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A GENERAL DETERMINISTIC PIVOT METHOD
FOR ORIENTED MATROID PROGRAMMING**

WANG ZHEMIN (L:{ij‘ R‘) *®

Abstra,ct

A new pivot method for oriented matroid programming is given out, This mathod
18 deterministic by nature and is general in the sense that its flexible pivot selection
rule allows a family of possible a.]gofithms: to be its épecia.l casges, including the so
called criss-cross algorithm and the Edmonds-Fukuda algorithm as well, Asan 'eXa.mpié
of a special implementation- of our general method an extended version of the
Edmonds-Fukuda a,lgonthm is presented

§ 1. Introductlon

For oriented ma,trmd programming, the so Oalled oriss—oross algorithm, which

was discovered independently by Terlaky and the author®™%1, and the Edmonds
~Fukuda algorithmf‘“ are both of deferministio type. The oriss—oross algorithm
Toquires no initial feasible oirouit and uses no oonforma,l ellmma,tlonora,ole, whereas
the Edmonds—Fukuda algor ithm does. HoweVer, the latter gives an explioit way of
‘showing how the iterations converge by a lexmoglaphloal ordering, -while the
former does not. MOJ:GOVef, the pivot solootion _rlile of the latter allows a certain
flexibility, whereas that of the former is fixed. In:this paper we relaft’e' thesg two
algorithmg and produce a general pivot method, which can be regarded somehow
as a unified version of these two seemingly different algorithnis. Also introduced in
‘this paper, as an example of a special implementation of our general method, is an
extended version of the Edmonds-Fukuda algorithm, which, unlike the original
version, requires no initial feasible cirouit. Methods based on recursive approach
4,25 do not in general give explicit ways of showing how the iterations eonverge,
while ours does by means of providing an upper bounded blnary digit, Whloh
inereases monotonically not by only one unit in general) at each 1telafa10n

Let B be a finite set, a signed set of H is defined as an ordered pair of subsets
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(o, P ) of B, where o' Na'" =, and o’ «" is called the underlying set of (2, o).
Two signed sets (o, «’’) and (y'. y”’) are called orthogonal if either the intersection,
of their underlying sets is empty or (o' Ny") U (&’ Ny") and (&' Ny”) U (2" Ny’) are
simultaneously nonempty. Lot M and M* be a pair of dual matroids with E as their
ground set™?, M and M* are dalled oriented matroidst »#? if - ’

(1) for every circuit O of M and M*, it has been assigned to it two signed sets
- (0",.0”) and (0”7, 0") with O as their underlying set;

(2) the signed sets assigned to the oirouits of M are or thogonal t0 those assugned
to the oirouits of M, : S

Now, members of any such s1gned set are oa,lled the. orlented patts of the cireuit
oongcerned. ‘ : . '

One of the fund amental properties of oriented matroids is the so called Con-
formal Elimination Property™%%, which can be stated as: Assume O; and 0, are two
distinet eirouits of a given oriented matroid,(0F, Cr)and (OF, OF) are two signed sets
assigned to Oy and O, respectively; if 4= (01 'ﬂ"d*) U (0rN0O%F) is nonempty, then
for any given nonempty subset 4’ of -4 and any given element f of (04U Oy)/A, there
" exists an element f" of A’ and a oireuit O of the g1Ven oriented matroid such that:

@ fEO,o, andf an, c
and -

- (2)- among’the two S1gned sets asmgned to O3, there must be one, Sa,y, (OF, Oz )
Satlsfymg ' ' . o

O no\47at,
(O5NOY\A"E0],
‘ él- n '(02\01> =04,
Oz N (0:\0,) &05,
where A”= A\ 4’ o .
When 4’ contains only one element thls plOpel ty is bmeﬂy called the Ellmma,tlon
Property. ' B ' ’ S

Let b and b* be two distinet. given elements of H; a oirouit .C of M is ealle&
feasible, if b€ O a,nd either {6*} or the empty set 'is an oriented part of U; -a eircuit
D of M* ig called feasible, if 5*E€ D and either {b} or the empty set is an. oriented
part of D, A feasible oirouit O of M and a feasible ‘eirouit D of M* aro ocalled
complementary, if (0N D)\{b, b*} is empty. A eirouit § of M is ealled infinitely~

augmenting; if *€ T, E0 and the empty set is an oriented part of &; a oirouit I

M s oalled 1nﬁn1tely—a,ugment1ng, if beﬁ b*eﬁ a.nd the empty set is an 011-

ented pa,lt of D. .
The most’ fundamen‘ual theorem:of: oriented ‘matroid: progmmmmg iy the - Du-
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ality Theorem®®48%1 which can e stated as: One and only one of the following
ghatements holds, |

(1) Either there is an mﬁmtely—augmentmg 0110u1t ¢ of M or thele is an
infinitely-augmenting oirouit I of M* (this statement is equivalent, because of
-orthoganality, to that: either there is no feasible cirouit of M* or there is no fea-
sible cirouit of M). o

(2) There exist a feasible cirouit ¢ of M and a feasible oirouit D of M* such
that O and D are complementory. .

