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THE ESTIMATE OF THE RANK FOR
REGRESSION COEFFICIENT MATRIX
IN A MEDIAN REGRESSION MODEL"

- Mia0 BAIQI ( B _ﬁ.) *

' Abstra‘ct

Tt is discussed to infer the rank of Tegression coefficient matrix ¥ & multivariate
Ninear regression model. If the zero median vector is usnique and the design matrices
satisfy some weaker conditions, it is derived that the estimators of the rank of regression
-coeffloient matrix under the minimnm distance criterion by using model selection method
‘is strongly consistent.

- §1. 1ntr'oduction

‘The technique of multivariate 1egleésion analysig are much useful and general
in the multivariate data analysm In this a,rea. one important objech is to determine
+the rank of the regression matrix (RM). ‘ . .

The assumption that a series of errors of a model is independent normal is
:impressed in order to test the ranks of RM. When the error covariance matrix is

known, Tintner (1948) derived the likelihood ratio test (LRT) statisbio for the

‘rank of RM. Anderson (1951) derived the expression for the LRT statistic o - test
‘the hypothesis H, that the rank of RM is r. Fujikoshi (1974, 1977, 1978),

Krishnaiah, Lin and Wang (1985) also investigated the expression of the asymptotio
‘digbribution when the underlying distribution is elliptially symmetric and s:Lmllar )

“test problem, For other results one ig referred to [10, 11, 14, 7, 13].

Bai, Zhao and Krishnajah (1986) further mVestlgated this problem u’Sing'
:model Selectlon ‘method.: Only assuming that errors are iid. and satisfy some -

‘moment oOndliuons ~they derived that the estimators of the 1ank of ooefﬁ01ent
rmatrix are strongly consistent.

In this paper we only assume that error vectors ave iid., then the strongly

-consistent esbimators can be derived by using model selection method undel ‘the
-minimum dlsta,nce oriteri ion,
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§2. Statement of the Main Result:

Consider the following model - ‘ S
| Y,=BX B n=1,2, ey (2.1)-

where ¥, = (41, ¢a, **, y,.) rn.>1 are pXn obSeWaﬁlon matllces X,, n=1, are ¢Xn.
known design matrices, B is &' pX ¢ inknown regression matrix and &,= (es, *+*, ).
n=>1, are pXn error matrices, where ei; ez,l"’, e, are iid. pX1 random veotors. We-
want to estimate the rank of the coefficient matrix B by observation matrices and.
design matrices X,. Notice that (2 .1) can be rewritten ag the following form
| L y;-—=B:v,+e%, for 4=1, 2, -, m, . o

o me=1,2, e, 77 B - (2.2)

 Set Sroe . L _

' 'ﬁﬂqE{B: g“yi——Bwi”L:min},
where || || denotes the spectral norm of a matrix or veotor,

%, i9 a LS estimator of B. in"g'ene_fal, eox'i'é’ur\u'e'ting a statistio by ﬁ’}Js, one can:
estimate and test the rank of B. Ingeniously using model selection technique and.
impressing various conditions ‘on error veotors, Bai, Zhao and _I_{:Ljishné,iah,
investigated this pl‘oblem and established 'tha,t ‘sorhe 'statistics’dei'ived By ﬁm,' are:
strongly consistent estlma,tms of the rank of B. On the othel hand if We set

Be{B 3 I Bcvi“~—m1n} L @3y

that is, ﬁ,, i8 the estimators of B under the minimum distanoce eriterien; We can:
als'_o_c‘(__)r_lstruot,a statistic by B, to estimate the rank of B. It is beyond -doubt that
thi§ is an imporfant technique, but it was not noticed for a long time-in history..
dne ;'easbn is there was some difficulty in computation of B, which has now been
~0V93;éo__n;9 "Wi‘th the advance of modern compubing facilities, for detail one refers $0*
Oharnes ot al, (1955)_. Another reason is the lack of an adequate asymptotic theory-
for ﬁn, which has been overcome by Bai, Chen, Wu and Zhao (1990) ‘in the oase
p=1and by Bai, Miao and Rao (1988) in the case p>1. It offers a stlong tool for us-
to estimate the rank of .B by using adequate statistio constlueted by B Now We;'
establish the main theorem. .ol S S
Assume that the common distribution F of iid.. error veoto1s Satlsﬁes the!
4f0110W1ng condltlons _ . T ST R RS LT I
(i) There ig a 6>0 suoh ’uhat F has a bounded densmy f (u) for ﬂuu<8 AnclL
for each non--zero veotor o, ¢E R, we have '
e e e P(leym0) <Ly
(11) I T LT TIPS SO
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j o dF(u) ~o0.

