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CESARO ERGODIC THEOREMS FOR WEAKLY
Y—INTEGRABLE OPERATOR SEMIGROUPS** |

WANG SHENGWANG ( 1 ,n _;1) # -

-~ Abstract
' .Cé:sé,ro ergodic :prope‘i‘ties for weakly Yz—-iritegi-able"-séxﬂigroups of opei@tbrs on ~Bahaoh‘
gpaces are studied and several equivalent conditions for ergodicity are .examih'ed, Rogults’ -
. obtained considerably gemeralize ea.rly-works on this jsnbjeot.by others.

§.1 . -Introduetioin .

Let {T (t) >0} be & semigroup of bounded linear - operators on a complex
Banach space X. One of the important subjects of studles for T( )ooncerns its
Oesiro ergodio propertles When the semigroup T'(+) is strongly contonuous o
'(0,.00), remarkable results on this sub;;ect have been achieved in the past th1rty
years (cf. Hille and Phillips [3 Ohapter 18], Dunford and’ Schwartz [1, VIII. 7],
Masani[6], Eberlein[3], Lin et al. [5] and others). However, not every semlgroup«
of mterest ig strongly continuous. For msta,noe the dual semigroup of a strongly
continuous gemigroup and the tensor product of two strongly ~continuous
gsemigroups are no longer in general strongly ‘continuous. To extend the (esiro
eagodlc theory for strongly continuous semlgroups to more general case, Shaw
introduced a new class of semlgroups which are caled’ locally Y -integrable
(see [7, 8] for details). But 1n_Sha,w s theory, he assumed that T (#)z—>w-as §—>+0
in oertain topology. This is in fact an exténsion of Op-semigroups.

The author and Lange™ introduced another clags: of semigroups which are
“ealled weakly Y-mtegra.ble and include loca,lly Y —-mtegrable semlgmups as &
special case. In the present paper, we, shall examine the Cesiro ergodlc properties
for the former kind of semigroups.

In what follows we shall use these notations:,

‘ ./V (T) the null space of the opera.tor T,
.9?(1’) the range of T'z o
D(T) ‘the doma.m of T
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Agsume that Y is & closed subspace of the dual X*, X and Y are rec1proca.1 that is,
lo| =sup {[<z, ¥>|/lyl: y€Y, y%0}

for each € X .- A semlgroup {T (t) >0} of bounded 11near opera,tors on X is
oalled weakly Y—mtegrable if it Satlsﬁes

(W1y Y is ana,rmnt under T(t)* for each t>0

(W2) T'(<)s is o(X,.Y) continuous on (O .20) for each o€ X;

(W3) (a) for each wEX a.nd = Y, the funotion (T (t) @, y> of ¢ is L-integrable
on[0, 1] ‘

(b) j <T (t) . & is o-(Y X ) oontlnuous Wlth respect, to ye Y for each s€ X

.and hente ¢(X; ¥) continuous with respeet to € X for each: ye Y-by [9];
(W4) lot Xo= U{T()X: 9>0}. Then Xy is o(X; '¥) dense in X and
N{A (T (m)): n>0}={0}. ’
Oondition (W3) seems to; be ‘& little. eompheated but as shown in [9 Prop-
osition. 8.5], if T'(-) satisfies (W1), (W2) and there ex1sts a nonnegatwe L~
Jntegrable funetlon <p( ) on [0 1] ‘sach that * ST

nT<t>n<¢<t> (a. &. on[0, 1]), Ay

Lthen (W3) holds 01ea,r1y, it T ( ). 1s bounded in a nelghborhood of t 0 then
(1 1) holds Theref01e What Shaw eonsldered 1n [7 8] was & very speeml oase of
thlS pa,per B '
If T( ) 1s a Wea,kly Y-—1nte0'ra.b1e semwroup on X the resolvent R(?\.) of T ( )
,_-exmts for eveLy complex number A Wlth Re 7\.>a)0, Whele ceo iy the type of T( )
| wo——hm logllT(t) I -

