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THE CAUCHY PROBLEM FOR GAS DYNAMIC
SYSTEMS IN MULTI-DIMENSIONAL SPACE
WITH WEAKLY SINGULAR DATA™

CHEN SHUXING (sz ho, ﬁ—) * Wane YaacUANnG (£ SE?E)_* |

Abstract

, The Cauchy problem for gas dynamic systems with weakly discontinuous initial data
is discussed. The local existence of the solution to such problem is proved. Meanwhile, it
is shown that the smgulanl;les of the solution spread on all charactenstw surfaces i 1ssumg o
- from the manjfold carrying initial smgulantles ’ '

§ 1. Preliminary

- Since A Majda's work™ publlshed in 1983 there has been notmeable
development in the research of initial problems for the gas dyna,mm systems in
multidimensional space with smgular data. When the initial data are discontinuous
" and satisfy some conditions, A. Majda™ and S. Alinhac™ discussed the local
existence of shock fronts and rarefaction waves respectively. When the initial data
are continuous, but their derivatives are discontinuous on a lower dimensional
manifold of the initial surface, if certain compatibility conditions are satisfied, then
there will exist a gradient wave issuing from the manifold carrying singularities of
initial data; such a conclusion has also been proved mathematically (see [8]).
However, in general case, this problem is more complicated because the singulafities
of the solution will spread on all charaoteristio surfaces issuing from the manifold
carrying initial singularities. In this paper, we are going to discuss such Cauchy
Aproblemé with singular data, and give the structure of singularities of the solution,
- We will mainly discuss the system of isentropic compressible flow in three
dimensional space in order to show that the result in this paper is available to some
quasilinear hyperbolic systems with multiple characteristios, Our conclusion in this
paper is also valid for the case of non-isentropic flow. In addition, the method in
this paper can also be applied to treat waves with higher order weak discontinuity.
The solution which we obtained is piecewise H*® smooth, but some regularity is losé
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in the process of finding the solution. To improve the regularl’ﬁy of the Weakly
singular solution 1s worth studylng further, in tb1s aspect some results have been
obtained in [1].

§ 2, Introductlon of Problems and Mam Results

Let us consuder the Oauchy problem of the gas dynamm system in thzee
dimengional space:

oy aU Lo U o BU _o I
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with ¢= (p’ (p))m being the sound speed.. P

For sumpllclty, we.got I'={z=@o(w; y)} to be a smooth hypersurface through
-the origin on = 0, w=={t=0} N{z<po(a, )}, co+-{t 0} N {¢>®o(z, ¥)}. For the
‘problem (2.1) (2.2), we assume that Utlr= UG[}, UﬁE'H“(w*')-,. and D;U§|p+4
D05\ r, whe‘re'n is the noriﬁé;l dlrecflo'n of I'. Qur main result i'n this paper is

Theorem 2.1. For given s>0, there ewists A>0 such, that under the above
Aassumpti.ns on the initial data, there eaists m neoghbm'lwod {2 of the origin O, and
Junctions 91(3, @, V) <@:(, @, ) <@s(@, v,.y) (The equalities hold ¢f and only of .t=
0.) defined in QN {z=0}, and functions U, U1, Uy and Us; which are defined én Q°=
{2<9:(3, =, ?/) NQ, @ ={p(, », y)<z<@:(¢, o, Y}INQ, X={p:(Q¢, @, Y) <z<

(15,0, N} NQ and B={2>0s(¢, , )} N2 'respeotwely, satis fying

(1) ?;(§=1,2,8) and Uk(]a=0 1, 2 S)belong to H* in their domains.of definition.
(2) %lt~o——¢o<ﬂf, ?/) Uolt=o-—Uo (a’; VA 2): Us‘t=o—Uo (w: ?/: Z) a.nd U!-1Ia==¢,

o 9!%%(9 =1, 2, 3). o . e T
) "'_'“(3)

3991 3(1’:1 a‘Pi '___ ( (6q91> (a(pi) )1/2—‘_:.
ol +u B +’U Py ’w1+01 1+ 9y, L 0, A;O‘n'(z ,.?)"’ g
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) 2 D
afzz +u2 6972 + 1, 6(};:~w2—0 on z= sz,

384?;3 11 36‘7’8 + vy 6391); —~ 02(1 f—(aaqu) -%—(ag; ) )1/2-—0, on 2=@g
“where o1 and ¢y are the sound speeds of Uy and U, respect@fvely B@s@d@s, U;a {(=0,1,2,8)
satisfies (2.1) én éts domain of definitéon. e

Remark By the continuity of U, we know that the second relation of (3) can

be also ertten as a,% g aatpz —l—/v 86922 —w,=0.

By using the pr operty of finite speed of propa,gatlon for hyperbohc Systems we
1mmed1ately obtain the functions P4, @3, Uoy and Us from 1n1t1a1 data (2.2), so we
only need to find the remains: @, Uy.and Us. :

Flrst let us give the values of all derivatives of @3, Uy and Uz on I, such thafy
?;(j=1, 2, 8) and U,(%=0, 1, 2, 8) satisfy certain compatibility conditions-on T .
Without loss of generality, we will always assume @o(w, y) =0; _otherwise we will
eagily be led to this by using a mmple transgformation ¢’ =z~ gvo(a:, y)

ot g2 _, 20d Uim= aaan (=1, 2, 8 k=0, 1, 2, 3 m>0).