Hero and hereafter the tra,nspose of & matrix M is denoted by M,
For design matrices X ,, n>>1, we impose these eondltions
(iii) There is a positive inter n, such thab the yank Qf X.,, is ¢,

. (iv) Set §,=X,X], then

When F is known the rank of B may be any mtegel between 0 and min (p, g) =s.
Set

0,={B: 1ank(B) q~} o -:‘(2.5)'

. re{0, 1, - s}
Next, we select the true one usmg model selection technique from these: (s+1)
“models.
Assume that B, is determined by (2.8), and pi>uaz=:++ >p,=>0 arve ezgenValues
.of B,B!. Let H be a sequence of numbers increasing to mﬁmte such that

: limd H310g1/2n——0 o e (2.6)
“Write S " e
p .
L B) == § B @)
i=

"Take 7 as the estimator of the rank r of the.coefficient matrix B. Then it follows:
Theorem. Under tke model (2. 1)', of &u and X, satisfy conditions (i)— (iv),

‘then ¢ defined by (2 7 ) ’118 the stfrongly consistent estimator of T fwhen @,,, is true.
Before plovmg the themem weo make some remalks

] (1) OOnd_ﬂuons €)) a,nd (11) ensure that the median vestor of the dlStllbutlon.: '
F is unique. Thelef01e zelo Vect01 is, ﬁhe umque median vect01 of F under our’

-conditions,
(2) Seb

J (BT u?)‘w ®.
D= | i@,

It iseasy to verify that the matrices 4 and D are posﬂlve deﬁmte And the
.oondition that F is known can e substitutd by a Weaker oondltlon that pOSlthe
.definite matrices A and D are known which can be seen from the main theorem.
(8) The condition (iii) imposed on the.design matrix X, is"'g"en'eia,lh‘ the
-cond ition (1v) ensures that the smallest positive eigenvalues of §,=X, X tend to
infinité with'ths tate hlgher than logmn. To se6 this 1ot Ay>>+++3>M, >0 be q “positive
-eigenvalues of §,, where =g, By one result of Neuman - (1937) we. haVe R

i

(8.8 >3 x,..;/x,.; for o, P g

Then it follows from the condition av):

o= 03 |85, = o (log™/*n). .9
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4r (8,85 = ﬁ‘, 1 (w3 81) = ”z” b1 (28 ) =:’g°1 o8,
<np Mmax a;‘S"ia;;-—O( ) _ - (2.9)

 1<é<n, .
But A,,>0, s0 we have i;_’lf?\,,,q/logn-—oo by t_he inequatities (2.8) and (2.9). By
the Way we obtain .
x;;/z—o(d ). (2 10)
It is qulte weaker ’oha,t the smallest positive eigenvalues of §, tend to infinite-
with rate hlghel than logn. This condition is equivalent to the condition -derived.
by Bai, Zhao and Krishnaiah (1985) when error vectors are normal.
(4) If the deoreasing rate of d, is higher than log=2n, say d,=o(log™32n),.
then H, can be chosen as log n. Thig can be seen from the following proof;: ;

§ 3. Some Le’mmas

For the sake of convenience, we need some lemmas, -
Lemma 1. (Bennett) Let &y, «-, &, be independent variables with E(g,) 0 amoF

[&:) <b for 1<i<n, where b és a positive constwnt. Seit Bﬁ=§E§,. Then for any €>0;.

2

we have ' )
€
Eg‘l_ >6)<2 °xp { 2B be) }

For plovmg our theorem, we continue to rewrite the model as (2 2) In the.
' following the Kroneker ploduot is denoted by . Wllte the transpose B’ of the-
coefﬁment matrix B defined by (2.1) as (b1, «+, by), Whele b;, 1<3<p, are gxX1.

column veotors. The pg X1 straightening vector (bi, b;,)’ is denoted by Bo. Also,..
the pg x 1 straightening vector of B is denoted by 3,. . ‘

Lemma 2. Let o and B (or with subsompts) be real numbers and A be @ mairiv..
Then we have

1. (A1®B1) (A2®Bz) —A1A2®B132r

2. (ARQB)'=A'RB,

3. (a1A1+“zAz)®(BlBa+ﬁsz)" 2 aifB; (4 ®B:)9

4. ABO = (AR0") B,
B. tr(4RB)=(tr4) (trB),
6. |A®B|<}4{-|B|,

solong a8 the .previous operabions are 1easonable, whele I+ } denotes the spectrak

norm. The proof is referred to Rao (1973, pp. 20—30). -
Throughout this paper We alWays assume that n=>ne. Set

&, - X, X!~ ?‘aaw.,_ |



No.2 °~ = Miao, B. Q. ESTIMATE OF RANK FOR REGRESSION MATRIX 209

U.= 3} (1,®2) D(L,®4}) = DS,

Ty 3 (1/R0) A (1,B}) = ABS..