‘-'?BO

=Y 1s 1nvar1ant under T ( )" a.nd R()\.)* R(?\.) 1s 1n3eot1ve Ao 1s deﬁned to be the
.opera,tor S -

ey g OZTe

t->+0
'ﬁwhenever the 11m1t on the rlght ex1sl;s Ao 1s elosable Wlth o]osure A Whlle A
_‘”;samsﬁes D(A) %’(R(?\.)) and - o
for each € X and o |
_ ) R(?\.)Am }.R(ﬂ\.)w m e (13)
for each s€D(4). Ao and henoe A lS a'(X Y ) densely deﬁned.
Y being invariant under 7'(+), R(- ), we.denate ..
| T(+)' =T (:)*|¥; R(+) = R()IY

and call them for convenience the duals of T ( ), R( ), respeotively The reader

©an find in [9] all the. mentxoned propertles S gnegae e
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\ §.2°.. Duél Ser.nigreu;pé of Weakly
YfInteg'ra?ble-'-.:_Semigroups

The objestive of this'séotion is o establishthe relationship between T'(+) and
its dual defined in § 1. We shall show that T (+) is weakly Y-integrable on X if
and only if 7'(.)’ is weakly X—mtegrable on'Y. From our obsérvation,’ one can .
easﬂy see that the semlgroup T(. ) and 1ts dua,l a,re on completely symmetrm
footing." : _ _ s . - _

Theorem 2. 1. IfT(:)isa weakly Y-mtegmble - semigroup on X ; then T( )
is @ weakly X -integrable semigroup on Y. T

O’on'vefrsely, assume that, f’( ) s a wewkly X —fmtegmble seme;ga-oup on Y. Set
7 ()= [f’ (s )] IX where X is mewed as @ subspwce of Y. Then T (s ) s a weaicly
Y—entegmble sem@g'roup on X such that T( ) wsthe dual of T (s ) 'z/n the se'nse de fined:
in § 1.

v Proof Assume that T'(+) is weakly Y—integrable. SinceX, as a su ospaee of v,
is invariant under [T (. )']" and [T (- )’] [ X=T(.) by the equa,httes S
| T y>=<a, T(5)'yy=<T ($)2, 4 R e
for all z€X and g/EY condition (W1) for T'(+)’ is fulfilled. '

From the second equality of (2. 1), one can easily find that T ( )’ is a(Y X ).
eontmuous on(0, o). Condition (W 3) for T( )’ follows from 1ts Symmetrlea,f‘
oharacter between X and V. '

- Let Yo-— U{.%(T (n)') 7)>0} It follows from [9, Proposutlon 4 2] that Y, is
'o‘(Y X ) dense inY. Now assume that yEY satlsﬁes T(n)’ g/—-O for all 7)>0 'I‘hen
I agd=ia T@yy=0
for all 'n>0 and wEX Since Xo= U{.@(T(n)) n>0} is cr(X Y) dense in X, one
has y O Therefore -
o n {./V (T (n)') 'n>0} {0}
OOndltlon (W4) for T'(») is thus satisfisd. CER

The second conelusmn follows.in a routine Way, We omit the details:

Theorem 2.1 and E9 Theorem 4. 6] 1mply the existence and m]eotlwty of the:
resolvent of T'(s ¥ ‘whieh: is o]ea,rly equal’ to ‘the' dual R(%)’ of ‘R(A),  where .
sa-tisfies Re A>wq. Acocerdingly, there: emsts ‘ cr(Y X ) olosed and: densely defined
linear operator A’ such that

o e A')R(?\.) = y A . (2 2)
for all y€Y and. e e o

/‘f,f»_-.,,,j.Bm G A’)y u - (2 3)



and

414 - OHIN ANN oF 'MATE‘[‘L S v°1 13 Ser B

e 1 e s r ey e o by e amemsisi s s srs

Remark, (i) If 7'(c) is weakly ¥ -—1ntegrable on X then we may define the
operator A} for T'(+)! in Y by

zi’y X—Hm 5P(t) Y- y

PR S

~whenever. the limit on the right exists. Aj iy linear and closable with -olosure
A ([9 Theorem 4.6]). '

(11) It is olear that A’ is the dual of 4 and vice versa.