Since z=¢;(¢, , y) ig the j-th characteristic surface sta,rtmg from {z t=0} (j=1,
2, 3), we have

Pi=%U, @i, Piy, —1), 9:(0, @, ) =0, (2.8
where A;(U, €1, €3, £s) is.the g-th eiggnvalﬁe of Bg'(§1B1+E§aBa-+£3Bs). Therefore,.
we egtabligh the 0-th order compatibility condition as ¢u=2A;U, 0, 0, —1),

Dlﬁ‘erentlatmg 2. 3) a,long with z2=9;(, @, ¥), we have :

&g N 0% | O Dy
O aU - (@ "‘”ﬂa)UT 051 Owdt ' 0E, Oyot”

The restrlctlon of the above relation tot=0is

-1 3U B -1 6U§
ot (on=Bi*BoUn—gp-(B5*B: 2 FBO B, y)

‘Piz ==

3?»; 9‘7’51 oAy 3%1 o ‘ - .'2 4
051 Ow + o€, 2 A @ )M
Furthermore, this relation is still Vahd as -gubstituting Uj;; by Ujq, Beoause the.

tangential derivatives of U; ahd Uj_y ; along the surface {z=g,} are cortinuous om
this surface, and tbelr norma,l derlvatlves could have. Jump, we hayve - ‘

37\'5 (‘P:i Bo Bs)(Uﬁ. U!-—1,1) 0 ‘;»k.>. _ ’ (2 5)

We call this relation the ﬁrst order compa,tlbﬂ.lty condltlon Sszla,rly, wo oan.
establish the higher order compa,tlblhty conditins as e : _—
(@i B5*By) ™ Usa—Ujo,m) =0, m=1, | . <2'.'6)
By (2 6) wo have Ui~ Us=t,m=W ime; (g==1 or 3) a.nd Uzm U= Wemea+Wim
where 6, (resp. es) is the first (resp. third) unit elgenvector of B5'B,, & and d;’ are.

=}




eigenvalue. Hence -
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its two linearly independent unit éigenvectors ~corresponding to the second

_ Usn— Uo,,, Wame.o, + W2m32+W2m32+W1m91- = .7
Since Uy, and U, are known, {61, 6h, ¢4, es},is linearly independent, we can
unlquely solve Wim, Wim, Wan and W from (2.7), and then U1m, Uzm and @; mes
can be unaqmly determined, Therefore we have

Lemma 21. For (2.1) (2.2), and any given intecer. s=1, we can defins
{D%;|r(5=1, 2. 8), DU+lr, DUs|r: la|<<s, |8 <s-—-1} such that the compatibilisy
conditions on I' up to the (s—1) -th order are satis fled. ’

Remark. If the second class characteristic surfaces are denoted by 4 (¢, @, ¥, z)
=congt., and the surface sta,rtlng from I" ig A=0, then A,——?Lz (U A, A, A mush
be satisfied. In thiy case, Wwe still can get {D*A4| p},,,”.:s satzsfymg the compatibility
coniditions on I" up to the (s—1)-th order. - )

.'The proof of Theorem 2.1 is the main content below, In § 8, we give a éerie‘sséf
transformations, which ‘make the problem gimpler, and :list.some .properties of
weighted Sobolev spaces as a preparation of the further discussion. All necessary
estimates of the corresponding linearized problem are established in § 4 which ig the

.main part of this paper. Finally, in § 5 we use‘thes_e estimates to prove the existence

of the local solution to the nonlinear problem by an iteration prooess.

§3 Prﬁeparat'ion:s"

“Ag the first step we transform the reglon to an - angular region ‘with two ﬁxed
boundaries by a series of coordma’ce transformatmns Introduce S
VL =t '
L =, ’ v o .
Tz § y1=v, DR (8.1)
-2 —ps(t, i, 1) —p1(t, y) 1, .
sty @y )~ eu(E; @, y)i

~ "which’ transfdrms the characteristic surface of the first class: {z @1}, the one of the
third class {&= cps}, and the . family of characteristic surfaces of the second class

{/1 (t @, Y, z) const} to {z1=_~ tl}, {zl—tl} and {Al(tl, w;, g/i, z;) ——const}
respectwely - ) © '
Introduce

. _.»_w2=m1r
H _-' yz-—Z/ir X B i :
Ty :‘ﬂz""-Ai(tll L1, yd: 51)?




