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Abstract

Thz authors define line digrdph funetors on digraph category which are full and faith-
ful and, as a consequence of the result, determine all homomorphisms in De Bruijo-Good
graph category and automorphisms of Kautz digraph category. Moreover the authors
consider a type of arc-full morphisms of dig'raph category such that F»(f) is arc-full for
each functor F, and succeeding paper [9] qtuély the strong homomorphlsms of de Bruijn~
Good digraph.

§1. Introduction

Line graph of a graph was introduced by J. Krausz'®in 1948. H., Whitney™?
proved the most important theorem about line graphs. From then on, Harary and
Norman defined line digra.phs'for digraphs. Works on this topic can be found in
the references of [3]. Now we regard line graph as a funcior on digraph éa,tegory
and can prove that the functor is full and faithful. As special cases of the result, we
discuss homomorphisms of de Bruijn-Good graphs (Lempel™ uged this kind of
homomorphismg in the design of feedback shift registers) and automorphisms of
Kautz digraphs™. We obtain all homomorphisms of de Bruijn-Good graphs and
the number of ‘them. On the other hand, the strong homomorphisms of de
Bruijn—Good graphs was studied in [9], here we give a lower bound of the numbers
of all strong homomorphisms of D onto Di. When %=2, 3 the lower bound is sha,rp,
and the correspondlng strong homomorphisms can be determined.

§ 2. Category of Digraph, Functor

A digraph D is defined to bea pair (V' (D), A(D)), where V(D) is a non—
empty finite (or infinite) set of elements called vertices and A (D) is a finite (or
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mﬁmte) fa,m.lly of ordered pairs of eloments of V(D) ca,lled arcs. V(D) and 4(D)
are called the vertex—set and arc—family of D. Arc(a, @) for some a€ ¥ (D) is called
a self-loop. D is said to be strongly connected iff for-any two vertices’s and b of D
there.are-two dipa,ths such that one of them is‘frorrx o to b and the other is from b to

The line digraph L(D) of a digraph D has as its vertex—set the family of arcs
of D; for e, '€ A(D), (e, ¢') is an arc of L(D) iff there are vertices ay, @z, as in D
with e=(ay, @) and ¢'= (wz, as). We denote the aro (e, ¢’) of L(D) by a triple (a,

“Gz; @g). It is clear that L(D) has no multi~src and -that L(D) has a self—-loop at

vertex « iff « ig a.gelf~loop of D. - ‘
For any non-negtive integer % we can deﬁne A

- IM4(DY = L(I¥(D));"
Where LO(D) =D and L¥(D) =L(D). It i not dlﬁicult o show that V(L" (D)) {(wl,

" @5, 5%, apes) (G, EV (D) and (@, @ir) EA(D), o= 1 2, +e; b} and that there isan arc

from vertex u of I*(D) to verter v iff » and v have the followmg formg

_ u= (a1, @s, ***, Gps1)—>V= (T, a3, **°, Bys1, Bs2) -
We denote the aro ((@s; @2 %, @uis); (@ ***, Gussi Gues)) DY 2 (k+2) —a,rréj‘ (wi, @s,
"5 Gty Qrys) - In other Words, a vertex of L*(D) is equNalent to a diwalk of D

Wlth length % and an- arc of I (D) 1s equlvalent to a diwalk of D with length A-+1.

The dlgra,ph category hay, as its ob 9 the olass ‘of all strongly connecteds

g dlgraphs, for any Dy, D,€ ob.@ Homg, (D1, Dz) is deﬁned t6 be the set of all graplr
"ffhomomorphlsms of D1 into' Dy, i. e., mappings f° from V(Di) to V(Dz) ‘such that’
' f01 a.ny (a1, “2) EA(Dr)y we' haVe (f (@), f (@2)) GA(—Dz) |

"The hne dlgra,ph functor F" on dlgraph category ig glven as follows.
NS For any DE ob@ F" (D) L" (D) I (.D) ig agam strongly connected s1nce
D isg strongly connected™,
(i) For: -any Dy, D,€ 0})9 and f € Homg(Di, Dg), F( f) is defined as follows
V(ai, @2y ***) Guir) EV(F "(Dy), F*(f) (“1, G, * *y @ng1)
= (f(a), f (@), -, F(@usi) Y EV (F "(Dz))
Obviously,” F*(f) € Homy(F*(D)), F*(Dy)). In fact, if: u, fve V(F“ (Dl)) and

(u, fv) GA(F" (.Dl)) ‘then u, v have’ the followmg forms

W= (g, @gy by )y V= (@2) **, Guga; wn+z)

Thus F”(f) (w) = (f(a1), f(az), ++*, f(ans1)) and

F”(f) (’D) (f (“2) f(ds), ’") f(wn-i-l) f(“n+2))

e Thls 1mplles (F(f) (u), F*( f) (fu)) € A(F" (Dg)) because f E I-Iomg (ny -Dz)

The following two facts are immediate. - .-
OL Fr(gf) =T (9>F"(f) for f € Honiz(Dy, Dy) and’ ge Hom, (D,, D,), where

D;, Dz, D;€o0b 2.