For the purpose of latter use, we need the followmg Theorem,

Theorem 2.2, (i) If T(.) swte,sﬁes conditions (Wl) (W2) omd (W3), tken
~ (a) . for each >0, the equality.; . '

EOn 1=, <TG, s

.dsﬁnes @ bounded hnewr opemtor S (t) on X such thwt Y q,s mfuwmwm wuier 8 (t)“ wmi

hence S(t) %8 a(X Y) contmuous for ewoh t>0
(b) S( ) 48 continuous on (0, oo) in the uni form opemtor topology wnd cr(X Y)

~contmuous at t 0

(11) of T( ) is 'wealoly Y- ~mtegmble, then foq' ewch t>0 mrd mE X :S’ (t)w € D(A)

o _A}s'.<t>¢'='<T<f'>f—'I>‘asy e
If a€D(A), dhen ~ L
T | ;S’(t)Am=A;S’(t)a: B (2.5)
Pfroof (1 a) follows from [9, Lemmas 2. 8,2 4] and the sufﬁmenoy of [9
fProposwlon 3. 4] v
' (1 b) The eontmulty of S( ) m the umform operator topology On (0 o)
follows from the boundedness of T ( .).on every closed submterval [a, b] of (0 oo),
and the O‘(X Y) oontmulty of S( ) at i =0’ follows from the L—mtegrablhty of
<T( )w, o> on [0, 1] for each z€ X and yEY s
(11) Assume that T'(-) 1s weakly Y—mtegrable Let o be in D(Ao) Then .

<S (t) AO@! y) I <T(S) -AQ @, y)ds TN T T e R

—j e <T<S)fvr ?/}ds <T(t) I)w, g/> (2.‘6)

, ﬁfor eaoh er On the other hand for each mED(Ao) yE D(A’), NI

G 0) o, Y= [T @y e

. (L @@w A= 0, 4. @)
Gombinmg (2.6) and (2.7) gives for mED(Ao), yED(A’) R
S (t)a, Ay>= <(T(t) =Da, v, (2.8)

which assértsthat LS @), A’} ¥y iste o (Y, X)* oontmuous linear funotxonal of
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ye D(A’) for each ﬁxed mE D(Ao) Since A is the dual of A’ by Remark (11) of
Theorem 2.2, one has §(#) #€D(A) and _ ‘.
CAS (5)a, yy=<8 ($), A'y - (2.9)
Applying [9, Theorem 4.6] to T'(-)’ we assert that D(A’) is (Y, X) dense in ¥
and hence separates points of X. So we have from (2.8) and (2.9) _
. - AS(B)a=[T(¢)—I]w - . (2.10)
for each wED(Ao) A . T
- Now let € X be arb:trary Then there existy a net {a;,,} CD(AO) such that
{?v,,} —> @, Passing to the limit in the following equality . -
| AB (8 2a= [T () ~ ],
we see that (2.10) remains valid for oach a;EX by the (X, ) olosedness of 4
and the o' (X, Y')continuity of §(2), T'(#) for each #>0.
Finally, (2 6) and the propertles of A, S (t) T(t) assert that
;S'(t)Am () ~ I]a: -
holds for each s € D(4). The proof of the them em ig complete.”

§ 3. Ergodic Properties for Wea_kly
Y ——I tegrable Semigroups

_ Thm seotlon is devoted to Qesaro ergodlo propertles of Wea.kly Y—mtegrable
semlgroups ‘Qur results oonmderably generahze those of [2 5, 6, 7] and W111 be
uged in the forthcoming papers by the a.uthor ‘ y

Let T'(:) be a wea.kly Y —mtegra,ble semlgroup of operators on X. It has been
shown in § 2 that thé dual (- )’ is 2 Wea,kly X -—1ntegrable semigroup of operators
onY. - :

Under conditions(W1)— (W4) onT ( ) .the linear operator § ($yhas remarkable
properties listed in:Theorem 2.8, The Oegdro average of T'(-): over (0, #] iz suitably
defined to he the operator -8 (¢) and what Wwe are interegted in s&re the Cesiro
ergodic properties of 7'(+), that is, the convergence of 5738 (#) in certain topology
881 — oo,  Let Py be the operator- defined by Py o= S 11m $718 (#) @ with the domain

D(Py) consisting of all & for Whloh the limit exigts in the strong topology of X. .
Also Jet Py and Py be opera,i;ors 51m11a,r1y defined w1th the hmlt replaced by the
‘Wea,k limit W—hm and the o‘(X Y) hmlt Y-lim, *

To prove $hé main theorem of thls sectlon, we begm w1th two lemma,s It 1s
well known that .%(KR(?\.) -I) and /V (%R(?») I) a,re lndependent of the chome
of A with Re A>w,. :

Lemma 8. 1. For the weakly: Y —mtagmble semegroup T(+), the fcllowwg
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assertions hold:

(i) /(4= ﬂ{./V(T(t) I): t>0} ./V(AR(L) I);

(i) #(4)=RORM) ~D);

(111) J(A)Y U {JZ(T(:&) I) $>O where EY is the closwro of the set B in the
o(X Y) topology. : : ' o

Proof We only olaim (i), The- proof of- others will be omitted. Let xE
n {/V(T(t) I): t>0} Then T(t)m a;—~0 for each t>0 and hence Ayw=0 by the

definition of Ao A bemg the closure of Ao, one has Az=0. So A" (T ®-DcA (A) .