302 S o CHIN. ANN. OF MATH. : Vol. 18 Ser. B.

'Whioh transforms all characteristio surfaces of the second class to {#;=const.}, and
keeps the form of characteristic surfaces of the ﬁrst and the third classes {z3= +i:}
unohanged

By the transformation T.T,, (2. 1) is changed to

B 2? + B ZU + B agl] +B@ aU —0 tz>0 — 1L 231y, '(3-3)’
2 g

whero B = By, B =By, B =By, Bi?= aAi B§1’ %;11 Bt 6A1 By + 3*;111 B, with
Bu)_ 3;;1 FBr 3¢1 5y 32 6z1 _[_ B, 2 ~1 | (3.4);
an d aaii 3;1, %;/1 nd 6az1 cen be expressed by (3 1). o
- The corresponding boundary conditions are transformed into ,
Uloto=Us|eret, (known) (8.8
and : ‘ ' o
e Uls=-t:=Uol si=-t, (known), (3.6),
~"Finally, we introduce o D o
e ' l3=1a,
my=mg, v T |
T 3 ys=ys, . : ' ' (37)“

{22 3 22>0 4

g =

—R2, Zz<0

and get V(ts, g, Y3, 23) = (Vl: V2)T (U(t& L3, Ys, ZS) U<t3’ s, Us, '_23)) ’ -A-im
diag (B®, B®) (=0, 1, 2) and A;=diag(B®, —BY), where the notation diag:
(@i, *-+, @s) stands for the diagonal matrix with (@i, -+, a@,) being its diagonal.
elements. Then the problem: (8 3)—-—(3 6) is equivalent to

=4, 14, W St A ov +dy WV _ 0, 0<rs<ts, (3.8):
&ts y . 623

Vilz:-—o Vzlz:—o’ o . . (3 .9)

Vi‘z,:ta U3: V2lﬁa=ta=U0 - (3 10)

The coefficients of the system (2.8) contam an unknown. function representing”
“ the characteristic surfaces of the second olass Because. A (¢, o, y, 2) satisfies 4+
R TR o oz oz [/
uA,+eA,,+wr1,==0, :41t,+uA1,,+ fv/li,,, [6: +u 221 31 Fv—éj +a az;

hold for .A1<t1, wl, yl», 7). If {= ¢(t @, y, 2) is the inverse funct;on of = |

Ay(t, @, y, L), then ¢>(t2, @2, Y2, #2) ust sabisfy

o6, 0% ., 06 _ I
T B —+b o0 +¢=0, t2>0 t2<2g<8s, (8.11)
‘whisre a=u, b=v, ¢=— (3z1 +u Zzi +o ?z +w az‘) ‘with the arguments (b1 21,

¥, 1) being substituted by (2, 2, Yz, B). Meanwhﬂe, on Zy= ¢, ¢ safisties

]A =0 musts
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¢<t2; g, ?Jz, 52) lz.—é—-&tg““'zz- ' (3.12)
Under the transformation 7', the problem (3.11) (3 -12) is equivalent to .
{ g;” +Wi a"” —+ W a;’ +Ws=0, 0<25<ts, (3.13)
. ,
¢ (ts, w3, ys, za) lo=t=28, @1]a=0=02|z=0r - (83.14)

~ where ¢ (ts, 3, Y3, %) = (@1, @2)¥= (@ (s, @3, Ys, %), (s, s, Ysr —23))7, Wy=
_dl&g(@ V1), a(V2)), We=diag(® (Vs.); 5(V32)) and W= (¢(V1, p1), G(Vz; ®3))".

" Obviously, the proof of Theorem 2.1 is equivalent to ﬁndmg the solution (7, <p)
~ to the transformed problem (8.8)—(8.14). '

Let Q={0<z3<ts}, I'={t3=2=0}, 21—{~s——0 ts>0}, Zo={2s=1%>0}, and
denote the intersections of Q, 2, 3 with {6<T} by Qr, Jir, Zor respeotlvely By'
using the values of derivatives of @; and Uy on I' given in Lemma 2.1, we may
easily construot function ¢@, V¢ H* such that |
rLOV(°’-~0(:‘,S‘1) in Q
V=5 on 2,

V{P=U,, 7§ ==Uo on Jy,

\ a;:;’ (V'(O)) —I—W (V“”)
3

1 @@ =23 0n Zy, -

2 o, metmna, OO

hp‘"’—-(p“’) on 21’
where Ly=L V', VgD(‘”) as mdloated in (3 8) 'I‘he Way of makmg (V“” cp“”) oam
be found in [5]. ‘

To alleviate nota,tlons burden, we will denote (tg, .rva, ys, 2g) of the system (8.8)
—~(3 14) (the original coordinate of the system (2.1)". (2. 2), resp.) by (¢, o, ¥, 2)
(@, o, ¢, &) resp.) in the following disoussion, ‘ .

In order to obtain the existence of the solutlon to the nonhnea,r prodlem, we-
- need to carry out our discussion in weighted Sobolev spaces. Denote
13(Q0) =" L*(Q0), ol zy00=1¢"ul san;
| HY(Qr) ~ {u| 0w € L (@), V [a| <B},

v Where o= (a,, Gy Gy, ), O =0 -+ &, The norm of H k (.QT) ig defined by -
: el 1'—-{ 2 A2G-ar) ﬂ@"‘ull ot

,<0T) _
- . By the above deﬁnltlons, it is obvmus tha,t [lt "‘”‘u [( Hk(gm,<0 Huﬂk, 2, T Usmg Sobo*ev’
embeddmg theorem we ha.ve B P
| Nl ian <Ol waz  (3.16p

_ where 0O is independent of 2. T and . ‘

Furthermore, we mtroduoe the tangentml vector ﬁelds of 2,U. 1‘ : _
0 2 D el
. Do z_.t o’ Di=t7y D 6a:’ Ds 63/' vy
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Nulion, 2= { E ?\.2‘““” ‘“)"_Dﬁ " }i/2

