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LIFE SPAN OF CLASSICAL SOLUTIONS
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Abstract

This paper studies the life span of classical solutions to
Uy —Ugp= | %] 11,
t=0: u=ef (), us=eg(x),
whare & is & positive real number, f€ C3(R), WECI(R), & is & small parameter. The
uppar and lower bounds of the same order of magnitude for the life span arc obtained
respectively.

§ I. Introduction

In. this paper, we consider the following Cauchy problem
: U — Uy = | 4| 1%, >0, 2 E R, (1.1)
t=0: u=gf (v), u=2g9(w), (1.2)
where >0 is u real number, fEO3(R) g€ Os(R), 1>>6>0 is a small parameter.
Woe are interested in estimating the life-span of classical solutions to (1.1)
—(1.2). By definition, the life span T'(¢) issup v, for all »>0 such that thers
exists a classioal solution to (1.1)—(1.2) on the time interval [0, #]. We sum-
marize our results as follows: '
Theorem 1.1. Supposs g(w) én (1.2) satisfies

Jg(w)dm#o. : (1.8)
Then there exists an 1>>0 such that for dng/ s with 0<e<<sg,
”18_90/ <T<3) <%23_“/2’ ) (14)

where uy and xz are positive constants éndependent of 8.
Theorem 1.2.  Suppose g(a) in (1.2) satisfies

fo@aa—0 | (1.8)
and f and g are not both identioally zero. Then there exists an 85>>0 such that for any
& with 0< e<es R ' |

a8~V @D (8) Sopu 8¢ @HIN @42 - (1.6)

where w3 and . are positive constants in dependent o f 8.
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The study for the equation

Clu=lul™ . @m
begins with the work of F. John™. He considered the three dimensional . case.
Later, T. Kato™, R. T. Glassey™ and T. 0. Sideris™ got some blow up results for
(1.7) for any space dimensions, but they all assume some positivity condition on
the initial data. Therefore, to estimate the life span of olassical solutions to (1.1)
—(1.2) in it correct order of magnitude for any initial data, more work is
needed. ‘ ' '

After the completion of this W01k we received a pleprmt copy of H. Lmd-
blad’s paper™ which studied the same problem as ours for the case of n=1, 2, 3
mmul’naneously To compare his results and methods with ours when n=1, wo
notice that we solved the problem for any positive & while he onlyconsidered the
easo a=1 although his methods seemed to work for all positive & as well. We only
'pl'oved‘sll2 T'(s) lies between two positive bounds while he gotually caloulated the

limit limssi/ 2T (&) in the case o=1 and j. g+0, the situabion Jg=0 'is similar. Our
methods are somewhat similar to hisbut more elementary and simple. There is

also a significant difference in treating with ‘the case I g=0 between. two methods.

§ 2. Lower Bound of Life Span in Theorem 11

Theorem 2.1. There exisis a positive oornsmrmt #y Gndependent of & such that
T (&) =>n8~%2 o 2.1)
Proof No loss of generality we assume f and g are not bo uh identically zero.
Bo means of D’ Alembert’s formula it is easy to see that the 02 solution to (1.1)—
(1.2) is equivalent to the ¢® solution of the’ followmg intergral equation

w(t, @) —su"(t, m) +5 Jt JW Tlu(""’ y) [*dyde (2.2)

where

(o, )= [f (@) +/ o t>1/2+j 9(B)B/2.
For any vE€ H, define

006 D=eibth ) +L [ [T lote s, @)
E={v(i, o) |[v€EO°(R* X R), t<m;8™/? sup|o (¥, w| <sMi} -(2.4)

with
o My=2sup |f<ﬁ>l+j Iy(B)dﬁ (2.5)

=M NTEe (2.6)
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Tt is easy 10 see that @ maps F into itself and is a contr aotlon mapping. So by
contraction mapping prineiple o
Theorem 2.1 ig proved.

§3 Upper Bound of Life Span in Theorem 1. 1

Case f g>O
Theorem 3.1 Suppose g(m) in (1. 2) satésfies
| - f_ 9(a)da>0. | BENC R
Then there ewists a positéve constant oy indep endent o f & such that
T()<es (3.9

In order t0 prove Theorem 3.1, we need the following lemmas.
Lemma 3.2. The clwssoowl solutoon to the Goursat problem of (1.1) fwotk boun-~
dwry conditions

{m-—-'t:' u=1, (3.3)

, o=—f u=1
amust blow up in finite timne.
Proo f We shall deduoe @ oontradiotion by assuming thatou is a global solution.