@2y ‘17’"(1’ ) =T F.,(Dy for the 1dent1ty I € Homy, (D, b)
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(.. 'Hence F" ig indeed a functor on the digraph category™.: :

" Note that if we use %, the category eontaining all digraphs, instead of ‘@,Athem
‘all the above facts are true: But, we have an interesting result for 9. ‘

Theorem 1, The line dzgmph functo'r F" on d@gmph cwtegoo‘y D is full and
Sfaithful. oo o :
The faithfulness is obvious. For the fullness, we only need to prove that for any
"€ Hoxng, (F*(D,), F*(D,)) there exists an fE€ Hdmg, (D4, Dy) guch that g"=F"(f).
“We notice that for any (a1, as, ++*; @,) € V(F*2(D;)), there are ay, Gns:1EV (D) such
that ((@o, @1, *»*, @n), (@1, @2, ***, Gny Gass)) € A(F(Dy)) and (g (wo, @iy vy @)y
0" (@1, >**, Gy, Gng1)) € A(F?(Dy)). Thus we can write : :
"(Go, a1y 'y w'») (bo, by, oo By,
o g @y ag, vy “n-u) (B4, Bgy *+, Dy Bagr). _ :

‘ fand define 9" (ay, g, *00y Gy) = (b4, B, +++, b,). In this way we can. a,ccomphsb, our

proof by 1nduct10n on n. We ommit the, detaals - '

- §3. Apphcatlon to de BrulJn Good Graph Category

Lempel first mvest:ga,ted homomorphlsms of de BrulJn—Good graphs and used
them to. demgn feedback shift registers. Wan, Zhexian and Llu Mulan®™! determined
all2—1 homomorphlsms of de Bruljn—(}‘ood graph JDj to D"“1 Zhang Fuji and Lin
Guonmg discussed a specml kind of homomorphismsg, i. e, strong homormorphisms
of de BI‘IIl]n—GOOd graph Df into Dj’:"m” (pa,per [107} corrected a result of [9]). Now,
we can determine all homomorphlsms of de Bru:qn—Good graph Dit 10 Dy and give
_ the number of them. Thege improve ‘the main result of [11] and completely golve
'the problem of homomorphisms in de BI‘U.JJn—GOOd graph category o -_
Let n>>1 be an integer and M. a set. The de Brm]n—Good graph . D is defined as
follows . N S |
-V<Da;j>.;-,——1j<¢1;‘ G; ++*, @) ;w;e.M,, i;-*.l\, .
; for any u, eV (DL, (u, bfv)' E'AV(D?’”)' 1ﬁ' .u, v havé the following forms -
- ; U= (a1, Gg, ++*, @), V=g, *:*, Gny Bns1), - .
where a,€ M (i=1, 2 o, n+1) We.denote such.an. arc (u, 'v)by an (n-{-l)—array
(1, @2 *+°, G, w,.,u) . s :
If M is the ring of residues- modulo k D is denoted by D" In paper [9], we
proved that the hne dlgraph of Dit ig 1),c By the same reagon, we -can’ prove- that
the line dlgraph of D3 ig Dy Hence, DM-;-L""l(Ll) . —_—
. .+, Theorem 2, . Lgt. M N be two cess, ja nmmegwtww integer. Than Hom@(.D’+Jl
Dp)| = | w o
| Proof By Theorem 1, we take D, =D{#* and Dé ='..-D‘nlr;=§['1}§n-.t!,,1,°l.f_9-‘is &-’-ibijeotion
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between - Hom, (F**(D,), F**(D;)) and Hong(Dy, D). Because F»*(D;) -
L4 DiFt):= L4 (DY) =Dy and Fr2(D,) =L (D} =D%, we have a bijection
Tbetween: Hom, (D3, Df) and Homg, (DiDy) .- Since Dy is a complete d.1graph with
N the vertex-get; every mapping of ¥V (Dj') into N is a homomorphism of Di+t
into D}. Thus, we have | Homy, (D3, Di| = |Homg(Di#", D}) | =the number of all

mappings of ¥V (D{f') into N. Because |V (Di*)|=|M |#!, the numbert of all

mappings of V (D§F!) into N ig | V|7, Our proof ig:completed. .
Remark 2. Because V (DY) =M*1 Fr ig the bijection between the set of
all mappings of M7** into N and the set Hom, (D3, D§). Moreover, F** maps f
into F*(f) : (an, @s, o, “n+5)“>(f(w1, @2, o0y Gig), @z, o0y Giga), o0y flany v
Gnts) ) - When §=0, we can obtain all the results of [11] A
. Remark 8, If we take M =N, then .
| | Hom (D, Dig|= | M|, |
e By Theorem 1 we can determine all homomorphisms of D%+ into Dg. For the
‘case j=1 and | M| =2, paper [4] used this result to build maximal cycles of Dyt
from maxirhal cycles of D3. Such a method mlght be genera,hzed to the case IM |>2
by the natural way.