Oriented motroid programming provides algorithms for realizing construc-
tively the Duality Theorem. Based on reocursive approach, Bland first proposed
-~ such an algorithm®™, whioch was later on further improved by ‘Jensen®™. The
Edmonds—Fukuda algorithm and the so called oriss-cross algorithm are also algo- |
rithms of this kind; whereas theirs are based on deterministio ai)proaoh. Although,
;genera.ilvapea,]iing,, ‘their algorithms can be jnterpréted as refinements of the
Jensen. algorithm, theirs however employ no recursive procedure and, thereby,
appear more straightforward and implemental. The Edmonds-Fukuda algorithm
requires an initial feasible oircuit and an oracle capable of realizing the Conformal
‘Elimination Property, while the oriss—oross algoi-iﬁhm requires none of .them;
unfortunately, the pivot selestion rule of the latter allows no flexibility and gives
1o explicit way of showiﬁg how the iterations converge, while the._former does.
Woe relate this two seemingly different algorithms and present in the following
section a new algoi-.i’qhm, whioh is virtually an improved version of the oriss-oross
algorithm in the light of the Edmonds——Fukuda. algorithm,

§2. Algorithm

For a base B of M, let B* denote the base H\B of M* for e€ B*, let C(e, 3)
- denote the unigue circuit of M that is contained in B|J {e}, and let O*(e, B)denote
the oriented part of O(e, B) that contains ¢, 0~ (e, B) the other oriented part of
{J(e, B); for e*€ B, lot D(e¢*, B*) denote the unique cirouit of M* that is contained
in B*{ {¢*}, and let D*(¢*, B*) denote the oriented part of D(e¢*, B*) that oonta,ms
#*, D~(¢", B*) the other oriented part of D(e"*, B*). .
Without loss of generality, we assume that {6} is noﬁ a oirouit of M (other—
wise, {b"} itself is an infinitely-auginenting eircuit of M) and {b} is not a oirouit
of M* (otherwise, {b} itself ig an _inﬁnité_ly.—-augmentiﬂg- eireuit. of M).On this
;a;_ssumptidn;-we ean assume that the initial base B of M is such one that *€ B and
b€ B*, Wo then assume that B'=E\{b, b*} is nonempty (otherwise, O(b. B) and
D(b*, B*) become now a.pair of complementary feasible oircuits of M and M ")
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This a,lgorlthm uses a Workmg veotor A= (7\.1,2,2, vroy Aymp) for the purpose of
giving the elements of &’ a changeable ordering. Also used in this algorithm is a
working subset L of B', which, together with A, provides for an explioit way of
showing how the iterations of this a,lgori’ﬁhm converge. Our algorithm is as fol-

lows:

Step 0: Set

Step 1:

Step 2:

: Otherwzse, let

A: =whichever permutation of the elements of E’ that one chooses t0 fake’
= (7, ' '
Let :
Ky={h| M€ D~ (3", B")}
Ko={M{M&€O0 (b, B)};
and leb - ,
=K\L, -
=K 2‘\1(-. .
If K{UKy=(, set
0:=01, B), .
D: = D(b* B*y; - : _
now, C and D are a pair of eomplementa,ry feasible cirouits of M and
M, stop.

'E=m1n{kl?\.;a€K' UKa},

._jf MEKY, goto Step 2; if AzE K3, go to Step 3.

Let

| I={M|MEC~ (5 B},

, =I\{A|¢>F and M, €L},

If I'= 7, seb _
C: =0(3‘777 B);

now, C is.an infinitely-augmenting oirouit of M, stop.

Otherwise, go, according to what one likes, to Step 2.1 or Step 2.2,

Step 2.1: Choose, if possible, whichever A;.one likes such that i<k and MGO

(A, B); let 7 denote %, go o Step 4.