T =U;Y*T, U4 = D—i/zAD 121, , 3.1y

o= U312 (1, ®0,) = DRy, L (8.2)
Buo=TYB,, |

B.=UB,=UB,, B

. B=T%2(Ba—Bo). (3.3)

Now the relations (2.2) and (2.8) can be rewritten as - e
o Y=, ,,./8,.0+ei. 1<@<n, o (8.4)
 A={meer Bl ufl=mim ). 3.5

Acco1d1ng to the deﬁnltlon of 8, and (8. 2) we have Emmem =Ig Flom above

definition and Lemma 2 11; follows that

St 5 (DR ) (DD 0 = D@ ] ()

D"1® B <§5 S 2,0 S"“” =g-D, : : (8.8)
Hero and helea,fbel Ay (.M ) =ho (M) - >7»3, (M) denote the poéiﬁive eigenvalues
of a symmetrie matrix M. o ' c
Lemma 3.  Let E be an open convew. subset of R? and.let fl, fz, e+, be @ sequence
of random convew functions on B such that for any o€ E, f.(@)—>f (@), a.s. (or in pr.)
as n—>oo, where f 4s some real function on E: Then f és also conver and for all compact
Dk, - . R
' hm 1 5up | £ (@) = f(2) [ =0, 2. 5. (or i gr.).

Furthermore, 4f f has @ unbque mm@mum wt tCE and fon MUETMRE Jw we have
lim &, =, a.8. (or in pr.). :

Hroo

Refer to Anderson and Gill (1982, Theorem II. 1, Corollary II. 2).
. Lemma 4. Under conditions of the, thebrem, we have

i 7 10g ™0 gup 234l ,..Bn—ne.lD Bler= ";.B'»HA-:AII?;.H)}%,——.-O‘._,a'.s.- :

"y

If B, minimize 2<ues-—"men ledd) . ¢hen

s ||,8*||<H log n. a s
where

g vo=H,logn. . (@)
Proof: Xt is casy to venfy that for any ¢#0 and eaéw where ¢ and a belong to
R?, by Taylor expansion one has =~ gaegae o L) oL o
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| te—al—fet+5-| <2- lal/Jel. (3.9)
le—al - ol +er —5ar (L= 15 }<<p+1> Jal?/2lel,  (3.9)
=t <2tal/tel. (3.10)

By the definition of @,; and the condition (iv), it follows that for all ¢, i<<n, ||a7,B]
<|@nl | B) <A Y2 (D)d0,<H;?->0 uniformly when |B|<v.. And the condition
(i) implies |

J -"i—" dF (v) <O<oo. (3.11)
8o we have ' i
B3} (o=l = ) =5 3 Bou(4+0(0)ouB
-1 BTIB+o(I8I),  (3.19)

by (8.9) and the conditionv(ii). Sinoe
[ les—an Bl — leill | < llane 81 <A7*2(D)duon, (8.13)
31 B(lei—aiaBl — al)*< 3] IcbeBI2 =8 (D' @T)B<pah* (D)ol (3.14)

where the smallest positive eigenvalue A,(D) of D is only dependent on F, ib
follows from Lemma 1 that

P ("gl{(Ilei—w;;Bll —le]) — B (e~ B] — “ei“)}‘;w;)

<2exp { —e*v;;/2[ pgh;* (D) 3+ (2052 (D) dwva) (evi) 1}
<2e0xp { — €%, (D) 0Z/3pg}<2e0xp { —2log n}.
8o by Borel-Cantelli lemma and (8.12) we have for |5 <w,,

tim o7%(3 le—aiabl - el 5 BT28)=0. as (3.18)
Set B= w,,,B Whele II,BH <1, a,nd

Fa(B) —’0‘22 (les— Bl —lel).

Then by (3.15) we have for 18] <1,
| o) > L BTB=F(B), ..

