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PASSAGE, BLOCKADE, SINK AND SOURCE™
OF A PLANAR DYNAMICAL SYSTEM

YE YANQIAN (vf f)‘ 1,{{)* e s

Abstract

. The author deﬁnes passage, blockade, smk and source of a plane mu]t1ply~connected
' reg1on G with respect to a smooth dynamloal system Three theorems on the non—exrstence .
or existence of élosed orbits, and the exrstence of a passage are proved Also a conJeoture o

about the number of passages i G is’ stated

Ce N -

‘i8'well-known to ‘mathematioians working in ‘the field of qualitative theory of
ODE. As to the index “theorem, also due to H. Poincaté (for the proof; ses [1];
."Ghap %7, Theorein 9:2)’ it has never heen paid’ attentron to; untrl reeently, the
‘authorm gave o genieralization as follows: - AR

- Theorem 1; Let G be an n—multeply—-oonneoted plane: fregton ‘with smooth outer

v-'boundwry Ly and dnner- boundaries 'Ly, Lg; i, L. With frespect 10w ‘certain smiooth

dynamical sysiem, there are only a ﬁmte numbefr of eritical poonts lying in- the imterior
of @. Let o, v be the number o f paonts where the tmyeotomes are internally, ewtemwlly
darigent to the boundary of G. We ¢all -these poinis ‘inner, cuter contact potnts,
'respectwety“ Then the sum o f the q,ndtces of eritical poronts fwtthtn G‘ is’ s o

2 2 n+"2”‘

Usmg Theorem 1 we can. givea. theorem on the non—exrstenoe of olosed orblts'
‘within-an: n—multlply conneocted region G, , SR NI o

Theorem 2. Let, G be the same as in leomm, 1 assume. them aré o, fmmr
;contaot pomts wnd v;-ouler contaot points.on L, (w [ t @) with v1> 0y, o> j‘m" h=2,

v, m, and 2(0',—-»,) <2(n 2) , and fm G thefre oan be only cmtwwl paents fwoth mm—-

<,

postttve tndwes Then them a5 no closecl orbfz,t lyfmg cmnpletety wtthtn G R
o P'roo f Assume thele ex1sts a closed 01b1t O’ lymg oompletely Wlthm G It i
1mpossrble that none of the Lz, . f L 11es Wlthm 0 srnce 0 must oonta,m 1n 1ts
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1). Notice that the inner (outer) contact: pomts of @ are outer (inter), contacts. pomts of Ligyio+25 Lip-

The Poincare’s annulus theoremn for:the proof of the existends of limit .oyoles



258 CHIN. ANN. OF MATH. Vol. 13 Ser. B

interior some oritical point with pogitive index, Now, assume O contains in ifs

interior some of the I;(¢=2, s, n) and may contain also some critical points

within G Sinoe the sum of 1ndmes of oritical points Wlthin Ly is 142 G’ <0

but the sum of indices of oritical points within O is 1, the existence of U is a also
impossible.

Remark 1, In case n=2 the oondltlons can be relaxed to: oy#v,(é=1, 2),
but 63— v1=vs—02, and within G there are no eritical points.

Remark 2, Since in Theorem 2 0',% v, but in the annulug theorem we have
o;=p,=0 for =1, 2, Theorem 2 is not a gener alization of the annulus theorem, it
ig & theorem ‘of another kind for the non-exigtence of limit oycles.

Now, we can congider two different kinds of problems:

I. Under the conditions of Theorem 2, agide from the non-exigtence of limit
oyoles, what kind of other conclusions can be deduced?
| II. If in the notations of Theorem 2, we have o;=w; for 4=1, 2, «-+, n, among
which gome or all are not zero, can we deduce the exigtence of limit cycles?

In considering the first problem, for the sake of simplicity, we take first G to
be an annulus with boundary L;>L,, such that on each L; there are only two outer
contaot points but no inner contact points, i. e., v1=2, g2=0, »2=0, 02=2,, and
there are no eritical point in @. Let Iy and I, be the trajectories which contact. Ly
externally. :

Asgume first that I, comes from the exterior of Lj.

