set of all probability measures on $\mathscr{B}(X)$, by M(X, f) the set of all elements of M(X) which are invariant for f and by E(X, f) the set of all elements of M(X, f) which are ergodic for f. M(X) is convex compact metrizable under the weak-topology and $M(X) \supset M(X, f) \supset E(X, f) \neq \emptyset$. Each $x \in X$ determines a member δ_x of M(X) defined by

$$\delta_{x}(A) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \in A, \end{cases} \text{ for all } A \in \mathcal{B}(X).$$

 $m \in M(X)$ is called atomic if there exist $x_i \in X$, $p_i \ge 0$, $i = 1, 2, \dots$, with $\sum p_i = 1$ and $m = \sum p_i \delta_{x_i}$.

With respect to ergodic measure, we have

Theorem B^[3]. Let $m \in M(X, f)$. Then $m \in E(X, f)$ iff there is a $Y \in \mathcal{B}(X)$ with m(Y) = 1 such that

$$\frac{1}{n}\sum_{i=0}^{n-1}\delta_{f^i(x)}\to m \text{ for all } x\in Y.$$

As m(R(f)) = 1 for all $m \in M(X, f)$, the following corollary is clear.

Corollary. Let $m \in E(X, f)$. Then there is $x \in R(f)$ such that

$$\frac{1}{n}\sum_{i=0}^{n-1}\delta_{f^i(x)}\to m$$

and the set of all such x has m-measure 1 and m(w(x, f)) = 1. In addition, when m is atomic, there is $x \in P(f)$ with the period N such that

$$\frac{1}{m}\sum_{i=0}^{n-1}\delta_{f^i(x)}\rightarrow \frac{1}{N}\sum_{i=0}^{N-1}\delta_{f^i(x)}=m.$$

Recall^[2] that $x \in X$ is called an almost periodic point of f if for any $\varepsilon > 0$ one may find N > 0 such that for any $q \ge 0$ there is an integer r with $q \le r < N + q$ satisfying $f^r(x) \in V(x, \varepsilon)$, where $V(x, \varepsilon)$ denotes the ε -spherical neighborhood of x. Denote by A(f) the set of all almost periodic points of f. It is easy to see that $P(f) \subset A(f) \subset R(f)$.

Definition 1. $x \in X$ is called a weakly almost periodic point of f if for any s > 0 one may find N > 0 such that $\# (\{r | f^r(x) \in V(x, s), 0 \le r \le nN\}) \ge n$ for all $n \ge 0$, where # (.) denotes the cardinality.

Denote by W(f) the set of all weakly almost periodic points of f. It is easy to see that $A(f) \subset W(f) \subset R(f)$.

We shall prove that $A(.) \subseteq W(.) \subseteq R(.)$ are possible.

The proofs of the following Lemmas 1 and 2 are straightforward.

Lemma 1. $f(W(f)) \subset W(f)$.

Lemma 2. Let $x \in X$. Then $x \in W(f)$ iff for any s > 0,

$$\lim_{n\to\infty}\inf\frac{1}{n}\#(\{r|f^r(x)\!\in\!\!V(x,\,s),\,0\!\leqslant\!r\!<\!n\})\!>\!0.$$

Definition 2. Let $m \in M(X, f)$. A subset F of X is called the f-invariant minimal closed support of m if $f(F) \subset F$, $\overline{F} = F$, m(F) = 1 and there is no any proper subset of F satisfying these conditions.

Lemma 3. Let $m \in M(X, f)$. Then the f-invariant minimal closed support of m exists uniquely.

Proof Let $S_m = \{x \in X \mid m(V(x, s) > 0, \forall s > 0\}$. It is easy to prove that S_m is non-empty, closed and f-invariant. For each $x \in X - S_m$, there is s > 0 such that m(V(x, s)) = 0 and $\alpha = \{V(x, s) \mid m(V(x, s)) = 0, \forall x \in X - S_m\}$ is an open cover of $X - S_m$. Since X is a Lindelof space satisfying the second countability axiom and so is $X - S_m$ (see [4]). Thus, α has a countable subcover and hence $m(X - S_m) = 0$ and $m(S_m) = 1$. It is easy to prove that S_m is the f-invariant minimal support of m. The uniqueness is evident.

