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ON PP TYPE ESTIMATED
- KOLMOGOROV STATISTICS
Znvu LixiNe (% /) ﬁ-) * (CpmEeEne PIna (ﬁs}.—T—) fad
Abstract
The authors construct PP type estimeted Kolmogorov statistics by Projection Pursuit
technique to deal with simultaneously the sparseness of samplé points in high-dimensional.

space and the case that distribution oceupies the unknown location parameter and disper-
gion matrix, Furthermore, the tali behavior of the hm1t oi: the statzstlcs is mvestlgated

§1. Int‘fodﬁction

Suppose that X, 15 oot X are i. i. d. sa,mple Wlth d-dlmensmnal probablhty
meagure Q(+, §) whoge pa,rametexj 0 lies in a convex, open set in R¥, In order to test.
Q(+, )=P(+, 8) whose function form is known, we can use the es timated
Kolmogorov statistics _
" ‘ sup ~/n | P I(X<2)-P(z, 0], (1.1

z€ R
where P, and 8, are repsectWely, basmg on Xy, - X u the emplrlcal measure a.n&

-the estlmate of . But the sparseness of data points in high-dimensional space is am.

obstacle for using effectively this sort of statistics. To avoid it, one can construct an.

estlma,’oed pro;)ectlon pursuit type Kolmogorov statistic L
' o " D,=gsup sup ¥ n | P, I(wTX<t) — P, I ("X <t) |, o (152)

tER' a€8s

where Sy={a€R?% |a|=1}, |+| is the Buclidean norm, I (A) is the indicator
function of set A4, P,f and P, f are defined as, respectively, I f (@) dp. (o) a.nd

[r@apa, 6.

Similarly, for the case that dispersion matrix is unknown, that is, for-

distribution P(+, %), we can construct
D, = sup N | P I(a"X<t) - P3 I(0"X<%t)]|. - (1.3

More generally, consider P(-, 6, Z), where location parameter § and dispersiom:
'matrix 2 are.unknown. We congtruct the estimate
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D= sup ~/w| P.I ("X <t) — Py, 5] (a"X<t)]. (1.4)
as .

It is well knewn that many .useful propertiee of these statistics for one-
'd.lmensmnal case have.been derived (cf. Sharock; Chapter V). Unfortunately, we
have little knowledge in high-dimensional cases. In this paper, we investigate the
tail behawor concerning the limit of statistics if thelimit exists.

The paper is organized as follows: Section 2 provides some illustrations for the

eonvergence of (1.2) in distribution, the case of location parameter is put in Section

8, Section 4 containg the case of dispersion matrix and some further discussion.

§2 The Convergence of the Statlstlc in Dlstrlbutlon

‘ Does the statlstlcs in (L. 2) converge asn tends to, 1nﬁn1te? What is. the hmlt
Af the statistic converges? These are the problems we counter before studying the tail
“behavior of the limit statlstms So we first digcuss these two problems.

According to the statistical usefulness, good estimates can often be regular

estimates, that is,

r 0+n’12L(X5)+0,,(w 2), L e 1

for some - dlmensmnal functlon L satlsfymg PL(X) = 0 and V=PL (X )L(X )'*" is

&, POSlthG definife ma,trlx N :
On. the other hand, We provzde P is unlformly dlﬁ'erentlable to garantee the'
-nconvergence of D a8 follows ,
sup sup H PofI (T X <t) — PoI (wTX <t) - (9’ ) T4 (a t) Ilp

a€8s ER o
=0([|6'—8]) near ¢ S T(2.2)
for some fixed f-dimensional function A (-, +) with all its components in O[S, R']
of all continuous functions, where the notation I-1 s stands for 2 (P) —geminorm,
Thus D could be written as

D,=n¥ sup sup | P, I(wTX<t) ~PoI(@"X <) - ~P, L“'(X)A(w, t) | +o,(1)

¢€8qg tER?