Step 2.2: Let A; be such a coordinate of A that @—-mm{w[h;el’}, let g denote

Step 3:

E, go to Step 4. e T

Let AT Ly . i
J={MIM€D'T.(;\% B},

J'=J\{N|j>F and &, €L}.

-ﬁ: ==-Z,)-‘(a'i: BY); |
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now, D is an infinitely-augmenting circuit of M*, stop.
Otherwise, go, according to what one likes, to Step 3.1 or Step 8.2,

Step 8.1: Ohoose, if possible, whichever A; that one likes sueh that j<F% and

' A E DN, B*); let 7 denote &, go to Step 4. :

Step 8.2: Let A7 be such a eoordinate of A that j=min{j|A€J'}; let 7 denote
%, go to Step 4.

Step 4:

Step 4.1: Let t=max{%, 3}, and set L:={A}U {Ay|u>% and 7\,“61}} (now, if
t=Fk, we say that A; enters into L “actively”; 1f taéZ i, e., §>k, we say
that A; enters into L “passively”),

B: = (B\{M}) U {7} '

Step 4.2: In this step, the positions of the elements of B'/L in A can be rear
ranged in any way on condition ‘that their relative positions with.
respeot to the positions of the e lements of L in X remain unohanged
Go to Step 1.

The following lemma ensures that this algorithm is finite,

Lemma 1. Oycling of bases never ocours to this algordthm.

Prodf From the rule for resetting I, it canbe seen thab A; if once having
entered into L, can no longer go out until some other A, with «#>% has entered;
henoe, it is not difficuit to see that oycling of bases is impossible for this algorithm,

The finiteness of our algorithm also follows from the following lemma,

Lemma 2, The binary digis 2 2¢ s loss than 2'71%1 and. ¢t ¢neredses mnotom--
cally at each iteration of L.

Proof This lemma is a direct outeome of the rule for resetting L.

Lemma 2 not only assures us of the finiteness of this algorithm but alse
provides an expliocit way of showing how the ibterations of this algorithm con-
verge. - ER
To prove the validity of this algorithm, we need the following lemma, which
is actually the essence of this paper.

- Lemma'8. ' The following three statements muss hold:

€)) If, én Step 1, K1 U K%, then Ky UKy + & and

min{k|\E K1 UK} =min{k|A\E K} UK’z}

2 If, Step 2, I+, then I'+ & and

min{¢|MEI}=min{s|\EIL'}.

8 If, in Step 8, J =, then J'+J and '

min{j| 4 €T} =min{j| 1 €T},

From lemma 8 we know that KiUKb=J, I'=(F, and J'=( are respectively

equivalent to Ky U K,=, I=, and J=¢J; hence, it is easy to see that our
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algorithm is valid.

The proof of Lemma 8 is given in the following.

Proof Suppose that, in the proocess of 1telat10ns, Lemma, 3 first fails in (2),
then a contradiction can be derived as follows: Let t=min{i|A €I}, then it must
be now that 3>% and M€ L. Assume that, right before A7 last enters into L, the
base of M* is BY; if A7 enters into L “actively”, let I’ denote D (b BY); if A3 enters
into L “passively”, let D’ denote D(Az,, B"), where Fyis the “%” in Step 1 referring
%0 the base By of M. Now, it can be verified that the signed set assigned to O (b,
.B) would no% be orthogonal to that assigned to D’; this is, of course,contradictory.

Suppose that, in the process of iterations, Lemma 8 first fails in (3), then a
contradiotion can be derived in the same way as what we have done above. |

Suppose that, in the process of iterations, Lemma 3 first fails in (1), then a
contradiction can be derived as follows: Let Z-=min{k | M€ K1U Ko}, then it must
be now that Az S L. We assume, without loss ofgenerality, that A, € K,. Right befo
forc A5 last enters into L, let the then base of M* be Bji. If A; enters into L “pas-
sively”, it can be verified that the signed seb agsigned to O(b, B) would not be or
thogonal to that assigned to D (A, B), where £ is the b in Step 1 referring to the
base By of M; this is of course contradictory. If A; enters into L “actively”, let Oy,
O,, Of, Oz, f and f’ of the Elimination Property be respectively 0(b, B), O(b,
B,), 0#(b, B), 0*(b, By), M and b. Now, on the one hand because the signed
. get assigned to the resultant s of the BliminationProperty should be orthogonal

to that assigned to D (%, By), it can be verified that b* and A must locate in the

same oriented part of Og; on the other hand, because the signed set assigned to Us
~ should also be orthogonal to that assigned to D(b* B), it can be verified that b*
and A must not locate in the same oriented part of Og; this is of course a contra-
diction, henoce, this lemma is proved. |

We should acknowledge here that the above proof is enlightened somehow by
the argumens thatb Bland had used to establish his famous Rule I and II in [1].