Let
$$\mathscr{E} = \{F \subset X \mid f(F) \subset F, \ \overline{F} = F \text{ and } m(F) = 1\} \text{ for } m \in M(X, f).$$

Lemmii 4. Let $m \in M(X, f)$ and $F \in \mathcal{E}$. Then F is the f-invariant minimal closed support of m iff each non-empty open subset of F has positive m-measure.

Proof Let F be the f-invariant minimal closed support of m and $U \subset F$ be non-empty and open. If m(U) = 0, then $m\left(\bigcup_{n=0}^{\infty} f^{-n}(U)\right) = 0$. Obviously, $F - \bigcup_{n=0}^{\infty} f^{-n}(U)$ is closed and invariant for f and $m\left(F - \bigcup_{n=0}^{\infty} f^{-n}(U)\right) = 1$. It is easy to see that the f-invariant minimal closed support of m is contained in $F - \bigcup_{n=0}^{\infty} f^{-n}(U)$, a contradiction.

Now suppose that each non-empty open subset of F has positive m-measure. If $F_0 \subseteq F$ is the f-invariant minimal closed support of m, then $F - F_0$ is non-empty and open, and so $m(F - F_0) > 0$. This contradicts $m(F_0) = 1$.

Lemma 5. Let $m \in E(X, f)$ and F be the f-invariant minimal closed support of m. Then the restriction of f on F is topologically transitive, that is, there is $x \in F$ such that $\overline{\operatorname{orb}(x)} = F$.

Proof By Corollary of Theorem B and m(F) = 1, there is $x \in R(f) \cap F$ such that $\frac{1}{n} \sum_{i=0}^{n-1} \delta_{f(x)} \to m$. Clearly, $w(x, f) \subset F$. In the other hand, w(x, f) is a f-invariant closed support of m and so $F \subset w(x, f)$. Thus, F = w(x, f) and f is topologically transitive on F.

Lemma 6. Let $m \in E(X, f)$ and $x \in R(f)$ with $\frac{1}{n} \sum_{i=0}^{n-1} \delta_{f(x)} \to m$. Then for any s > 0, m(V(x, s)) > 0 iff $x \in W(f)$.

Proof Because m is probability measure, it is easy to prove that the set $\{s>0 \mid m(\partial V(x,s))=0\}$ is every where dense on $(0,+\infty)$, where $\partial V(x,s)$ denotes the boundary of V(x,s). Obviously, it suffices to prove Lemma 6 for s>0 with $m(\partial V(x,s))=0$. According to the property of weak convergence (see [3]), we have

$$\frac{1}{n} \sum_{i=0}^{n-1} \delta_i i_{(x)}(V(x, s)) = \frac{1}{n} \# (\{r | f^r(x) \in V(x, s), 0 \le r < n\}) \to m(V(x, s)).$$

Clearly, Lemma 6 follows from Lemma 2.

§ 3. Theorems

Set

$$W_0(f) = \left\{ x \in W(f) \middle| \frac{1}{n} \sum_{i=0}^{n-1} \delta_{f(x)} \rightarrow m \in E(X, f) \right\}.$$

It is easy to check that $f(W_0(f)) \subset W_0(f)$.

A subset $F \subset X$ is called an absolutely ergodic measure 1-set of f, if for each $m \in E(x, f)$ there is a subset E of F with m(E) = 1.

Theorem 1. $W_0(f)$ is an absolutely ergodic measure 1-set of f.

Proof By the definition of $W_0(f)$ and Corollary of Theorem B, it is clear that $W_0(f)$ is an absolutely ergodic measure 1-set of f.