Let _
t
. o(t) = j u(t, 2)d. R ¢ W)
It is easy to see that ' ) ‘ R '
' ) v(0) =0, , ‘ - (3.5)
| v'(0) =2 . | (8.6)
and by (1.1) we get :
- W) = j [os| 4% -2 -d—(u(t £)-+ult~8)). (3.7)
Notlomg (3 8), (3. 6) and (3. 7), we have - B o
Y(@)=>2  Vi=O0, ' (3.8)
Then by (8.5) we obtain _ : 4
v(t)=2 Vi=0. (8.9
Accor dmg to Holder ] mequahty, it follows from (8.4) that
() < ( J l“ , 14a) 1/(1a) )(2,;) a/(ta), (3.10)
. B0 (3.7) together wih (3.8) yields R
| OZ@OU/@. (3.

- T4 i easy to deduce fro'm (8.11) and (8.8)—(3. 9)" that

@) ~20®)/ (a2 @90, (8.12)

'Notiomg that v(%) /2t—->1 When §->0, We ha.ve
hm (o”(t) —-»2«) +"'(t) / (a+2) (2#)‘) =4, o (3.18)

.
]
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Hence it is easy 10 see that

O (§) >/ D vt (t)/\/_—(2t)“/ V0. (3.14)

In case 0<a<<1, we get from (8. 14)
v(t) >fv(1)/[1 vo (L)%« (t"“"/2 1)1%4, Yizl, - (3.18)
where
v=x/2 a/2“/2(2'~oa) V27, _ - (8.18)

Thus v must blow up in finite time,
In case o>1, we have from (3.9) | _

v(E) V> (gt)(a—iw ' LB
Then we get from (3.14) o

which hag been reduced to the case a=1, so v also blows up in ﬁnlte tlme (Tu.. v
* This contradiotion proves Lemma 3.2. R
Lemma 8.3. Let v(x) be the l’bf e span of classical solutions’ o the followmq

Goursat problem :
Wes— W= | | 17%,

o=t w=x, o o (3.19)

where x is o positive constant.

Then we have

where Ty s the life spwn of classical solution to Goursat prroblem (1.1), (3. 3) which
is independent of .

PfroofLeii ' - ) _
' u(t @) =w(E/%?, m/%“/z)/x o (8.21)

It is easy 10 see that u satisfies (1.1), (3. 3) The conclusion of Lemmsa 3.8 ig
then obvious, :

Lemma 3.4. Let Q={({, n)|§>0, n=>0, &-+n<do} tmd u(€, m), w( nE
O(Q) satisfy respectively

w(é, 1) >8+ j j (@, ) |Medgrdnt /2, Y (€, ) €Q, (8.22)
w(é, m =3+ j j g’ o) g/, VE mER,  (3.29)
where disa posfbtofve constwnt : :
" Then, we have - . , o '
' u(é, n)>w(§, n) V(§,‘67)EQ 82y

Proof We deduce a contradmhon by assummg that (8.24) does not hold for
all (¢, ) €Q. In this aase

A={(, n)l(f, n) €Q, u(é, n)<w(§, 7} (3.25)

- i85 nonempty.closed set in Q. The -refore there is a pomt (50, no) €A whloh ig
closest to the origin. By (8.22), (8.28), it is obvVious ‘that ;%0 and 9709"0 thug"

V() > T 02 (t)/«/2+a(2t)1/2 T (sis8y

7;(%) Ton™ “/2. (3“20‘) |
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for all (¢, n) such that 0<<E<&,, 0<n<<no (3.24) holds,
Notioing that u, » are both positive, we obtain

J j |u(€, ') [“*odé'dn’] >J J lw (& n)l“"‘d ¢nls (3.26)
~ This Yogether with (8:22) (8.23) implies ' ‘
u(€o, 70) >’w(§m ’170>, , (8.27)

whmh contradiots the fact that (£, 1) € A. The lemma, is prOVed

We introduce the followmg notations: _
K+, o) ={(v, v) | ly—o| <v—t, ma,x(O ) <v}, - (3.28)
K- @)= {(1;‘, |y —o| <t—w, 0<q:<t}, - (3.29)
which are nothmg but the f01wa1d and backward light cones passmg $hrough
(t @) restricted on the upper plane respectively. : ' :
Proo f of Theorem 3.1 We suppose that the suppm ts of both f and g lie in the
interval (—p, p). Let o | |
| - M._-.f g(m)clw/2 o ’(3_.30) !