Loy
where o= (ao, 0y, aia, ).
By direct computation it is easy to establish
_ Lemma 3.1, Assume k=0, p=k-+1, and T<To, )\,ER+, a€ H?(Qp), u€
H”(.QT) Then
‘ lau],», T<Ouw"fl‘°(91'o)"u"k mEe . (. 18)
Lemma 32 Assume € O°°(R) f(0) = =0, Ty>0, 70>6 K>0. Then them is @
constant O>0 such that for any A=k, uEH"’(.QTo) satis fg/fmg les],a, T<K we have
) EHYQ,) and | - |

P W@l e<Oline (319

§4. Energy Estimates of the Lihearizéa Problem

For the nonlinear problem (3. 8)—(3. 14), we establlsh the followmg iteration
process ' C
A e =Ha(), @)
Lph=p@4y", it =Er (0, '
‘where Hyp is a bounded extendmg operator from H(Qq) to HY(Qq,) satisfying
| B )5, », T.,<K]lu|]k sz for any <N, K ig mdependent of]o A, T, and g, Z"“ are
the solutions 0 the following linesrized problem

(L, vt = L, Y O in g, (4.2
Cn—l-l_grwl on 21, | | | SR . (43)

C”+1 0 on 227 v A L ey e o 4‘ | (4.4)
172 S Wi(V”> FWz(V”) ——-+W3 (V",* Oy "
< e S ER

L§"=0 on 22 __ | | i'. (4.6)
The purpose of thig section is %0 estabhsh przor estzmates of this linearized

‘problem, the exmtenee of its solutlons is na.tura,lly obtalned Flrst by the chmce ol
V', ¢) in §3, we oonﬁrm that for any integer % and constant 4>0, there is
1,0 such that izl;,,,f,+ [Uo % T+ [Uglk, 2,< 4, where the notau*on [ o, 1, 19 the

norm of the Sobolev space H*(Zg,). From (3. 15) we know - ¢ L
" VO uq»<°>||k..f.<2a | (4.7)
“LoV(O)“ku, a¥e, 1',<A : RN (4 8)

by possﬂaly deoi'ea,smg To and settmg §= 7\,+3 Where [ ﬂk, P represents the norm .

- iof the Sobolev space : H"° (Qz,) E N Rt

For 7">7 let g5 = {(f ‘I’)EHk(Qr) XH"(QT) {M"é:“k 7-.1"“ Hlllﬂk.n.aﬂ)QK ) yana
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its norm ig defined by (£, ¥) [, 5, 2=A(|€]n 2z + A Pl5 a2

A prior este{mate of the problem (4.5) (4.8) is

Theorem 41 If ko=k+4, (f" O)EST, A zé suff@cwntly Zcm*ge, th(m the
solution " of (4.5) (4 6) satfsfies ’ :
N6 5.5, T<au§ loasz o '(459)

s+ W, (V“”) + W (V(o>) - W3V, ¢(o>) = 0,'

Proof Because
(4.5) is equivalent to '
w2 —l—Wz(V")——-—=e o1+ 6z, (410
where 6, =Ws(V?, ¢<°>) ~Wa (7, q»<°>—-0"> and -
| ea= (W1 (V@) ~ Wl(V")) I—(Wz(V‘”) -Wz(V"))

From Lemmas 3.1 and 3.2, we have o N - L
leslw,a, T<O||§ “k AT ) o (4.11)
ledls, <O onse - (4.12). -
Mulmplymg £~2+197 on both sides of (4. 10) mtegratmg it on QT, and then by
using the condition (4.5), we have ~

Mo an(gT) neuLh_lm,,,,- R C B 5

849)

Eul_'therinore, ,

Suppose D js the tangentaal veotor mdloated in (3. 17) Aotmg D on (4 5)
(4.6) and uSmg the fact that 22 is a nonoharaoterlstlo surface of (4. 5) , we have

Z AW+ W V")'——-) Dpr

~[ZrwrnZ W, (V")-—Q— D*] 0"~ D%, in
Do&on l =0 .
By the gimilar way we can establish

HD“Q HL,‘(DT) <" }‘W1(V”)——-+W2(V”)———— D“]H —D% .

2 .
RG]

<|[Z+wom L Wz(V") e

Lﬁ_l(QT) 'lf A Dﬁ‘@ “ L2_ (@

which yields L
o 7\'“0"“74 A T<O(ll§ “Ja ;.-1.T+O(A)H0 “k.?. T) | . (4.14)
as A ig Suﬂiolenﬂy la.rge ' B

Oombining (4.14) with (4.5) -immediately leads o’ (4 9) .

Next, we are going to congider the problem (4.2)—(4. 4). The system (4 2) is
symmettio hyperbollo one, tHen’ it has strong solution if ity boundary -conditions
are maximal dizsipative. The conditions (4.3) and (4.4) sSeem 16 be too ‘many, but
they are in faot ‘equivalent to maximal dissipative ones. For instance, let us show .
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‘the faot for (4.3). Because the coefficient matrix of —53- in ‘the operator L is diag

(BP, —B{), by using a suitable transformation of {i** we can reduce B to diag
(0, 8*) where B* is a 3x 8 symmtric matbrix. Stmilarly, — B can be ohangéd to
diag (0, —pB*) by the same transformatnon of I3+, It ig easy to verufy that the
»oond:duon

@y =@y CEL)

is maximal disgipative on Zy, if £f** is rewritten as (({7*Y)’, ({i*H)®7.