Theorem 2. $\operatorname{ent}(f) = \sup_{w \in W_{\bullet}(f)} \{ \operatorname{ent}(f|_{W(w,f)}) \} = \operatorname{ent}(f|_{\overline{W_{\bullet}(f)}}), \text{ where ent } (f) \text{ denotes: the topological entropy of } f.$

Proof By the variational principle⁽³⁾ ent $(f) = \sup_{m \in E(X,f)} \{h_m(f)\}$, where $h_m(f)$ denotes the measure-theoretical entropy of f with respect to m, we have $h_m(f|_F) \le \operatorname{ent}(f|_F)$, where $m \in E(X,f)$ and F is the f-invariant minimal closed support of m. By Corollary of Theorem B and Theorem 1, there is $x \in W_0(f)$ such that F = w(x, f). Hence $h_m(f) \le \sup_{x \in W_0(f)} \{\operatorname{ent}(f|_{w(x,f)})\}$ and so $\operatorname{ent}(f) = \sup_{m \in E(x,f)} \{h_m(f)\} \le \sup_{x \in W_0(f)} \{\operatorname{ent}(f|_{w(x,f)})\} \le \operatorname{ent}(f|_{\overline{W_0(f)}}) \le \operatorname{ent}(f)$.

Theorem 3. Let $m \in E(X, f)$ and $x \in R(f)$ with $\frac{1}{n} \sum_{i=0}^{n-1} \delta_{f(x)} \to m$. Then the following (i)—(iii) are equivalent.

- (i) X is the f-invariant minimal closed support of m,
- (ii) each non-empty open subset of X has positive m-measure,
- (iii) $x \in W_0(f)$ with w(x, f) = X.

Proof The proof of (i)⇒(ii) is similar to the one of Lemma 4.

(ii) \Rightarrow (iii) For s>0, m(V(x, s))>0. By Lemma 6, $x\in W(f)$ and so $x\in W_0(f)$.

w(x, f) = X is clear, because if not, then X - w(x, f) is a on-empty open set and so m(X - w(x, f)) > 0. It contradicts m(w(x, f)) = 1.

(iii) \Rightarrow (i) For any non-empty open subset U of X, by w(x, f) = X, there is r with $f^r(x) \in U$ and $V(f^r(x), s) \subset U$ for some s > 0. As $f^r(x) \in W_0(f) \subset W(f)$, so m(U) > 0 by Lemma 6. If $F \subseteq X$ is the f-invariant minimal closed support of m, then m(X - F) > 0, and it contradicts m(F) = 1.

Theorem 4. The following (i)—(iii) are equivalent.

- (i) $W_0(f) = P(f)$,
- (ii) m(P(f)) = 1 for all $m \in E(X, f)$,
- (iii) f has no non-atomic invariant ergodic probability measure.

Proof (i)⇒(ii) It is clear by Theorem 1.

(ii) \Rightarrow (iii) Let $m \in E(X, f)$ and F be the f-invariant minimal closed support of m. By Theorem B, there is $x \in F \cap P(f)$ such that $\frac{1}{n} \sum_{i=0}^{n-1} \delta_{f(x)} \to m$. Clearly, F = w(x, f) is a periodic orbit of f and m is atomic.

(iii) \Rightarrow (i) If there is $x \in W_0(f) - P(f)$, then $\frac{1}{n} \sum_{i=0}^{n-1} \delta_{f(x)} \to m \in E(X, f)$. By Theorem 3, w(x, f) is the f-invariant minimal closed support of m. Evidently, $F \subsetneq P(f)$ and so m can not be generated by a periodic point of f, that is, m is not atomic. It is a contradiction.

Next, let Σ_2 be the one sided symbolic space with two symbols 0 and 1 and σ : $\Sigma_2 \rightarrow \Sigma_2$ be the shift. The metric on Σ_2 is defined by

$$\rho(x, y) = \sum_{n=0}^{\infty} \frac{|x_n - y_n|}{2^n}, \quad \forall \ x = (x_0 x_1 \cdots), \ y = (y_0 y_1 \cdots) \in \Sigma_2.$$

Theoem 5. $A(\sigma) \subseteq W(\sigma) \subseteq R(\sigma)$.