—n“’ sup sup {'w,.(w, 15) P LT(X,)A(w, t){+o,,(1) . ,I - _(2.3)

eES, LER

Applylng multlvarlate central limit theorem for any finite subset of Sd X RY,
Ala, 1), 4=1. 2 y kb sy, -

{n fw,.(w,, 8, PuLP(X) A(a, 1): 6= =1,2, -, k}

(;xg’ "
o o {w (e, %), Z7A a, B): i=1, 2, -, B},

‘whers the notatlon ¥ is deﬁned as convergence in dlstrlbutlon, w is & Gaussmn.
-process, Z is distributed. with N (0, o). Employmg the gimilar argument used by_

Pollard ([2], p. 157). we can show that. .
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D, sup sup [w(a, #) 24 (a, )| =D. - (2.4)

e€8g LER
Moreover, we know ‘that w ig a zero mean Gaussmn process where sa.mpie paths:

Oontmue uniformly and boundedly with respect to L2 (P(, 6))-—sem1norm and
covarla,nce function is" :
R((w, D), (a1, 1)) =Pl (6" X<t) I (aT X <1y) )
- PoI (6" X <t) P,I (a1 X <t1) : (2.5)
and the covariance function of w—Z%4 is =~
B'((a, ), (@, )
=Po(I (@ X<t) ~L*(X)A(a, ) (I (@ X <ty) —L*(X) A (a1, %))
. =Py (I(@*X<t) - L*(X) 4 (a, 1)) Py(I (X <t) =L (X) A (a, t)).
In the following sections, we investigate the tail behavior of supfemum ofw—Z%A.
- Without confusion, denote by ¢ & constant throughout the following sections.

§ 3 Locatlon Parameter 1s Unknown

Suppose Q(-, 9) ( —0), where F ig gpherically symmetrm and @ is a

d-dimensional parameter belonging to an open, convex set £ in R®. We establish a |

tail probab Lhty bound for limit random variable of (1 2), sup Iw —Z%A).
Let us now see what is that of 11m1t1ng (1 2) in terms of the dlscussmn in
Section 2. At first, the spherlcal symmetry of F implies that a?X —a”0 is distributed

with F1 @, where F1 is the marginal djstr ibution of F not dependmg on pro;jectlon '

direction a, and F1 (t) must. have the bounded density functlon f We then have
via takmg@ ~—-—2X; .

'_ - D,—»>D= sup lw(a, 8) —fG— wTH)wTZI | L. (8.1)
where, according to (2.1), L(X)=X —@ and V'=cov(X), the covariance matrix- of
x. g

Now present the following result
Theorem 3.1, Assume density funciion f(o ) swmsﬁes

i) f is continuous uniformly: o (3.2)

- ii) there ’bs @ constant B such that for any 1>s >0 and. cmy pwzr (t, %), . '

| FEE) ~f T @) |<Bli—nl. 3.3)

- Then for A>1 . o _ . .
P{D>x}<gx2d-1exp(—_.2_&-2-) | | 3.4)

holds. for.some constant o, fwhere . -
' o? =sup P{fw(w, t) f (t—a"8) a""Z}’

The proof the theorem is dewded into some lemmas.
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'I.emma 3. 2. (cf. Lemma 2.2, [3]). Fm‘ each 7(0<7<1), there emsts @
‘pwrtztwn of s {4 (7} say, such that . o SRR
0 ) o
{A ‘(W NA5(y) =4, (3'5)_
R Lcard {-A1(7 (}gay_(d.?pe ) ‘ R ’
where for some @, €8,

A7) ={a €8s mox Iw“’—w‘”lt<7'}} o (3.8
A9 (y) is the set consisting of all the inner pomts in A, (v). .

Noticing that 4;(y) bhas anologous structure with Sd, we easﬂy obtain the
following assertion with tracing the argument of Lemma 2. .2 in [3].

Lemma 3.3. For ¢ach A () cmd s>O thefre emsts @ pm‘tztzon of A;(v),
{B;('ys)} say, for which

{BOCYS) NBY(ye) =, VB (7s), B°(78) € {B°(78)}, 3.1
card {By(v8)} <0~ e e o1
‘where ' , §
Bi(ye) ={a€ 4:(7): 1ok |a¥=af" | <ye}
' <j<
for some @, € A;(v), the definition of BY(ye) is similar to that of A(y).
Lemma 8, 4. For any fized a €Sy and fized »1>0, there ebists @ sequence
e[t 1ot o [ Tetlem
o {‘ti"b— {271} L s [271]+1}.C3 -
Jor which ' :
' Pe{aﬁ X<t }=“]§‘
Pyla” X<t‘ +1} Po{asTX<t }<71,  <3-8)

Pe {a X <t [ ]+1}<71)
i Po{“ X>t[ ]+1}<'}’1; :.:

where Pa{aTX <t} 4s the mm‘gma,l dis mbumon of F(- ——0) at clweomon a.