Now, let us point out that (4. 15) implies (4.8). Because -——C”“ does notappear |

in the first and the fifth equatlons of this system after the above transformatlon,
‘these two.equations oan be regarded as differential equations of functions (Z"'”) on
3. Therefore, ({3*1)’= ({3**)’ holds on 3y, for it is true at t=0. Combining this
‘with (4.15) leads to (4.3), and thus we have shown that (4.8) is equivalent to a
maxlma.l dissipative boundary condition on ;. The same ‘method can be a,pphed to
showing that (4.4) is equivalent to a maximal dissipative one ({"™**)*=0 on Z,.

In the sequel we still take-the form of the boundéry problem as .»(4.2)——(4.4),
and try to establish energy estimates of its solutiou, i. e., fo estimate {"** by the
norms of £ and 6", First, denothigd’: 7", Ve V@ by @, we have

Theorem 4. 2. If (£, ¥ € e Ads suﬁ"wwently Zarge, then the solution I™ of

(4.2)—(4.4) satds flos'
Mo e<OlGlo sz (4.16)

Proof We will use the method of dyadic decomposition to derive the energy -

estimates in the angular region Qy ('I‘hls method can be refered to [3], [7]).

Introduce a decomposition”

2 2 (2%) =1, V>0

_.—-ao

where 7€ 05 (B.), supp £ (1/2, 2). Lot LG, 0, y, ) =2 (@D, @, g, )

and PG, @, y, 2) =270 (279, %, y, 27%), where the index j of (™%’ gatisfies
2771, Then 2-1<¢<min (2, 2T) in supp {"*1 & Obkusly, ﬂZ“*l o= | Ert1d| 1,
and [{**]o, » 7 is equivalent to 232. 18+ puomy. L

~ Since {"** gatisfies the problem (4.2)— (4 4), Errtis satlsﬁes

L’Z"“’—(tAo—-g—-l-Z”tAi—a—a———l-z"ftAz aay +tA3-§- Ml );ﬂw-—ﬁ"

Prat i = Frild o Sy 2'1<t<mm @, 2 To), :
£ §"+“—-Oon22,..__.:-»_- o . -
.where a, (209, 2) = -A,(2%, w, y, 27%) ('1,==0 1, 2 3) F’—=F{+F£ with. F’s
x(2’t)t"‘+1G Fi =2 Aoy (20)g~2+3 M2, e }
¢ For the ahove problem, the theory of symmetnc hyperbol ic, systems shows
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At l»<0l Fl)
which is equ1Valent to
ME* o, 2, 2<O (G0, 71,2+ M"”“o 2 1')

Thus we are led to (4.16) as A is la,rge enough. ‘

Before glvmg a higher order energy estimate of the problem (4.2)—(4.4), we
Antroduce e

Lemma 4, 1 For any integer $:>0, there is an integer $,=0 such that the values
of {D“C”“lz, || <81} cam be uniquely determined by the {D”Uilp, D"Uglp | Bl <sJ}
given in Lemma 2.1,

Lot us sketch the proof of thig lemma, First, the tangential derlva,tlves of C"“
on X, can be directly obtained because the value of {3** on 3 is known. Since 22 is
the simple characterigtic surface of L in (4.2), the restriction of the coefficient of

9,{™* t0 J; may be changed into diag (0, %) in (4.2) by a suitable regular
transformation of C'{“,' where B* is a 3 X3 invertible matrix, n ig the normal
direction of g If I7* is-written as (({T™)’, ((#*)*")T correspondingly, then
8, ({7 *| s can e solved directly from (4.2), and 2, ({3*")" does not appear in the
first equation of (4.2). By acting 0, on both sides of the first equation of (4.2), we
obtain a differential equation of 2,({*")’ on 2,. Taking 9,({*")'|r as its initial
data, we can uniquely determine the value of 9, (1[50 from this Oauchy problem,
Again, by using the fact det (8°)- #0 we obtain the value of 82({3 *1)*| 3 by solving
a differential equation on 2, we obtain the value of 23 @r+y | 5. Alternatively, we
~ can uniquely determine the values of all derivatives of Z’f“ on 2‘2 The results for

2+ can be similarly obtained. - ‘ 7

Theorem 4.3. Suppose k=T, K <k, M is large enough. Then the solutzon C”“ to
tiw problem (4.2)—(4.4) saisfies o

S ML, a2 <O (NE w2, 2+ “G"w Amt,m)e (4.17)
Proo f Act D"‘(la{ <#') on both SJdes of the problem (4.2)— (4 4);
o L(‘V‘n v¢n) Dacnu [L (V’n v¢n) Da]ZM-l_‘_DosG '
$-Degprt = D53t on, 2‘1
D+t jg known on s,
For this problem, by using 'I‘heoiem 4.2 wo have -
MDA, e <O (| L™, ve"), D Z"“ﬂo 7.~1.T'+ 1D*Gloa-1,2).  (4.18)
. Set (L (V” th”) D% Cn—}-i E - h D/San Dﬂza¢n DSy, ‘

|B1l+ lﬁnl + lBTl =lol

Accordmg to different cases of the index B, ca,refully applymg Sobolev
embedding theorem we can establish. = =~ o
| L™, vy, D“] l"ﬂuo,a.—i r<0(4) u&’f""sl“xal.;.,_w.
-Combining this estimate with '(4.18) lmmedsately leads to i(4.17}.
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Theorem 4.3 gives an estimate of tangential derivatives of {*** with order
lower than #. Before giving an estimate of the b-th order derivatives of {***, we
point out how to get the estimate of normal derivatives from the estimate of
tangential derivatives by using the special form of thé gas dynamic system.