Oonversely, assume that o € W (A) Tt follows from Theorem 2.2 (if) that B
[T(t) I]m S(t)Am -0
for each >>0. Oonsequently, -

N (4) = n{./V'(T(t) 1) $>0}. N RO

Next, assume that o€ N {./V' (T (t) I): t>0} Slnoe the equahty '
ARz —a, yo= j AeHT () o—, ¥ di=0

holds for each yGY one has ?\.R(A)m m-—O and hence o€ A (AR(A) — I) Thus
the lnolusmn

N{A" (T —-'1): t>¥0}c./V'(7\.R(A)—I) (3.2)
holds.

equahtles AR(AM)o=a and D(A) J(R(x)) imply that o€ D(A) From (1 2), one
has
, R(\) Az= [Z,R(}.) Ilz=0.
The injectivity of R( ) conoludes that Az =0 or equivalently, . . _ .
A (AR(A) —I)c AN (4). (3.3)
(8.1)—(8.38) complete the proof of (i). '
- Since A (4), N{AN T (#)—1I): t>0} and- ./V (A.R().) I) are the same, we
shall use the notation A" to denote them.,
The following lemmip, is similar to [7, ‘Lemma 3.1]. :
Lemma 8. 27, (i) The operators Ps, Py, Py-defined at the beginning of this
section are. progeutwm with. Z(Pg) = ./2<Pw) .@(Py) = A" ‘
( i) v (PS)C.A‘(A) where “E” stands of. the normal closure o f tke set E
Py oc-f We only sketch out the proof .of (11), that of (1) will be om1tted From
Theorem 2.3, 8(¢) is bounded on every closed -subinterval [g, b] of [0 oo) and
eontlnuous on (0, o) in the umform operator topology, so for eaoh :vEX and $>0,
the Boohner integral on. the rlght of

- F (o= tf‘ﬁﬂ(w)lmduv SRR ) o s (8.4)

To prove the opposite inclusion of (3 2), let & be in A (%,R(k) I). The - '
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sxists and F (¢) is a bounded linear operator.on X for each #>0, Moreover, one can
show that ~ SRR
AF(t)m t 1S(t)a;—m ... (8.5)

[f @ is in. A" (Pg), then 8 — hm 738 (#) o= Pyw=0; Thus (8.5) lmphes

SRR z=8~ hm[z—ls (t)w-—AF(t)m] EQ(A) (8.6)

(11) holds , h S ’

Theorem 8. 3 For the 'wewkly Y—omtegmble semogroup T( ), '3 f o
hmt—in,s'(t)li<oof o RN ¢ o)

leds then the _fouowmg stwtemamﬁs aa’e eguwwlemﬁ

(i) for each € X and u>0, T T e T

| 8- hmt“T(t)S(u)m 0 Vi (3.8)
(ii) A (Pg)= %’(A), |

(111) for each »€ D(4), - e

| o 8-lim z-l.'z’(t)m-. L (3 9

. f~re0

Po‘oof (1)=>(11) Assume that (8.8) holds. To provs (11), 11; sufﬁoes to .Show

the opposite inclusion of Lemma. 3.2 (ii), For each s€ X, y€Y, t>0 and A with

-Re A>max {2, 0}, one has. . '
G (5 LB — I] @, y>

=[o A6~MG818 () [T (u);,~.f]wi--y>du'-j SRR L P

o[ ]pees @ w@ -Ta gyan.,

"We may choose N >0 such that
NI @) =Tl <ewn
whenever =>N. (8.7) Jmphes ‘the ex1stence of M>0 such that t’ill;S' (t) <M
whenever 3 is sufﬁolently la.rge Therefore we’ may choose N suoh tha,tr

U M-M(t*‘ﬂ(t} [T(u) I]w, y> du )
<M( f A )x\mﬂ Iyl e2Me-*”’?ﬂ¢lf Iy <l F‘fi?f R

where e>0 ig given o . ‘
Next, we oonmder the mtegral over [0 N] At ﬁrst the equa.hty
L SMI@-N=TO-08@
";shown in- E‘Z Lemma 2 3] and condition (1) give o0 )
S hmt“;S’(t)[T(u) I]a:

=s hmt“‘[.'!'(t) I]S(u)m=0 (311)
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'for each € [0, N} and o€ X. Secondly; the equality

13T ()8 (w) =171 {8 (3 +u) -8 (2)]
and 3. imply < ‘

| l! t‘IT B8 @) | <t*[|8 E+u)|+18 @I

o LG u)M A M<SM (8.12)
‘whenever 2 sufﬁomntly large. (8.12) shows that the Lebesgue’s dominated
. oonvergence theorem is applicable to the integral over [0, N ] and leads to the
followmg inequality by (3. 11)

, j M‘“‘(t“S (t) (7 () - I].ra, yvds | <elyl @)
for each fixed w € X whenever ¢ ig suffuclently 1arge_ . -
~:(8.10) and (8.13) assert that '
|88 () AR (A) — L1, y>l <8( o +1) Il
and hence , L
, » 148 () [AR(A) — 1]w|1<8(ilw!|+1) o (3 14}
for ewoh fixed € X whenever t ig suﬁiclently la,rge (3 14)’ 1mphes the followmg _
'mclus:mn ‘» Sl . IR
E W'cwwa,
which together with Lemma 3.2 (11) and Lemma 3 1 (11) oompletes ‘the ‘argument.
(B)=>(it). '
(i1)=>(iii). Let & be in D(4). It follows from the equality N (P)=TAA)
that

0P (42) =8~ hmt“S(t)Am -8~ hmt‘1[T(t) I]a;. (8.18).
Therefore S
ft st s _ _IS' ltlmtl.'l’(t)a;——.

Inolusmn (111):)(1) is ev1dent since Z(8 (u))CD(A) o
Corollary 8.1, Let T'(-) be as én Theorem 3.3. Then D(PB) is the d/afrect sum of
N(A) and Z(4) or equivalently, %(Ps) N (A), N (Ps) %(A) if and only if
one of (3.8) wwd (8.9 holds. .
‘ Proo f It suffices to verify the “only i part If D(Ps) is the direot.
sum of A~ (A) and .@_(74— , then Lemma, 3 2 together with the followlng equahty
| N (ASFD) = A PYDN (Py) |
eoncludes that A" (Py) = %(A) Hence (8. 8) and’ (3 9) hold by Theorem 3.3,
Corollary 3.2. Let T'(+) b6 as g7 Theo'rem 3.3. If one of -(i)— (iii) of
Theorem 8.3 holds, then Py= Py.” L , :
... Proof From Lemma 3.2 (1) and the ev1dent 1nelusuon A (PN (Pw), it
“sirtfises to show that A" (Pw) A" (Ps). Let @ be in ./V(PW) Then
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=W—~lim[w~—~t“18(t)w] -
-W-— hm[ AF ()] E./Z(A) ./V'(Ps).
In the followmg we consider the locally integrable case and operator Py.
Under the condition (3.7) on ;S’(f,), it ig easily seen that (3.10) and (3.12) remain

valid for this case. Let s € A~ (PW) Then (3.6) becomes
z=W — llm (78 (t)a— AF (t)w] € %(4),

and Lemma,3 2 (11) beoomes e _ _
N (PycH(A), (3.16)

As regards the replacement of condition (3.8), we shall use
W Itim - (t)S (u)m-—_—.O ‘ . (3 . 17)'

" for each #€ X, Then (3.11) becomes
W—- Iim t“‘S Ct)‘“‘[’_l' () —-—‘I‘] z=0
| for each 4€ [0, N] and wEX (3 13) thus beoomes '. ' o |

( f A [Ty —~TNay gy dul<s - (3.18)
for fixed #€ X and y € X* whenever ¢ ig sufficiently large. ’l‘herefore, one has from
(3.10) and (3.18) < ' . R
, l<t‘1f5’ ® D«R(M 1] @, y>l<8(l|:vﬂ lyl+1) (3 19)
for fixed € X and y € X* whenever ¢ is sufficiently large. (8.19) implies .