1) If Iy goes also to the exterior of Li, then I will have the same beha,vwl as
ls. For, if I, comes from the interior of L, then the w-limit set of'l; will be in the
interior of G, this is impossible. So I, comes from the exterior of Ls. Now, I, cannob
go into the interior of L, through the boundary of the shaded region in Fig. 1, nor
can it remain in G so it must go out G and to the exterior of L.

We goo thus that in Fig. 1, I; and ¥, together bound a passage, such that almost
all téajeotories lying between Iy and I, go from the exterior of Ly into &, and go out
G through L, then go into G again through the other part of L, and finally go out
G through L;. ' .

2) If I, goes out G but into the interior of L, as shown in Fig. 2, then either
the a~limit get or the w-limit set of I, will remain in G, whioch is impossible.

Agsume next that I; comes from the interior of L,. There are now two
possibilities as shown by the two dotted curves in Fig. 8. Then either. the w-limit
set of I; will remain in G, or a certain half trajectory of l; will remain in G, all
these are impossible, too.

We have proved therefore
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Theorem 8, When G és an annulus like Fig. 1, where there are two outer contaot
points on Ly and other swo on Ly, and no critical points Uie in G, the two trajectories
I, and 1y bound a passage through G. ‘

Remark 1, We do not call the way between I; and I3 (or between Iy and l,) a
passage, because tr aJectm ieg therein do not meet Ly,

Remark 2, Ifin Them em 3 outer contact pomts on Ly and Ljare all replaced
by inner eontact points, We can get the same conclusion. But now the boundaries of
the passage are made from I and 1 (see Fig. 4). Moreover, in the llmltlng ocaso (see
Flg b), the Wldth of the passage can be reduced to zero at a point 8, but we still
oall thls a passage.

Togethel with the new idea’ "passage' 1nt10duced in Theorem 3, we will
introduce other three ideas: ""blockade” in the case when limit eycle appears in the
annulus, "source” and "gink” in the cage o=v;=0 but no limit oyole appears. These
are shown in ‘Figs. 7, 8, and 9, regpectively. Notice that all thege .concepts are
concerned with a 0, 1 or 2-dimengional set with respect to the trajectories in G.'Here
the blockade may be a 1-dimensional set, and the sink or source may be a oritical
point.

In conformity with Theorem 2, we can generalize Theorem 8 in two dlﬂ"elent
cases: ‘

1. G is a 3-multiply connected region with boundaries I, L, and Ls, on which
vi=4, 01=0, 03=2, ,=0, g5=2, v3=0, and there ig just one saddle point in G.

2. @ ig still an annulug with boundaries Ly and L,, on which v1—4 01=0, o2
=4, p,=0 (or v1=0, oy=4, v»=4, 02=0), and there is no oritical peint in Q.

Figs. 10, 11, 12 and 138 belong to the first case, Figs. 14 and 15 belong to the
second case, It seems troublesome to prove that there are at least two passages in each
figure, so we give here only a conjectlire refering to the general cage: |

Conjecture, For an n-multiplyconnected region G with outer boundary L,

and innef boundaries Lz, ess, I, such that »1=2m, o1=0; »;=0, 0;#0 a,nd é o=
2m (hence the sum of indices of oritical points inG£ is 2—m), moreover, we agsume
that there are just n—2 oritical points (they are all saddles) lying in . Then there
exist at least m (when n=m-+1) or 2m—n+2 (when n<m+1) different passageé.

Remark 8. Fig. 16 shows that when m=2 and n=3, if there are two saddle
points and one focus in G (although the sum of their indices is —1); there may not
exist passage, but instead, limit cyole may appear (although not completely in G). So
the last condition in the Conjecture can not be weakened.