Because f,(B) is.convex, it follows by Lemma 3 that

tim sup |, (B) -/ (B) | =0, a.s. |
Especlally take | 8] =1 and no’olce that B=0v,5, we have for n Ia,rge enough

02 (3 ek = inf 3 Je—atul)<~ (1/4) inf *BT28

181=vn $=1
S : <-(/ 4:)7}.,(AD-1),.<0, "B Ba
The convexity of f,(8) implies that - : L
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| IBI<uas.
where B* minimize f,(v;'8). '
For the sake of convenience of notations, set _
Pui(B) = (es— %uB)/ Ilea—w;aB I
We have the followmg result, '
- Lemma 5. Under the conditions of the theomm, it holds that -

Jim H‘210g"1/2n sup Ewm(gb,,i(ﬁ) ¢M(O)) 0, a.8.

f1->00 18 <vn ll i=1
Proof Let O be defined by (3.11), and let
. Eu= el I (les] >2] il vn), 1<i<nm.
Notice that ||e;] >2| @], implies that e;— a5, 80, we have by (8.10)

I i (B) —Pui(0) | <2] i BIl/ "96"<2“wm“@n/ lek. (3.16)
Henoe when | 8] <w,, we have from (8.10) '

S ENCHOREMON(IEIENDS
<20, 3 ol )+ 200 32 s 2B

Since the right of above inequality is independent of B, we have uniformly by

(3.6)

H%F;Iz" H_“ 10g 1/2 E B (¢nz (B) qSM (O) ) I ( “ € n >2 H Dni “ QJ")

<2H;' gl 1|2 (Em— o) +2H 5+ g+25%(D) O, (3.17)

But £, <1/(2|afvs), it follows that
0% 5] 2/ (2l 0] 00) <AV (D) n/ (20,) = €18/ 00

i<n

E llwmll“va”(ém) <E loasl“Bne <2 l@wsl*- O/ (2me||%)

<q7»"3’2(1)) + (0/2)+ (dn/0) == Exn/Vn-
Take ,8 €1/ Vn and B2=e¢ud,/v, in Lemma 1 (notice that the 11ght of the mequallty
in Lemma 1 is inoreasing in B .), from the condition (iv) we have

P (|3 Nl (6w 600 | L) <Boxp{ = (¢/Gec) (Hyn/ )y <2exp {~2og o}
for n large enough. The Borel-Cantelli lemma implies that
S B Bl G B0, s, | (3.18)
“when « tends to infinite, By (3.17) and (3. 18) and noblcmg g€ »/100, WO 5 have
i oup ()| S ($0(8) ~ Ol 2ol | <0, .. (3.19)

n—o0 |8 <vn

On the other hand the fact |e;] <2| .o, implies

| bui(B) — Pui(0) | <2. : S (8.20)
Set nn,—I(neiH <2|@ulv). Then if |8] <vs. wo have from (8.20) |
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AN MDENCHORINONIIECENTS
(2/En‘vn> 2 ﬂ%cﬂmc o

= (2/ H,,) E § @i} (s — Bga) + (3/ H,.v»)Z‘. @0t | s

o JR | . | (3. 21)
Sinoe |om | va<Ay™*(D)dwv—>0, it follows that | m,.,ﬂfv,,<8 uniformly for ¢<<nand
for n large enough. By the condltlon (i),

En,,;—P(IIe,H<2]Ia;,.¢ v,) j Fo)dus<M |

Tul <2[@nslivn lul<2lonslvs )

- =M0,2|zmlvn)*s | | (3.22)

where M is the upper boundary of f(u) and the constant O, is only dependent on
dimensional p. The relation (8.6) and p>>1 implies that - . = . :

| L= (2/Hw) 3 |l B <2/ Ho) 3 MOy ol 08
<O, MA;0 (D) 020, (3.23)
Next we estimate 1. From the fact that || @] n.<A;V2(D)d, and (3. 22),
2 sl 2Var (1) <2 e ll 2E"7,,c = 2 | @il 2B < || M O y'2"ﬂ T II h
<MO20; @0 (D) (d0,)? =1 (d,)*.
Take b= 2?»"1/2(D)d and Bi=e;(d,v,)? in Lemma 1and notloe that p>1, we have
3 Yol (s — 1) | > H /)
<2exp{ — S H/ 43y (B, )+ 2052 (D)d, (eH,.fv,,/2))}
Using Borel-Oantelli lemma we get
Tim (2/H,,) ;1 i | (s — Bus) =0, 2. 8. (3.24)