By assumption (3. 1) M>0.
For all (4, o) €K *(p, 0), D’ Alembert’s f01mu1a yields

u(t, o) =8M+ ” [u(v, ) [”“drdy/Z. - (8.81)
E~Gy2) P o
Then it ig easy to see that '
u('t,'m):>62'l’[-.+-' _U lu (e, y)'li""“d"a?c-l'y/2’.. ,_ o (3.32)

E+(p,0) N K~(,a)
Let w(t, «) be a funotlon deﬁned on K + (p, 0) suoh tha,t
W)= ob+ ” e ) ey (3.89)
E-(,2) 0 K+ (p,0) L
. By means of a change of coordinates- - . - . .- e :
{f (t—w— P)/«/Z L o (3.34)
n=(-+o—p)/NT.
We can apply Lemma 3.4 to yield, whenever u and w both exist,
| 4 u(#, ) >w(t @), R (8.38)
On the other hand, it is easy to see by the change of comdmate (3 34) ’ﬁhat w
is the.golution to the following Gom sat problem -

IR | Wit~ Wao = Ifwl““, t?p, R
o=i—p, w=eM, A (3-.36‘)-.
b= —-+p; W= eM

Then Lemma 3.8 together with a shifting of time shqws that o blows up at time
T MY s‘“/z Therefore it follows from (8. 35) that SR I
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T(e)< (p+ ToM %) gmo/2,
Thus Theorem 3.1 is proved.

§ 4. Upper Bound of Life Span In Theorém 1.1,

Case Jg<0
Theorem 4 1 Suppose g tn (1 2) swt%sﬁes
I - f g(@)d<0. B
Tken tkem exists an &,7>0 such that for any ¢ with 0<s<gy - _ . )
T (s) <028™*/%, A (4.2)

where ¢z s o pose,tme constant mdependent of e.

To prove- Themem 4.1, we need several lemmas: S

- Lemma 4.2. Cauchy problem (1.1), (1.2) admits @ classical solutwon u (%, m} on
the domain

o D={(h | (h DER (o, 0), 0<i<be=}  (4.9)
ith .

,w{b o bf—_MI‘{‘/2(1-_¥-,06)p. N (4.4)

Moreover o e, @) | <eMy, V( t @) ED,

where M is defined by (2.5).

Proof By finite plopogatidn speed of waves we know that « vanshes outside
K*(—p, 0). So by D' Alembert's formula the OZ solution to (. 1) (1.2) outside
K+ (p, 0) is equivalent to the O° solution of the intergral equation

uh, @) =e W ) +x ([ (ute, o) [Pty (4.5)
Define K- (tyw).nK"(-p»o)
&1 () (%, @) = 8u’(%, ») -+ jj l,”‘('”r ) 'l‘l*édm dy/2 (4.6)

E-(tya) N K (~p,;0)
for a.ny v & By, where

Ei—{fv(t, ‘@) |v (%, m) EO(D), sup[fu(t o) | <eMs}. 4.7
‘As in the proof of Theorem 2.1, we can prove ¢; is a eontrachion mapplng
from H, into itself. Thus, by contraction mapping pr mclple, Lemma 4.2 is pr oved
Lemma 4.3. lee Goursat. pa’oblem |
| Yt U™ u| 14,
w=tiu=—0, (48
. Lo="—1 U= -0 ! . ' '
is equwmlent to the followMg prroblem Jor o'rd@mry d@ﬁ%rentml equa,tfofms
{ 70" (v) +' (v) = 7| (w) |+ w0, (4.9)
_ _ CL(0) =—e. - _ :
) tkey have the same life Span Hefre oésa constcmt



236 ‘ " UHIN. ANN. OF MATH: , Vol. 18 Ser. B

Proo f  Leb u be the solution of (4.8). By the Lorentz invariance of the equa-
tion and boundary conditions and notioing the uniquness of solutions to (4.8),
we conolude that there exists a function v such that

u(t, o) =v((#*—a")¥?), - (4.10).