- Theorem 4.4. If (5", ) €8y, O<K <k, A ds large enough then the solutwm

g+t of (4 2)—(4.4) satisfies

M| §”+1 % ¥, 1‘<0(A- 1D (C”“) li-1, 2 1'+7\:||G" W1, a1, 1'+T) (4 19)

Pfroof For the system (4 2) the coefﬁclent of C"“ is A =diag (B‘z’ -—B‘z’ 5

where
) ro | o "
P E£2)= . : i ‘} j: ay . . R
:an aﬁ’
o o O
_os' oy o p-".E*_.
o | éz o ﬁz S
with E——-é?— a -yl +'v” a - +'w,, a, .

Notice that ‘p" satisfies (4. 5) then all dlagonal elements. of B‘z’ Vamsh

oy o™ gy |
Smce 'é-z—,————é—zz— 5_2_1_—_6—%: —6—2, —-a—z—' ‘—1 then there ig To70 Such that
-3—2— >0>0 on Qy,. Hence ' "
o7~
az l n+1 32 ' n+1 az n+1
Mn "71‘:’7-1'*- a/ +6y, +a/ WA T

<0 D) v, 52+ | l"”" w-toa, ot | G" W—1,2-1, 1') (4.20)

In order to estlmate IIZ”+1 w, 2.1 | L35 1|lk, T “and 1e2# . 2.2, We estimate- the
rotation of velocity vector, and come back to the original physical coordinates. In
this coordinate system the iteration process (4 1) (4 4) has the form

" Paln

Pn um]—i
Pn Pulln
. Pn. ' pnun
Pnn U1~
Unsa
+ .
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o

PrWa ' m
+ Pn%n —?-,- Vnid =0, (4021)
N ‘ PaWn S oz Wogt | _— _
1 aotwad  Lpa

Differentiating the firgt and the thxrd equations. with respect to 2’ and o
respectively, and then substracting one from other leads to ' ‘

2 8 _?__)( Otpgy W1 )___ _ '
<3t’ Tttt g N e ) 42D
where .
k — p—l [ apn aun{-l 3Pn a'wn+1 + a(pnun) aun-l-l a(pn%n) a'wn+1 :
Lo of  od ot oz o« o oo’
+ 0 <pn’vn> aun-!-i a(pnlvn> a'wn+1 -+ K (pn'wn) auM-l a(pn'wn) a'wn+1]
o7’ oy, o . oy . od 0% oa' az °
a’Un+1 QW awn‘-!-l __ 3un+1 Qg1 _ 3%41)
Denote ( o A et A By 20 by rot,i1. Then eaeh

argument of rot,,+1 satlsﬁes an equallty whmh is analogue of (4.22). Summing up
‘those, we can obtam - -

A | (at’ I—u,1 B l—v,, 27 -rfw,, 27 )rot,,+1 H ‘ (4.23)
Undel the transformation T T3T2T1, (4.23):1s changed. into _ .
(at g bt o ay)rot,.+1-H S (4.24)

Similarly, startmg from (3 15). satlsﬁed by U‘°’ we can. obtam L
8, 8 ., 2 ) o - |
(% o gt ) Totu= Hotd (4.25)

where & =0 (t**1). S :
Combining (4.24) with (0. 25), we have

( gt Fu,, aa +fv,. )(rot,.ﬂ-reto) =F - (4.26)

‘.WhereF H,— Ho-—s—(§u +§12 6 )roto ‘

- From Lemma 4.1, the bounda,ry condition of (4. 26) is . e
(rot,,+1-roto) lz, is known ‘ ’ (4 27)
TFor the problem (4 26) (4 27), _by a s:mﬂar method as’ used in Theorem 4 1

wo deduce ' S
' n+1 n+1 aZn+1 ' a n+1 ) S oo
A az P Awd,amw |08 3y TSI AR R S
<O(“§ “k' 7..1'+ "C"““w.nn,z"}"—”) ' . (4.28)
n+1 n-[-l ntl e+l . - n+1, n+l ntl
From ag ! 3m' ’ agz aazy' _’ SZ’ azazn + ﬁa: 3%1; + aa: ag@u ’ _We

oan umquely determine the values of 6:4 e and Hénce
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deduces
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ACH o+ 188 a2, 0 188 w00
SOM D) fwag, a2+ 10 i 0, 2+ A Glarca, ima, T+T) (4.29)
'The same discussion can be applied to {3+*, Combining (4. 29) W1th (4.20)
1mmed1ately deduces the conclusion. '
- For G= —~L(V*, V")V we have -
Lemma 4.3, If (¢, ") Eer, Bo=k+3, A ds suﬁwwntly large, OSSE <XE, then:
- Al a1, 2<OT'. | (4.30)
Proof Let L,=L(V", Ve¢"). Then | |
==LV ®=—(L,—Lo) V=LV,
By using Theorem 4.1, we get R
I|G“k/.a-1.w<a(4) éMw,a-r, 2+ V" v, a1, 1) + nLoVw)"w A1,
<o ¢ “k’+1 rmt,7+ | LoV Ol 2-2,2.