Pfroof Due to the spherlcal symmetry of F and “the contmulty of Fi, the
conclusion of Lemma 3.4 is an obvious fact, and #¢ ig of the form ta a”’ﬁ where %
does not depend on g and a.

Lot . . . e .
-Am(')/: 71) {(wy t) G;E.A (’}’) t2(1—1)<i<t2i}y

| a=~[4§, J+1 [471]#1

Av—[—-—]—z (‘7’; ')’1) {(w, t) GEA (’}’) t<75‘1[ 1 ]+1}; ‘
Au[ L]+ (=, 7 ={(a, ¥): a€A(y)>H 4 ]+1}

‘Lemma 8.2 and Lemma. 3.4 1mp1y that {Aw (y, 71)} 1s a pa,rtlon of- ;S'.;><1-21 and
that : Pt ) S
Lemma3.5. " -

and
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: . card {AH('}': 71)<C'Y-(d 1)7'-1 AL - (3.9
Lemma 3 6 For any pair (a, a,) Sy, SR
sup Pe{{a™(X —0) <} 4{ai (X -0) <t}}< la~—ay [I, 4 (8.10)

where the notation “A”. denotes the symmetric difference of two seis,
| Proof For any orthogonal matrix @, S
U Je—ad=l@-eQ). (3.11)
We can ﬁnd an orthogonal matrtx Q for which - - ' IR S
(a—~a1) Q= (a° —wi’)T |

where a" (1 0 ., 0) and a?= (cosqb, gin ¢, 0, «,70), '0<¢<m; So -
| uw_ al=lat—dl = ((A-cs @)+ GmpHDF
i__=2sm(%->/;- C o (8.12)

On the other hend, Lenema, 2.6 in [3] and the gpherical symmetry yield
sup Pof{a” (X —6)<#}A{a” (X—~0)<}}

<P{{aA(X—0) <0}o{ef (X~6)<0}} .

=Po{{(a")? (X —0) <O} {(a) (X ~0) <0}

=2Ps{{ (1) "(X ~ ) <O} {(a)" (X ~6) <0}

¢ | | . (.13

.
COonsequently, it together with (3.12), yields (3.10).
Lemma 3.%7. Umzlerr the condmons (3 1) cmd (8. 2) them 18 @ constant, ¢ such that

(P{w(a, t)—f (4—a 9)@ "Z— (W(w@, 185-1) ~f (t2:~1 a; ) ai Z>}2)2<B (8.14)
holds for any pair (a, §) € Ai;(cB? 0,82), where we take y=cB? and y1=o08>.
Proo f The left sude of (8. 14) is legs than or equal to

2{(1’{10(66, t) W(ws, —1}2)2+P{f(t wT0)wTX —f (t2,-1~w¢9)w X}z)f}
. A2<I1+Iz) L . o (3 15)
By(2 5)Weha,ve T e -
=Po{a" X<} (1~ Po{a" X <t}) + Po{ai X <ig i} (1— Pa{w X <3y 1})
—-2P9{{aTX<t}ﬂ{a;"X<t §4-11F — Pe{aTX<t}P9{a§'X<t25_1}
=Ps{a™X <t}£{a X <t§y-1}}— (Pg{wTX<t} Polai X <ifj-4})?
<P{{a"X<t}i{aiX<tiil}
<Pe{{“TX<#}/\{“ X‘<t}} + (Po{“ X <13 ﬂ' Po{@ X<t2.f~1})
= Po{{a" (X —0) <t — wTB}A{w, (X~ 9) <t w’.’G}
+(P9{wf'X<tg‘,} Pe{WTX<7521 1}) el e :
o ==Ig~rI4 T T R T e . (8.18)
Lemma 3.4 1mp1 ies I4<271 FOr I 5 Wo oan spht 1t 1nt0 two parts -
L<Pl{{a" (X -0) <t—a"O} M@ (X —O)<t—a™0}} - o .. -
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.