v(v) =u(w, 0), (4.11)
80 v i a O funotion. Insert (4.10) to (4.8), we get (4.9).
. Oonversely, if v is the solution. of (4.9), then u defined by (4.10) solves (4.8). -
 Lemma 4.4. If ¢>0, then the solution of (4.8) must blow up én fintte time.
Proof We deduce a contradiotion by assuming % is a gldba,l solution of (4.8).
Define v by (4.11). By Lemma 4.3, v satisfies (4.9). Integrate (4.9), we geb

From (4.10) we derive

A (A) = J v|v(7) |**dv. (4.12)
Notlomg v(0) = ~0<0, we see that there exists a Ao>0 such tha,t _ ,
S 2(A) < ~06/2, YO< A< o, N . (4.18)
So we get from (4.12) that when A= :
- A (M) =A% (e/2)1+%/2, o S (4:14)
Then : - o
() = (M) +A2(e/2) 1 (InAh —1nko) /2. : (4.15)
Thus v becomes positive when A is big enough. Let Ay be such that o
u(?\.l, O) =’U(7\.1) >0. i . . (4:.16)

For (, ) EK*(Ay, 0), it is easy to see that
ult, ==+ || lu@e)|*dvdy

E+@¢,m)nK*+0,0)

> 0o+ ” lw(w, @) | *odvdy+ JI lu(z, y) |P+*dAdy

K~(%1,0) 0 K*(0,0) E+(21,0) nE~(t)

=1 (Ayy 0) + _” N, ) | Hde dy

E+(2240) N E~(5,2)

Su(hy 0)/24 j J |4 (7, ) | odv dy. | (4.17).

: E+(1,0) N E~(hs) '
' By Lemma 3.3 and Lemma 8.4. ¢ must blow up in finite tlme, whlch contla,dlcbs :
' our assumption. The lemma is then proved.’ '

~ Now, we return to Cauchy problem (1.1) (1.2). Define

c=—g(w)dw/2. (4.18)
"~ We have. | . S : -
u(t, @) = —eo+ ” |u(, 9) |***dwdy/2, ¥ (5 0) EE*(p, 0).  (4.19)
- _ . BTG = T C T
; g4,19) can be rewritten as _ | _ - |
w(t, @) = —so-+ ” i, y) | s dy/2+H G, o, 8),  (4.20)

E~@@) N K p,0) -
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‘where ‘ _
H (%, o, 8)—-——<E” + J + ” )]u('z‘, y) | *edw dy
1 ¢y 2) R:t) . K~(ps®) ‘
=I1(t, @, 8) +l.2(#, @, 8) +Is(8) (4.21)
with . A v
B3, 0)={(w, @) | —p<y—v<p, p<y+v<t+aj}, (4.22)
Rs(3, ) ={(7, ?/) Iw_tgy'—"<‘*9, —p<Y+T<p}. (4.23)
Jre=p (¢, o) / y~7="8
/y=1=p
— &%
- Fig. 1.
According to Lemma 4.2, it is easy to see that when ‘ ,
h t<bs™® 4 : “ (4.24)
we have o - '
0<T(s, @, &)< (Mo ™™ (2—p)p/2, (4.25)
0<Is(t) @, 8) <(8M0)***(t—a—p)p/2, - (4.26)
| O<Is(e) <p?(sM; )1”“/2 (4.27)
Bo we get
0<H(t @, s)<p(sM1)“‘“(2t p)/2. (4.28)

‘We next estlma,te 0H (¢, @, &) /0t and OH (¢, =, LN In order to estlmate 81'1/
9% and 81,/ 8w, we make a change of coordinates

§'= =Y—T P |
4.29
{ 7' =y+z—~p. (4.29)
It is easy to see tha,t . :
2p (wti—p )
Iz—J J Iu('n —&, p+£’+n’) l““dn'dé'/éc (4.30)
~“Then we get : c e
, [ari/aﬂ, [612/6:0[ <p(sM1)1+“/2 o - (4.381)
Slmﬂal estimates hold f01 oI 2/ ot and &1,/8s. Then wo eonelude that
l@H(t @, §)/0z| + f@H(t, @, 8)/3tl<2p(sM1)1"’“ ' (4.32)
Now let S
o w* (b, @) =u(87% t-+p, 6 *x) [&, YV (¥,, @) _Ek-*(p, 0)- (4.33)