§ 3. Examples

Two examples of special implementations of our general method are given in

the following, one of them results in producing a revised version of the oriss—oross

algorithm, and the other an extended version of the Edmonds-Fukuda algorithm,
which, unlike the original version, requires no initial feasible ecircuit.

In our first example, we keep & unchanged throughout, and we always adopt
Step 2.2 in Step 2 and Step 3.2 in Step 3; then, our algorithm becomes speeiﬁOa,lly
the criss—oross algorithm now. Although in its original version there happens 1o
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A, L, K3, K3, I' and J’, but K3,K, I, and J only, this difference is however nones-
sential in the light of Lemma 8; and, what is more, this revised version gives an
insight into seeing how the iterations converge.

In our second example, three additional specifications for our general algorithm:
are added as follows:

(1) In Step 0, set A speoifically in such & way thab its coordinates, if being:
eloements of B, always precede those being elements of B*,

(2) In Step 4.2, A is reseb specifically in such a way that, among all such:
coordinates of A that precede A, those, if being elements of B, always precede the
others.

(8) Tn Step 2, always let Step 2.1 be adopted (this is possible in this case
because, owing to (1) and (2), for any A,€I’, ¢ must be less than %), and let
Az be chosen specifically in such a way; if there is an element of I’ that does not.
belong to O(b, B), then this element is chosen as Az otherwise, let Oy, O,, Of, O3,
4',and f of the Oonformal Elimination Property be respectively O(b, B), O()z,
B), O*(b, B), O~(A3, B), I’ and b; and let the resultant f’ of the Conformal
Elimination Property be chosen as A; (because of the first conclusion of Lemma 3,
I’ is now a subset of 0} >03, hence, I’ is qualified 0 be chosen as A’),

Now, with referring to the specifications listed above, the following proper tles
concerning this speoified algorithm can be readlly verified,

(i) If e€ L, then ¢€ B. _

(ii) In Step 8, Step 3.1 can never be reached (because in this case for A, J’,
must be greater than F).

(i11) Step 3.2 can onlybe reached at the beginning stage of operation, hence,
once Step 2 is 1ea,ched Step 3 can never be come across again.

(iv) After Step 2 has been come aocross, every ensuing O (b, B) always I/
satisfies O (b, B) /LS O* (b, B).

'(It should be noted here that when the matroids under cons iderat on are,
specifically linear ones, (iv) can be further sirengthenedi Let L’ denote sush a
subset of I that s elements are jhose that enter into L Vvefore Step & is come
across, then after Step 2 has been 1eaohed, every ensuing O(b, B) satisfies:
g (b B\’ 0*(b, B). Now, if the initial O(b, B) is assumed to be feasible,
then every ensuing O(b, B) must also be feasible. This argument has been
proved by Clausen in [3]. In fact the general conclusion made in the strength-
ened (iv) can be proved by means of the same approach that Clausen had used
in [8], i.e., making full use of the fact that once Step 2 is reached the value of the
“objective function” with respect to O(5, B) must be monotonical. )

In case that th initial O(b, B) is assumed to be feasible, the above specified
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l

algorithm becomes, in partioular, the Edmonds—Fukuds algorithm, As feasibility
of the initial 0(b, B) is not made a precondition for this specified algorithm,
henoe, it can be regarded as an extended version of the Edmonds-Fukuda
algorithm,

The oriented matroid rendering of the linear complementarity programming
(OM-LOP) was first disoussed by Todd™. He proposed an algorithm for OM-LCP
that its prototype is an algorithm given by Lemke™, However, the Todd algorithm
" has %0 be carried out in an enlarged matroid structure of the original one. Later
Klafszky and Terlaky made modification of the criss—oross algorithm for oriented
matroid programming and developed accordingly an algorithm for OM-LOP™,
Their algorithm is sbill eriss-oross like and can be ocarried out within the
soope of the given matroid strueture without having to make it enlarged. However,
it still suffers the same disadvantages as its prototype, i.e., its pivot selection rule
is fixed and it gives no explioit way of showing how the iterations converge. With
proper technicality modifieation, our general deterministic scheme for oriented
matroid programming can also be applied to OM-LOP, and a general deter-
ministio pivot method for OM-LCP can be established accordingly. We will have
this discussed separately in another paper thab is about %o comé in the near fubure.
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