+ | Pola} (X ~0) Qﬁﬂ—amﬂ} Pg{a, (X 0) gf, al 0}
=Ir ‘i-I” . . N | (3017)
Lemma. 3. 6 and, Lemma, 3.2 yleld . R -

L<lo-af<y. . 18)
Futhermore, invoking the condltlon (8.2), we have I}<Oy. Then we ha.ve S
. . I1<c~y S oo ' Lo (320)
We now dea] with Ip. It is clearly seen that - I
((f(t -a"8)a" —f(tz,-i—-a. 9>a?>vf>2 o G
Moreover .
l(f(t wfﬂ)a ~f (881~ 6>a':">V§i
- < (f@—=d"0)a” ——f(tgj-l_— ,e)wf')Vﬂ L
| 'f»‘-r-?‘r'(mgf,;; 0)w~—f(t2, 1~—a.9>af'>vzl
Applying (3.2) to Ie, (3 3) and (3. 13) to I5, we have | ,
Is\C’)’l, Ie<07 (3 .23)

So 12\0(’}"“}“'}’1), which together with (8.15) and (8.20) yields (3 14).
Similar argument leads to the following ‘assertion. ST .
Lemma 8.8. Ohoosing ys »—0,82 2 y182=0B%> we can ﬁnd apariition of

,_Au(cﬂz, 0,82) {Dy} say, for which - » R o :

| | : L AD}<es™®. - N S (3.24)
erthsrmwe, ‘there exiSts an- (ak, tk) EA,,(C,B"‘ Bz) cm'msioondmg to D, such that for

any (w t) € Dy, .
 (Pluwle, £ —f - aTO)aTX (05 s 8) —f (—aO) LX) 1) E<s.  (3.25)

.. Proof Using Lemma 3 3 and Lemma 3.6, tracing the arguments of Lerama

3 4 and Lemma 8.7, we can achleve (3 25). ' ‘ ’

Proo f of Theorem 3. 1 Lemma,s 3.5, 3 7, 3 8 have checked the conditions (2. 1)
and (2 5) in Adler and Sa.morodnlsky s paper ([1] p 1340 a,nd p. 1341]. Taking
y(B;‘) = B+ ﬁz’“ and B8,=g-1(A2(14-4d logh) 2), we_see that, from Theorem 2.1
in [1], for appropriate consta,nt ¢ the meQua.hty S S :

.P{A‘ (s%pm)[w.(w, t) f(t wTﬂ)w"'Xl>l.}

| <c?\.’1exp{ 27”2 }-l-ch‘ exp(——— ?\,4 (1+4d log h)) o (3 26)
holds fOr }.>1 where o?= sup PGw(a, t)<f(E+~a"0)a"Z)>. Then from Lemma 3. 5
| P{sﬁp [ (w, 1:) LG w""O)a,TZI S FEIREE
<2 P{ sup ]fw(w,t) ~—f(t wTH)wTZI >&‘
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¥<cx2"xflexp<'—--;2"-?;-')=ch2;"1exp(~—&z—). : (8.27)
20 20° . R
‘Remark 8.1. In Theorem 3.1, we impose the condii_;ions on density function
- f. Luckily, these conditions are mild, and we can see that almost all gpherical

distributions possess properties (3.2) and (3.3).

§ 4. The Case of Unknown Dlspersmn Matrlx

Suppose that Qx() is an elliptically symmetrlc proba.blhty meagsure whose
density function is of the form f(273%); we further assume that 2 is the pos1t1ve
definite matrix. The elliptical symmétr'y implies that Bl'fX is distributed épheri—-
cally symmetrically. When 2 is unknown, we need {0 estimate it so as to construct
the estimate as (1.1). By the same reason as that in Section 1, we can construct
projection pursuit type Kolxnogorov statistics.

D} = sup sup ~/7 PI(@X<H)~ F1<\/ fza)l @

lER‘ ¢€ g
where F, is one—dlmensmna,l margmed dlstrxbutaon of 2‘2X aTZ‘,.w n‘1§] (a’-"X ,)2

We know that Fy does not depend on the projective direction a, and tha.t a® 2.4 is
~/m ~congistent estimate for the variance of X since PX =0. : |

If the density function of Fy, f say, are bounded and continuous uniformly,
taking L, (X) = (a*X )2, along _With-tho similar 51-gument in Section 2 as long as we
| pay attention to the uniform consistence of a?3,a with respect to @, we then have -

f(JwT20>tw1(w)

| 2(&2@)? | |
where w(a, t) is denOted as (2. 5) R Wy (a,) is a,lso 4 zero mean Gaussmn process ‘whose
sample pa,ths contmue umformly and boundedly ‘with Tespect to Euchdea.n norm

D,—>D'=sup | u(a, £) - (4.2)