According to (6.17),it i¥ easy to see that w° sabisfies :
w(t, &)= —o+H( o 8)+ ” e, y) |Hodudy/2

Y < Gy K(0.9)

V@ aEEHQ0 . . (430
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where N : }
H (3, w, 8) = H (87%%+p,s"%?g, &) /e. ‘ (4.85)
It follows from (4.28) and (4.23) that as long as
872 4-p< bt~ (4.86)
we have -
0<H(%, o, &)<pMit®s*/-(2t+8*%p) /2, (4.87)
0B (4, @, &) /08| +|0H (4, m, &) /ow| <2oMi*as/2, (4.88)

Let Ty be the life span of solution of (4.8) with ¢ be defined by(4.18). By
Lemma 8.4 T'; < +oc0, we claim

Lemma 4.5, There exists an 81>0 such that, for any & with 0<s<y, w*(, »
blows up at least at time T1—|—1 A

Proof We prove the lemma by contradiction. If this sy does not exish, then
there exist 8,~0 (when n—>oco) such that w"(%, ) =w*" (t, w) exist until time.
T,+1 ,

‘We choose Ny so big that when n>>N, (8.88) hold for t=T,+1 and é=s,,.

We first prove that

w®(Ty, 0) is unbound for n. (4.39)
‘We again prove this by contradiction. If there exists a ¢ such that
|w"(T3, 0) | <eo, (4.40)

then we get from (4.84)
'wn(Tlr 0) __,wn<t’ m) >ﬁ(T1’ 07 8n) “E(ﬁ’ @, 87»)-7

Y, )€ K-(T4, 0) NK*(0, 0). (4.41).
From (4.37) we know tha when n is big enough
Hry,0,6,)—~H@, 0, e,)>—1. (4,49)
Then we get from (4.41), (4.40) _ »
W, @)<co+1, V(& o) EK~ (T4, 0) NK*(0, 0). (4.48)
From (4.34), (4.87) one obviously has _ ' .
w (t m)> ~¢, (4.44)
8o there exists a constant ¢; such that .
lw(¢, ) |<es V(¢, o) €K~ (T4, 0) NK*(0, O) (4.45)

Then, noticing (4.88) we get from (4.34) that there exists a constant ¢, such that
| 8w (8, @) /8| + |ow" (¢, &) /0w| <ca, V(¢ &) €K~ (T, 0) N K+(0, 0). (4.46)
By Ascoli~Alzera theorem, there exists a subsequence of {w"}, still denoted by
{w"} for convenience, such that :
w(t, w)=>w(%, ») uniformly in. K (T1, 0) NK*(0, 0). (4.47)
By passing to the limit in (4.84), we know w° satisfies '

Wt o) =—et [ |0, ) |dray/2.

- E=(¢,2) N K*(0,0)

' th.iésing Lemma 4.8, we know that #°(%, #) can be extended to a solution of (4.8
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arntill time T’y which contradiots the fact that Ty is the life span. Thus, (4.89)
hold. Noticing (4 44), we know that w"(T, 0) is bounded flom below. Hence, for
.any given L>0, we can find NV such thatb _
w¥ (T4, 0)>L+1. (_4.48)

‘Then we geb from (4.34) that for any (¢, o) CE*(Ty, 0)

w"($, @) — 'wN(Ti, )>H(t, , sN) H(T1,0 sx)

+ ” |w?¥ (=, ¥) |1+“d'vdfy/2 (4.49)

E(t,a) NR*(T) _ . S

Noticing. (4.87). we can choose N so big that

H(Tl, 0 8N> H('b o, SN)<1 . | (4.50)
Therefore we get from (4.48), (4. 49) and (4 50) . S _
‘ N(t, &) >L+ H | (w, y)l”“dm‘ /2, vu w)EK*(Tl, 0. (4.51)

L RGN0
By Lemma 3.8 and Loma 3. 4, we know thaﬂs w” (t @) ab leas’ﬁ blows up ab
Hime T1+L a/271, "W e ochoose L g0 big that o
N S O T - (4.52)
‘Then we got w” (¢, o) blows up before time T1+1, thié is a oontradiction. So the
lemma is proved. o o
Proof of Theorem 4.1 By Lemma 4.5, there oxists an 81>0 such that for any &

'ﬁlth 0<e<ey :
_T(s)<p+(fl’1+1)s"’”3. N - (4.88)

So Theorem 4.1 is true with o

§5. Lower Bound of Life‘Span inThéOrem 1.2

Theorem 5.1. Under the assumption of Theorem 1.2, thefre ewlsts an 81>0 such

Ahat for any & with 0<e<8o SR
P(8)Bre Ve, RCEY

. «whefre g 98 @ PosELive consmnt independent of -s.