: - ./f[xp(x) A (Py),

‘which together with (3.16) and Lemma 3.1 (if) gives

| N (P =T, (8.20
Next, assume that (8.20) holds. Then the fo]lowing analdgue-of (8.15) is clear:
 0=Py(4z)=W-— hmt T () - I]rW 11m W ye 0 (8.21)

for each a:ED(A) Flnally, (3 a1) ev1dently 1mphes (3 17). We summarize the -

above observation in
Theorem 3, 4. . For the locally mtegmble semg-group T'(+), 4f (3. 7) holds, then
the following siatements are equinalent:
(1) for each. s€ X and u>0,
W— hm t"‘T (t)S(u)w==0

(i) A" (Pw) = Jf(A),,
((ii1) for each wED(A), _ _ o S
I . W= hmt‘l-’l'(t)w* o (3 22)
: We sy tha,t the semigroup T ( o) is strongly (resp weakly) Oesﬂro ergedlc, if
.. D(Ps) (e5p: D(Pw)) = X. Let (), (b), (o) stand for (3 .T), (3.8), (3:9), respectively,
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and let(b"), (¢")stand for(8.17), (8.22), respectively. Let (d) denote the condition
“that A7 (4) separates Z(A)*, that is, A" (4)* NZ(4)*={0}, where the notation
E‘L denotes the annlhﬂator of B X in the dual X*. Let (e) stand for the condition

:thot for each mEX there exists a sequenoe {t,,}—»oo sueh tha,t W lim 728 (¢) @

N0

-exists.
From Theorems 8.8, and 3. 4 We may deduoe the followmg theorem
Theorem 3. 5, Lot (. °) be o wealkly b —q,ntegmble (resp. Zocwlly integradls)
semigroup, Then the following smtements are equivalent: ' -
(1) T(+) és sirongly (resp. 'wewloly) Oesdro ergodic; _
(i1) (a), one of (b) and-(c) (resp. oné of (b')-and (¢)), (d) hold;
(iif) (a), one of (b) and (o) (resp. one of (b)) anid (¢')), (e)hold.
Proof We complete the proof by showing the equivalences: (i) & (ii);
(i) e (iif). Only congidered is the strong case.- ,' .
(1) = (ii). Oondition (a) follows from the unlform boundedness pr1no1p1e (b)
and henoce(e)follows from the followmg ca,loula.tlon, Lemma. 3.2 and Theorem 3.3:
- 8- hm 7 @) (wyw= 8 — ]~1m [T (w) =114 8 ) o= [T (u) — I] Pz =0,

2(d) follows from Lemma 32, Theorem 8.8 (ii) and D(Py) = X. :

(11)=>(1) (a,) 1mp11es that Pg is bounded. (b)or(c)and Lemma 8.2:imply that

| - R(Pg)= JV' (A), ~/V (Ps) J(A) | (3 23)
:and hence one ‘has’ from (d) that * : L

[Z(Ps) @A (Ps)]‘L |74 (A)(JB%’(A)]*
SN CAYENR(AYL = {0}, s

Therefore, .%(Pg) @N (Pg) = X, that is, D(Ps) =X,

(D)=>(ii). Evident. . . : . foro P

(111)=>(1) Leto€ X be ﬁxed a,nd let w1—- W hm t“‘S (t,.)a: Then

1&-)00

(T<u) Doy =W - hmt—l[T(u) ~ 118 (tn) e
=W~ hmrl[aﬂ(t,,) —I18 (w)2=0

-and henee. ¢y € N =N (A) : B(Pyg) by Lemmnia 8,1 and- (3 23) On the other hand

(8.5) implies that
o—py=W —Lim[~ 4 F(t..)w] EJ(A)y >
or equivalently, s—a,& A" (Ps) Therefore |
o= (o— m1)+w1€-/V (Ps)@o/f(Ps) D<Ps)

f Smee o ig arbitrary, one has X = .D(.P,g) o
“Remark, () If one oompares Theorems 3. 3, 3.4, 8.5 with the corresponding

t 5’resi’i1't§f6‘f {2, :B,6, 7, “ets.}; ‘it is' basily séen thatour results are ‘congiderable

<géneralization’s ‘of theiry. ot ‘ingtance, what we have"obtained: are- équivalent
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conditions which, perhaps, first appear here,

(ii) For the weakly ¥ -integrable semigroup T'(), it bas been shown im.

Theorem 2,1 that T'(+)" is a weakly X-irtegrable wemigroup on Y, Therefore,

similar results of Theorems 3.3, 3.4,-3, 5 hold for T ( ), Moreover, we may also-

consider the Qesaro ergodio propertles for Semlgroups when X ig reflexive,
(iii) Left open is the question whether the equality Ps=Pw still holds under
the conditions of Theorem 3.4.
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