- lj, and GOVarlance functlon qs of analogous forin a,s that of (. 5)
" R{a, a)) =P(@"X) % ITX)‘* (a""Ew) (aF Z‘a,l) T (4.8)
We obtain the following fesult: SR . L
Theorem &1, Assume that the condmons are ful filled.
i) f(¢) continues uni foa‘mly and, bmmdedly, _ ,
ii) there is a oonstamt B sucﬁ that for any s>0 and any pair (t t), of

l-Fi(t) Fi(t1)i<3
then

iti) ¢f for any a>¢z1>0 for which a-—a1< s, them e:msts a ccmstant ¢ such that
(4.6)

: sup ‘f w

fBE-f@hI<Bs o (4B




and 31m11ar to (3. 16)

No 3 Zhu, L. X, § Cheng, P. PP TYPE ESTIMATED KOLMOGOROV STATISTICy 287

¢hen we have for}\.>1.

where .

= supP(w(c&, t)+ ( > >tw1(a'>)
o _ BEPYETRY

Proof 'The proving procedure is almost the same as that of Theorem 8.1. We-
T : ) .
easﬂy know that (8. 10) cont nues to hold by notmg that :7%——- is distributed

with the spherically Symmetrlc d1st1 lbutlon Applymg Lemmas 3.2—3.5, we can
obtain (4. 7) ag long as we show that v '-

(e L CARRAPRIE SRR >}‘)f

2(@"”2@_) i ] Zwe 2((#2@ )E

‘ oy . | . :
holds for y=¢B? and y,=¢B%. But thjs is relatlvely easy Slmlla,r to Lemma 3 7

fet

N\ tw(@) e N @)\\E
(P (f(x/w’l'zw> 2<QTEC6)% f ~/ a;[-z\qi 2(@3'2“‘)%) )

Y \ t(aTX)z o g‘j‘_l \ tazt,_l(aﬂ“X’)z , %
<<P (f(\/w‘EG/z(aTza)f f(\/af_Z'a;/ 2@312_%)% ) )

<(P((JFz) T SR o byriaon) R A Y

< (7 s ric s 2%;'2;3»; T

-t (ﬁ’f&“) 3 <22’z¢1z;3 ) 2%@;”) )

C 18y \ tzj—i ', (w; X)Q
+2((7 @i 2a; ) 2@ 2a) 2(@2a)°

—f(\/tgj;l Nty Saarsar )2>%=Is+19+1m. ~ - (4.'16) ,

w'; 2a; /\ 2 (@i 2ay) / 2(a"2a)?

1‘

Since -\7 5o is dlstnbuted with Fy, by (4.5) we bound Ie<cB. And Iy<cB due

to (4. 6) Finally, gince inf~/ Py . >0 follows from the positive definiteness of 3,

e€fs
utlhzmg (4. 4) we easlly verify

Iio<cB. | (4.11)
(4.8) is showed.

'P{D’>h}§ck2“‘1"“GXP{~'22:;§‘}, @D

(4. 8) __

(P{(’w(w t) 'w(a‘, 1-1))2})7<C,3, S (4.9)
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Remark 4.1, Wo have to point out that there are also many élliptically
symmetric probability measure satisfying conditions'(4.4)—(4.6), for example,
multivariable normal distr ibution, the digtribution whose one-dimengional density

function is of the form f () =—, a>>3]j a,nd s0.on.

In view of Theorem 3.1 and Theorem 4.1, we khow'that _ohe can construct an
estimate for-which Both location parameter and-dispersion matrix are unknown as

follows. o o
n__ t a%0, .
. . : B Dﬂ— } Tzﬂa ] i (4 .12)
Simﬂa.rly ¥ E
t—a"0 6~ a,a'g tw (as) , —p"

.D"’-> Sup lfw(w, 1) +f (m)wTN (o, 'v) +f (’JT“ & (a,_,,zw)g

as long as the condltlons in Th901em 8. 1 and Theorem 4.1 are fulfilled. And the
following vesult is obtained. -

Theorem 4. 2. Suppose P(+,8,3) is an’ elhptwwlly Symmetric po’obwbzhty'
measure whose location parameter and dispersion matriv are unknown. 0, and a*Z.a
are, respectively, the estimates of 6 and a*Za, defined as in Theorom 3.1 and Theorem,
4.1, Fy is defined as (4.1). If the condwtwns (3 2), (3. 3) and (4 4) (4 6) are wll
‘fulﬁlled then for A>1

P{D">x}<cx2<d-1>+1exp{ 2?“2} DR O )
where .v E

ot= supP{w(w t) +f(f/“f)—:"£ a N(O Iv) f(st/wg‘zi)z::;;‘;))f 12
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