To prove Theorem 5.1, we first prove ‘ ,

Lemma. 5.2. Let u be the solutwn to (1.1) with initial data '

1=0: u=f1(o) u=g1(a), (5.2)

.where f1€O03(R), G1EOY(R). Let T be the life span of u. ILf T'<-+oo then u(t, ®)
48 unbounded when —>1T'. ’ "

Proof By finite propogation speed of waves, if the supports of both fy and g
"lie in (—p, p), then the support of u(t, ) lies in [—(T'+p), T+p], for 0<t<T.
£ the conclusion of Lemma 4.2 is false, then lu(t; @)| is bounded in [0, T) x R.
Again by differentiating the intergral equation obtained by I’ Alembert’s formula
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we know that |u:(¢, )| is bounded in [0, T') X R. Henve, fl u; (%, a;) |da i8 also bound-

ed. Thus, by Theorem 2.1 it can be exiended beyond time 7, Whl(}h contradiots
the fact that T is the life span. So the lemma is proved.

Proof of Theorem 5.1 By D’Alembert’s formula and notlemg (1.5), for any
(t, ) €K *(p, 0), we gob

ut, )= [[ |uCr, 9) | *dudy/2. | (5.3)
o » - :
When t<bs7% by Lemma 4.2 we have
fr ; ; :
u(s, )= w(s, y) [#*dy dy/2+ ff u(v, y) | *de dy/2
) K'(t"”‘)J ﬁJK"(P.O) . ’ E*(¢,&) N (KH(~p)0) ~EK+(p,0)) .
< |u(x, ) |*ede dy/2+5 (sdtoyse | e dy
B8 0K (00 | R N EH00~E@0) '
| = |u(v, y)|***dw dy/2 +p(8M1)““(t—P)+P (sM)*e/2. (B.4)
E-G# AR
Let A
: u(t, o) = A"‘/“u(At+p, Az), (5.8)
. where _
A= =p m/(a+2)(8M )—a(a+1)/(m+2) ‘ (5.6):-

Then by (b.4), when ¢ is small enough, we have _ .
u(t, 2)< “‘ 4(v, y) |***dw dy/2+1+1, (2, ) EK*(O, 0). - (5.7)-;..

KGN EH0,0) .

, Let » be defined on K*(0, O) such that

ot 2)= f f N CMIES S dy/2+E4L, (5.8)4
E~(t,@) NK+(0,0)

It is easy to see ﬁhat (5.8) at least has a local classical solution on O<t<T2 By a.

comparison a,rgument similar to what we have applied in Lemma 8.4, we can get
‘ . a4, @) <ot @). ' ' (6.9)
If we take 8 so small that AT,+p<<bs™% then by Lemma 5.2 we conolude thst:

#(%,4) can exist untill time 7', Noticing (5.5) and (5. 6) we get

T(e)=p~*@+D(s My )‘“‘““‘W("‘* T, +p . (5.10)-

~ Thus Theorom 5. 1 is proved with

=P i/ (h2) M'a(a+1)/(a+ T, | ‘ ' (5.11)-

§ 6. Upper Bound of Life Span in Theorem 1.2

‘Theorem 6 1. Under the wssumpt'wn of Them'em 1 2, tlwre msts a 83>0*’