Proof Let m be the $\left(\frac{1}{2}, \frac{1}{2}\right)$ -product measure on Σ_2 . By [3], $m \in E(\Sigma_2, \sigma)$ and each non-empty open subset of Σ_2 has positive m-measure. By Theorem 3, there is $x \in W_0(\sigma)$ such that $\frac{1}{n} \sum_{i=0}^{n-1} \delta_{\sigma^i(x)} \to m$ and $w(x, \sigma) = \Sigma_2$. As Σ_2 is not minimal, so $x \in A(\sigma)$ (see § 1). This proves that $A(\sigma) \subseteq W(\sigma)$.

Let $M = (i_0 i_1 \cdots i_{n-1})$ and $N = (j_0 j_1 \cdots j_{m-1})$ be two finite sequences of $\{0, 1\}$ whose lengths are n and m, respectively. Denote $(MN) = (i_0 i_1 \cdots i_{n-1} j_0 j_1 \cdots j_{m-1})$ whose length is n+m. In the sequel, we form $x \in \Sigma_2$ with $x \in R(\sigma) - W(\sigma)$.

Let $P_1 = (01)$, $P_2 = (00011011)$ and inductively, for k > 2, P_k be a finite sequence formed by arranging all permutations of k symbols 0, 1 with repetition one after another in a line in some order, whose length is $2^k \cdot k$. Set

$$x = (P_1Q_1P_2P_2\cdots P_kQ_k\cdots) \in \Sigma_2,$$

where $Q_1 = (11)$, $Q_2 = (11 \cdots 1)$ with the length = 2 times of the length of $(P_1Q_1P_2)$,

and inductively, for k>2, $Q_k=(11\cdots 1)$ with the length =k times of the length of $(P_1Q_1\cdots P_k)$.

By the above construction, it is easy to see that $x \in R(\sigma)$ and $w(x, \sigma) = \Sigma_{2}$. Next, we prove $x \notin W(\sigma)$. By Lemma 2, it suffices to prove that

$$\lim_{n\to\infty}\inf\frac{1}{n}\#\left(\left\{r\mid\sigma^r(x)\in V\left(x,\frac{1}{2}\right),\ 0\leqslant r\leqslant n\right\}\right)=0.$$

Note that if $y \in \Sigma_2$, then $y_0 = 1 \Rightarrow y \in V(x, \frac{1}{2})$. Let l(.) denote the length and $n_k = l((P_1Q_1\cdots P_kQ_k))$, $k=1, 2, \cdots$. It is easy to see that

$$\frac{1}{n_k} \# \left(\left\{ r \middle| \sigma^r(x) \in V\left(x, \frac{1}{2}\right), \ 0 \leqslant r \leqslant n_k \right\} \right) \leqslant \frac{l((P_1Q_1 \cdots P_k))}{n_k} = \frac{l((P_1Q_1 \cdots P_k))}{k \cdot l((P_1Q_1 \cdots P_k))} = \frac{1}{k} \to 0 \quad (\text{as } k \to \infty).$$

We are done.

Finally, as stated in § 1, A(f) = P(f) is necessary for f to have no non-atomic ergodic measure. But the author does not know whether it is sufficient also or not. Equivalently, is there any map which has a non-atomic ergodic measure but each of whose minimal sets is periodic orbit?

References

- [1] Blokh, A. M., The limit behavior of one-dimensional dynamical systems, Uspekhi Mat. Nauk, 37: 1 (1982), 137—178; MR 831: 58082.
- [2] Hedlund, G, A., Sturmian minimal sets, Amer. J. Math., 66 (1944). 605-620.
- [3] Walters, P., An introduction to ergodic theory, Springer, New york, 1982.
- [4] Kelley, J. L., General topology, Van Nostrand, New York, 1955.