Remark 4. Fig. 13 shows that the two passages may all pass through L, but
do not meet Lg; Fig. 16 ghows that the two passages may all be of width zero,
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Rema.tk b.. If in F;g 12 lg 13, 11—14, then the passage bounded by 11 and Zz
must be counted as a double- paSSage -
Remark 6. Fig, 17 shows that in case m= 2 n= =2 'but v1-—4 0-1—0 v2—0 O's

=2 -(he’nce 3=2-%__ 1, and we assume there is just one saddle point lying in G)

2
we can have only one passage. Therefore when 2 o #vy, the conelusuon of the

former 0011]9017111‘9 is false.

Now, let us study Problem II We 1nvest1gate first Figs. 18, 19, 20 and 21 where
G is an annulus one of its boundary has no contact points, the other one hasan outer
as well as an inner contact points.In Fig. 18 we have a sink, where the outer oontaot
trajectory I, of L, comes from the exterior of Ly. In Fig. 19 we have a blockade,
where the outer contact tra;eotory l, of L2 comes from the interior of Lz A

Similar phenomena happen in Flgs 20 and 21 (in Fig. 20 we have a souroe)
These figures show that when trajectories all go into G through I (or Lz) the
existence of a blockade or a sink (or a souroce) depends on the o-limit set. of Iy or
the w-limit get of I, : | §

Secondly, let ug 1nvest1gate Fig. 22, Where we have two mner and two outer
contact points on L1 but no contact point on Lz We see that the exigtence of g limit
oyole is ensured by the fact that the two inner contaot traJeotorles of Ly come from
the exterior of Iy and that L; is a repeller. S

By using these faots we.get a new method for the proof of the ex1stenoe of 11m1t
oyoles. . :
Emmple 1. In order to prove the emstence of a hmﬂ; oyole of the Wellknown
van der Pol equatlon : . ' )
s=y, y=o+u(l—a?y, p>0, W

we take an annulus G with inner boundary Lz @’+y’=1 and outer boundary Ly

o?+y?=0>>1 (Fig. 23). Since for V =4+
>0 When {a;l<1

2
<0 when Iw]>1 @

V=2wy+2y[—o+pl—a?)y] = 2#».?/2(1— 2){

we gee that on L, trajectories all go from ingide to outside” (slthough they tangent

to Ly at (1, 0) and (~1, 0)), while on Ly there are two inner contact points A4(1,
~O0—1) and B(-1, -~«/0=1) and two outer contact points’ D(1, —~ O=1L )
and B(=1, «/ TJ-:_I—) . Because the phage portrait of (1) is symmetrio with regpect
-$0 the origin 0(0, 0); in order to prove the existence of s limit cycle in G, we need

~only fo prove that the trajectory Ie passing through B comes from the exterior of Ly

but.not from the interior of L. This is not difficult to prove when 0< <1,

Moreover, once this has been proved for Ly-being m2+y =03, we see at once that .

between o°+y =04 and 2?-+¢? _7_02>O; there exists no limit .gycle (b;r consa.dermg_z




‘Ne.3 © YeX. Q. *PLANAR DYNAMIOAL SYSTEM ' 261

the outer contacting circle in order to get a 00ntradlctlon)
' Ewwmple 2 " In [3] the existence and unlqueness of 11m1t oyole of the system

s=a(1+y) (6—b—y?), y=a(l-+y) (b+.«/2)—wy SR G )