. Binee the right of (3.21) is independent in 8 when | B[ <., it holds by (8.23)
and (8.24) thatb

| whng(H.,vn)‘isup (D (B) — Du O I (i) <2 tmif )] =0. 8. 5. (3.25)

Oombmmg (8.19) and - (3.25), we have this lemma, .
Lemma 6. (Courant-Fisoher) Let K be pXp symanetrio matris wml By ***s by
be the e%genwlues of K. Then

‘2 p,,,——mm{tl(U’KU) UeM<p P—9), UU I.,-q}, :
=g+l . ,

g = max mm{a’Ka aa—-l Boa=0},
BEUM@-a ) - :

“Avhere M (p, q) s the set of all pxq real mwtfrwes
This is referred to Rao (1973, Pp. 62——63)
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§ 4. The Proof of the Theorem
- The model (8.4) implies that o _
2 w8l =3 l—ahe (BBl
So by the definition (3.3) of 8} and Lemma 4, it follows that

| 18] <H,log"*n=0, 8.8, : a1
And by Lemma 5,

-lim sup H"”log‘l/znl

n~»oo j8I<vn

$anB(Gu(8) - buO)| =0, 85, (42

‘Therefore,

Lim (H# logi’zn)(ime(%(BD'—*%(0)))1(".32“<H log'/?n) =0, a.s. (4.3)

n-rc0

By (3.9) the fact that lata Bl <A;2(D) 0,0 When I ,8|I<fv,. implies that
2 cv,.,,EqS,.i(,B) = T*B—I—O(H Tog/%n). (4.4)

'Oombmmg (4.1) and (4.8) and noticing tha,t B, (0) = Ee./ lei) =0, we geot
T Br=0(H2log"?n), a. s.
That is, based on the definition of T and B; and Lemma, 2,

SY2(B,—B)Y AD V2=0o(H2%10g?n), a. 8. (4.5)
Write . ' .
| ‘ Si2(B,—B)' =R (4.6)
'we have from (4.5) : . o
R,=o(H2log"?n). a.s. = - (4.7)

For px g coefficient matrix B there exist orthogonal matrices Q and K with
fdegree p and ¢, respectively, such that
o BeQUK',
where :
0 o
" and A;>-.- 3>, are non-zero eigenValues of BB'. Write
~QB.K, G,= Q’R STVPK.

(4 O | —
o= (g o) Aumiog(VTT, s VT

‘Then (4 6) can be rewutten as

Po—dre, (4.8)
_and : .
| I, r ~QB, ﬁ' - (A+G..) (A' +G:,) (4 9)
“ By (2. 10) and (4.7) it follows that ’ S _
——o(H’ log 1/2n-H*‘310g'1/2n) o(H"l), B s. o (4 10)

When the model @,0 is tlue. we ha.ve L

,Zl;”’ mm{t1U’(A+G,,) (A'+G§,)U UEM(p, p-q), U’U==I,_¢}
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<t {0, L) (4/+6,) (A + @) (¥, T’}
= 3V A te{(0, Tpog) (4G, + 6 A+ 6,6 (0, Tpg)'}

| =.r2° Ao(HID), .8, ‘ . a1y
and
' We= MaX mm{a’(/l-{—G,,)(A’—l—G{,)a o/ai=1, La= 0}

LeM(p—r.p) -

>min{(a}, 0)(4+G,) (./1'+G')(a1, 0') 04 ER, a’1a1 1}

=min{of Ao +(ch, ') (AG,+G,A'+G,G) (061, 0)": o E R, 0o = }
>min {A+0(H;Y), djay=1}>A0,/2, a. s. , R (4 12)

by Lemma 6,-(4.10) and the fact that the. elgenVa,lues of I',I" are the same as ones:

of B, B.. If r>ro, by (4.11), it follows that
~ I(ro; H)-I(r, Hy)=(r~ro) HY* ~ >

F=ro+1

= (r—ro)H, ‘1+o(H s = (r—ro)/(2H, )>0 (4.13)

_ On the other hand if r<ro, by (4 12), it follows
I(’ro, H,)— I(’r:. n)"" 2 .Lb: (TO—T)H 1>l~0ro"‘(’ro T)/H_i

- ro/4>0 a. 8. _ (4.14)
Oombmmg (4. 13) and (4.14), we get the theorem. ‘
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