9

§ 4, Apphcatlon to Kautz Dlgraph Categ ory

Let Ky be the complete digraph Wlthoui; multl—arcs and self—-loops, where M is
the vertex-set of Ky, Kautz digraph K% is.defined as-L**(Ky). Obviously, V (K%)
={a1, @2, ***, &,) |GE M and a;F @1, t=1, 2, -, n} and therefore [V(K,’,‘,) | =
IMI(IMI D4 : :

.. Note that K3 =Ky is a complete ngra,ph The followmg result iy immediate.

Theorem 3. Lot Mbe a ﬁnfbte set. Then we hwvel Aut (K Dl=|Mr.

§5. A Lower Bound of the N umber of All Strong -
Homomorphlsms of D2 onto D1

In thls sectlon we: consuder a type of morphlsms of. ngraph category, ‘the set §
- of all graph hémomérphisms of Dy onto D, which igarc—full’ and for each functor

Fr, B f) is also are-firll, namely, for any (b, bi, s, bypa) € A(F*(Dy)),. there -

OXigts: (G, @y *oo5 Buys) € A(FP(D)) such that F(f){ay, ag. *+, @nes) = (bs, bz, °v,
:basa) + If above conditions are satisfied, we call f a: strong ‘homomorphigm. : Now' as
the proof of Theorem 1 we can prove the followmg b Chonbes iy

.Theorem 4. :Let g" ¢ Hom, (F*(Dy), Fr (Dz)) amd g" .88 are— full then thoro
evisis an arc—full homomorphism f of Dy onto D, such that ¢"=F?(f).
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" From the theorém. above wo know that to determine the strong homomorphism
we need only t0 find f, the arc~full homomorphism of Dy onto D, such that for any
n F*(f) is also arc—full. It ig-clear that to exhaust all strong homomorphismg is a
difficult problem. In the following wé will deal with a gpecial case. Now we attempt

“to congider the set S of all strong homomorphxsms of Df onto Di. A lower bound of

|8 is obtained here. B v

Theorem 8. For de Bfruwn—G’ouZ graph cateaoa*y we have .

o |8 =2(B) R (F—1) 10
Pfroof For f € Hom,(DE, Di) and @EV(D‘) {0 1 ., k—1} we deﬁne
~ a(f (@) =1{b] (s, b) Ef"(’b)},- »
B(FHE)) =1l (a, B EF@). N

Now we will show that if (1) a(f*(¢)) ={0, 1;+++, 5=1}(5=0, 1, -, k~1) or

(2) b(f1(3)) =40, 1, <+, b~1}(§=0, 1, +es, B—1), then fES. At first, we mention

* that V(a_u @, ;@) EV(F2(DE)), F*(f) (@1, G2, ***, Gngr) =(F (@1, @), [ (a2, a3),

o, S (@ny Cppa)) EV(F2(DE)). If condition (1) is fulfiled, then V(as, af; «+, al) €
AF (DY) (n=>1) we can find (G, Gner) € (dh) and (651, @) €f(afy) (6=1, 2,

-, n) which means that F*(f) (a0, a1, ***, @ne1) = (f (@0, @1), f(ay, ‘@), +, f(an,
w,,+1)) (ab, @i, == w,,) Hence F"(f) is arc—full and f€S. A smm]a,r reason shows
that if condition (2) is fulfiled, the conclusmn is also true.

Now we consider the followmg array
(O 0), (1, 0), «, (k—1, O)
(0 1) (1 1), -,(k -1 1)

(Ok 1)(17«71), ,(klkl)
“When f fulfils condltlon (1) \7’@6 {0, 1 o k— 1) ft (e,) takes Just oo element in
.each row. Thus e s
|{ f| f fulﬁls condstlon (1)}| (lﬁl)"
Sitilarly, :
S f fulfils condition (2\}1 (k')" "
When f fulfils both condition (1) and condition (2), Vi€{0, 1, -, F—1},

F71(4) takeg just one element in each row and column. Thus- .

- |{F1f fulfils conditions (1)-and (2)}| = (k1) (b—1) 2L
By the principle of inclusion and exclusion we come to the required conclusion.
~When 5==2, |§}=8=2=6,3ll strong homomorphismg were- exhausted “in [9].

“When k=3, our lower Bound slso gives the numbeér of all. strong homomorphlsms

ERS '\ - .

of DZ onto Di. In fact we have proved the followmg

" Theorem 6. When k= 3, the Zorwar bound n’ Tkaorem B és shmrp, nmnely, [S l =
,2(31)3 —8121 =4200" . oweody hm o w et e B E L L g
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By using the array in the proof of Theorem B, we can exhaust 420 strong
»’homomorphi)sms of D} onto Di. Furthermore we can obtam 420 strong homomor—-
-phisms of Dg onto D3 by functor F*~2. S i '

"We end this paper by proposing an open prablem- When k=4 Whether or not
-the lower bound in Theorem 5 is the number of strong homomorphlsms of .D" onto
D '
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