MG, -1, r<OT.
Combining Theorem 4.3 with Lemma 4.2 we obtain the following inequality
?\:"Z"H"k’ 2, 7O (1" 4, 2, 2-+T) , , (4.31)
under the assumptions of Theorem 4.3. By virture of Theorem 4. 4 we have
- Theorem 4.5. Suppose &, Y™ Een, lao>lo+3, O<K <k, A is large cmough Then:
for the problem (4 2)—(4.4), we have L |
M e<OT. (4.32)
Now, let us derive the estimate of order %. Flrst we have
Theorem 4.6. For the pfroblem (4 2)—(4.4), fz,f A s suﬁwwntly larges, || <

Therefo_re

7"“ Dmgnﬂ-l_ Vj:l .D“lll"

s &y

r <O+ 8+, v, 7) (4.33)

. holds.

" Proof (4.2) can be re‘written as

LA™, v = (B¢ +B<2>—-3—+B<2’ ETRR )Cm G (4.34)

and

L‘“’(V" V¢ (gt = (B‘2> I ipp 2 3 B‘”@Z -BP )Z"“ Gs.  (4.35)

_ Without loss of generahty, we only consxder (4.84), and omit the mdex “1”’
in the follow.mg discussion for sunpllclty The coefﬁclents of L have the special
form: B =By, BY’=B;, B =B,;, B = (B{ —B,P;— B1¢,, quSy) /¢% where B
has been shown in . (3.4). Dlﬂ'erentlatmg both sides of (4 34) with respect to =

'where L' is the opera,tor derlved from L by dlﬂerentw.tmg 1ts coefﬁclents Wlth

respect to z, and

P

A
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ng 338) e agn-!-i B4 6¢n+1 3352) aZn+1 aBgz) a§n+1 o

1
oV ' aVV“’a, A T L v

Therefore g
np g 2y @ S g SR 28

Z

Through subtle computation. (see [4]), we may obtain
ntd ;"H n) .. ____?_ on .o
L (z Lp)-a-Z@re, = @

where @ (g0 22 T g T8 ;%: Ty wwo)v" e

bV O — LV~ LV i+ 1oV P+ (Ly— L) V“” %, ig obtained from & by replaclng
V“” for ("1, and Ty is obtalned by repla,cmg ¢‘°) V‘°’ V“” for gb("’ po, gn
respectively,

Smmlarly, if .D is the tangentlal operator mtroduced in (3 17), then ‘we have '
| L( D qul' 7)== DI ), §=0, 1,8, (4.87)
where Q;(¢=0, 1, 2, 3) is a functlon of V¢mH, th Vn,b““ VEI® and V2¢‘°’ it
-vanishes ag C"“——VC”“—W Vir=0. Successwely, we can get " '
(D=L pegp)gu-Deray), (489
where |a| =K<k, @ depends on VAL, vC¢"(-lBl<k’);' and Q<«>ao os VA~
V"n,lr"
Obmously, the form of (4. 35) iy similar to that of (4.84), so if L i taken ag
diag (L1 L2) then S
C . 2+l ) . AL T
_Das(:nd-l Vz Dtx¢n (Da:g:&lf Vlnj D“l,b’i', szlgﬂ__ Vﬁjl .D“lp'g‘)
E * ¢1€' - N S ¢2ﬂ — /
2lso satisfies a symmetrlc hyperbolic gystem like (4. 38) ,
Next, let. us deduce the boundary comhtlons of D“Z““ V” D“x[:" on 2‘1 and
22 By (4.2) we know Lo ;
2)/ 3 ndd o
(B°%+Bl B23 ¢z B.% )V"' 0
'Where Bra)f B“’ Bo¢t Bl«;b,, qu;z, Bm is mdmated in (3 4), so A _
' B’ Vglg = — BV — Bi'VnH. Byt L (4.89)

2

The rlght side of (4.89) ig continuous on %y, because only tangentJal
derivatives of V*** appear in it. Therefore, on 3y we have et T

(2 osPntl __ PR a#ntl__ 05, [ 15
| B [(Dz; D¢:) (DZ qp 1)¢)] (4.40)
The condition (4.40) is also maxunal dls51pat1ve In fact by using the similar

mrgument ahead of Theorem 4. 2 (4 40),;¢an be rewritten ag .
. v 13"(0'1 0-2) =Q e e
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Rexvezg

if B¢ has been ﬁranSforxﬁed to diag (0, 8*). The symmetricity of 8* deduces

l- 0 ol
e g of |
(o, o1, 0%, o) |, |=oiB'e1—03B"0z=0.
. : 0 T
-8 ‘02

Hence (4. 40) is mammal digsipative,

Besudes, ginge Y"=0 on 22, by usmg the argument in the proof of Theorem 4.1

we have D"‘v,b" 0 in Z‘z Therefore Dagret_ T; D“qb" is known on Ea ”