was studied, Where a>0, ¢>b>0. Aside from 0(0 0) there is only one oritical

polnt P(avo=b Jo(l+~/0=b ), ~ 6= b) lying in the first quadrant Notloe that

#=0 is a trajectory and-on ‘the posutlve w-axis we have y=0. P

~ Now, let ug take V=a+y, then any straight line ¥ =030 forres with the two

coordinate axes & “triangle lying in the first quadrant Moreover, V=0 is a

hyper'bola _
o= wy/c(1+y) : S - @

as shown in Flg 24 The condition 2(c— b) /c>1/ (1+«\/ ) ensures that P is

' _an unsta'ble focus or node. So we have now an annulus between the trlangle 40AB
and the small cirele around P From the. dlrectlon of . the trajectorles, by the
.conventlon of [4], we know that ‘A and B must be taken as outer contact pomts
Whrle O must be taken a8 an inner contact point. There is another inner contact
p01nt H, it ig the 1ntersectlon p01nt of (4) and o+y= 0. In order to prove hmlt
cycle exists around P, it is suﬂiclent to prove that the trajectory passnng through B
comes from the fourth quadrant Cbut not from P) Thls is not dlfﬁcult when O>>1
* (henoce H is sufﬁlcently close to the llne o= w/ ¢ )
E’mmple 8. In, Bl the system ' _

o= a;(Ao+A1a;+A2w2+A3m2) @ y, y—-—-y+wy o (5)
was studied, where 4o>0, 4;<0, 4,>0 and 43<0. Oritical points in the first
quadrant are 0(0, 0), 8 (1, y*) and B(a;, 0), where

y'=Ao+As+Az+As, vi=—As/4s.
Since A4sa* +A2m2 + A1m+Ao-—0 under Some former aSSumptlons in [5] has only one
(positive) real root w+, the’ strarght line V= :v+y O W111 not 1ntersect the quartio
curve ‘ : S S
Ve=gty= m(Ao+A1m+Azw2+Asm3) y 0 :

When 0>>1. Now, 0(0 0) and R(w,, 0) dre saddles, and the condition ! 2A3+A2 — 4o

>0 ensures that §(1; y*) isan unstable focus or node. So from Fig. 25 the existence

of a limit cycle around P isg obwous This proof is s1mpler than that in [6].
Remark 7, Srnoe 1n many mathematioal models coming from ecology,
chemical reactlons, 1mmune respouse etc., we have planar polynomial Kolmogorov
dlﬂ'erentlal systems(l 0., B= 0 and y=0 are 1ntegra1 hnes), in which we see that
the same termsg Wlth dlfferent s1gns are situated in dlﬁ'erent equatlons it is, a Vvery
natural way to use =0, y= 0 and s+y=0>1 to° form the ‘outer boundary of the
annulus (while the inner boundary ig taken to be a small circle around the unique

ontlcal point within the triangle) and then use our method to prove the emstenee'
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of 11m1t cycles

 Similar figures can be dlscussed when @ is an annulus w1th 0'1==v1—-1 O2=;
=1 (Flgs 26, 27, 28) or when @ is a 3-multiply connected region with p1=01=0,
vy=02=1, v3=0, 03= 2(Figs. 29,.80). . _ :

Our method can also be used to study the problem of the ex1stence of trajectory
connectmg two critical points in a certain bounded region,

Boample 4.  Agsume in Fig. 81 within the region G there are only two
oritical points 4 and B, where A ig a repeller, and no limit eycle ex1sts The
question is: Is there a tra]ectory connectmg A and By .

‘By Theorem 1, the sum of the indices of critical pomts within G is 3= 1+-—-§g-
=0, Slnce the index of A JS +1, the index of B is —1. We may assume tha,t Bisa
saddle, otherWJSe there WOuld be more sepa.ra.tmces passmg through B Now, 1f lyor
(A comes from 4, the problem is solved. If there is a semi-stable hmﬂ: cycle around
A then the a—hm1t get of Zz can be this seml—stable llm;t cycle but this ig impogsible
by the a.ssumptmn So we may agsume that “both ll and Zz come fiom outside of G.
~But then we Wlll have a stable limit cycle a,rOund A agam a contradlctlon. So at
least one of I, or I must come from 4. ' "

E‘mmple 5. Woe have in Fig. 32 a reglon G with 01—4 c1=2 on the boundary ‘
Iy, and two critical points 4 and B in G, where A is a repeller, B is a saddle, |
Different from Flg 31, we have now neither lmut cycle nor trajectory connecting

A and B,
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