T(6)<“ 6"‘“(“"‘1)/(“"‘") o T o . (6.1),2

o whore s 55-& positive-éonstant indevendent of €. -




No.2  Zhw Y. LIFE SPAN OF OLARSIOAL SOLUTIONS 241

To prove Theorem 6.1, we need _
Lemma 6.3, Let v be the solution to the following Coursas problem
Vip— Vpp = l‘vl”aa
w=1, v=1%, L (6.2)
o= —1%, v=0,
then v blows up in finite time. ' '
Proof This lemma can be proved in a way similar to that of the proof of
Lemma 3.2, but with more care.
Proof of Theorem 6.1 By D’Alembelt’s formula we get

u(t, m)=§F(w+t)_—|—sG‘_(a;—-t)+ JJ |, y) | ¥dw dy/2, (6.3)

where J e L
P& ~f&)/2+[ g/, | (6.4)
€0 =r@/2-[ g@ip. (€

By (1 B), the supports of both F and G lie in ( p, p) Moreover, F and @ are not
both identically zero. No loss of generality, we assume G is not identically zero. So
there exist constants ao, by and u such that : |
@@ | >, Vae<s<b. - (6.6)
Obviously we have . '
' _ —p<Lap<bo<lp. ' (6.7)
Let T3 be the life span of solution to pro blem (6.2). By Lemma 6.2, Ts<< +oco.
Letb B . : o
¥(8) = [(Bo—a0) /2] /T, (s /2) =+ )4 - ®9)
We olaim that if the solution exists on [0, %(s)) X R, then it xxiust blow up at that
time. o . |
For this pulpose we choose g 50 small that

w(e)<be™ (89
where b is defined by (4. 4) o ' ‘

For (4, ) €K*(p, 0), we define . L -
D*(&, o) ={(v, ¥) |ao<<y—v<bo, p<y+'v<t+w} o (6.10)
For (=, y) €D:(%, »), by (6.8) we have S

S u(r, ) =e@(gm) 4 H - Ju, VIdddy/a. (6.11)

E{%,9) N K+(=p,0)

';'I'Iiél-i;-by (6.6) we get A T PR R
e y)l>su- IR W wli%'dy'/z (6.12)

B, y)ﬂK”(-p 0

No’olcmg (5.8) and usmg Lemma 4.2, wo get for t<q;(s)
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l'w('b", yl> l1+asd,‘vldyl/2< (8M1>1+m II d'r:'dy'/2

E(7) NE+(=p,0) A B0 0K (=0,0)
<(aMy)**or< (v M) *pr(s).  (6.13)
Bo when s is small enough, we have :
| |u (e, ) |1+“dfv’dy’/2<us/2 . (6.14)
o o K‘(w',y)n_la'f'(—p,o) S
Henoe, it follows from (6.12) that =~ - :

lu(z, )| >ue/2, V(v ) €D, @). (6.15)

B On the other hand, for any (t, ) EK*(p, 0), we have
| u(4, @) = J J |u(z, g) | Hedwdy/2. | - (6.16)
' E*Ghe) .
Then _ L ' A
wp d>% ([ 1u » |1+“dm- dy+% f [ 10, o) landg. (627
E~(,a) N K"6:0) o _— D+(t @)
"Therefore, we ha,ve f01 t<fv(s) R
L[ tute, oy 14w dy= s/ ([ awayya
D(t,2) D) - . Ny
“(bo ) (MS/-?)”“(HOJ P)/4= (6-18)

Thus we got from (6.17), (6.18) o | |
k< D> [l y)|1+“(Z‘Fd@//z‘*‘(bo"wo)(MS/Z)”“@‘I‘@“P)M (6.19)

E-C@) N E*(0,0) .

Let w be defined on K+ (p, 0) suoh tha’o e .
Lt e ff e, o) d?//2+(bo-wo)(Ilrs/z)“”(?"*‘@"ﬂ)/‘i

' E@.& nE(p,0) ; (6 20) .
"I‘henfw is the solu’olon to the followmg Goursatb problem

e Wﬁ—"wda; |'wll"‘“ B e ! .ﬂ-:,:_. '
a=t~p, w=(bo—ao) (;u°=/2)““"/2 (6.21)
a;==—~t+\g,w =0 : : - oo
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Again by a scaling argument, we know that the life span of w is exactly v(s).
Then a compamson argument similar to that in Lemma 8.4 gives _
u(t; ») >w(t ), Vi<e(s)., . (6.22)
Therefore » blows up at time #(s). Then the 1ifé span of » satisfies (6.1) with
Wy == [(bo ' ao)/z] o&/(o&+2) //'0/2) —m(a+1)/(u+2)T3+p
Theorem 6.1 is thus proved.
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