%

Hence, for the system 4. 2) we have ([al <Io’<70) , _
(chm T; D“:j;) Q@ —D*(LF®) in O, (a4

B[ (D*Z"H Vz mp (mcwl Vz Dw) ] —0on 3y, (4.42)
. Drgrit— V D“¢” is known on 22 ' o (4.43)
For the above preblem usmg the ‘method of Theorem 4.2 wo get |
pegr=TE pagp] - <OAQosoaint 1D T ) fanmas)- (444)

Because 1@} 0, -1, z<OLT + | L 3, 2,), (4.44) implies(4.33) immidiately.
- Corollary 4.1. As A és sufficiently large, _ |
‘ MZ+ e, 0,2 <O T+ |,|C”ﬂllzo.z,r) o (4.45)

t]

gs WW. : _ _ _ .
Proof - Since [P =>0>0 and (5”, P") €8y, ‘there is T'>0 such that |¢}| =>0/2
>0 ig satisfied in Q7. Meanwhile, Theorem 4.5 indicates | V7] <0, so
. an D“‘ﬁ '<07\4|'1D“¢"ﬂ¢ A T<d’"g."“k MT
holds. Substltutmg these equalltles in'to (4.33) we obta,m (4.45).
_ Making uge of the fechnique which is applied to ostimating the normal
derivatives of the solution by its tangentlal derlvatlves in Theorem 4.4 we can

come to the following conclusuon ,
Theorem 4.7, Under the assumt@pfamm of Théorem 4 6 the Solubion Z““ to (4.2)
—(4.4) sates fles ' : v
e o %IIZ”“lll“.m<OT R (4.46)
wiwa"e 7\.>0 és large enough.. - ,
. §5. Proof of Theorem 2.1

Now let us prove otr main’ result Theorem 9%:1. For the nonlinear problem
(3.8)—(3.14), we can construct a sequende -‘{(f”, Y")}u>1 in &z by the iteration
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process (4. nH— —(4.6) starting from an approximate .solution (V“” qS“”) given in
§38.In fact if (&, ") € &, then f""‘l can be obtaind from (4.2)—(4.4) and (4.1),
S0 does ¥ from (4.5) (4.6) a._nd (4. 1) By using Theorems 4.1 and 4.7, we have
(€, Yy Cep ag T is sufficiently small.' Therefore, {(&", Y™} is a bounded
-sequence in ep.. _—

S.mce g satlsﬁes
+W1(V”) 00 +W2(V“) +W Q(V’?, '<p<°>+“9")
-—-<a¢“.+w )
for any n=>1, 60"**—0" satisfies. o TIRT S
|2+ W) W7 ] ga"fifer) +Wo (P, p®-+6m41)
~Ws (7, «»+9») ' S .-
= [Wl(V) W1(V"*1)] (¢‘°’+0")+[Wz(V”) Wz(V”*i)] (fP‘°’+9”) mﬂ

TG t—gr=0o0n Z;. o
- (b.1)

Applymg Theorem 4.1 to thig problem, we obtain _ e
| M=o e <OIH = Clopne. . (B.2)
Furthermore, o L T
Liyq (Z”H—C”H) = — [Ln-{-l""L ]V"""‘ . _
= = [Lnps= LV, V¢”*1)]V"+1~ [L(V" Vet) — L]V ™.
Omitting the subseript 1, the first four components of — [L(V™, V@) — L] P+t

can be written as

pasa
~ (L™, 997) = L]V =L | L5

4

(q,n — ¢n+1) ] + -er

wer— i _(V"» V"1 (p"—gmY).

. where R1= [ ~Lipg1 ( V;‘;l )] (p"tt—g
Hence,

LW, vprh | (-1 — L2

Yo gva-gn]=Rm o,
f il ..
B§2) {[ Zn+2_§n+1__ V;n (01&-_(-1___071)]1 — [Zn:l-z_Cn-i-‘l_ T/;z: (07-.5-1_9”)]2 =0 Qn 21’

gr2— ;n.+1 — _T%:i (™1 —@™) =0 on 2y,

(56.3) v,
where B=— [Ln-!-l_L(V” Ve 1V i+ Ry satisfies | Blo,», »<O| ™" Il 0,4, T-

Noticing that the boundary conditions in (5.8) are still equivalent to maxima
dissipative ones, we have the following estimaite



31a . ' 'OHIN. ANN. OF MATH, .. . . Vo.l13&rB

Mjee-rn-Te @), |<O1Bl s <0l lasas
¢ 0,2, T N
<OT|{+*— C”"o,z.r- - _ . 4)
By the boundedness of V"+1 and the positive definiteness of on, (5 2) and (5.4)

imply : .
| ML= o0, 2<OTNE** ~Llonr. (5.5)
Thus, we have known the convergence of the sequence {(¢", Y™ }nsy in LZ(Qr)

% I2(Q7) under the assumptions of Theorem 2.1. In view of Banach-Saks Theorems

and the boundedness of {(£", {") }s»1 in 8y, its limit is also in s,. 'I‘a,kmg the limit
for the linearized problem (4.2)—(4.6), we confirm that the limit ¥, ¢ of the,
~ sequence {(V" ¢")} is the solution of (8.8)—(8. 14)
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