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LARGE DEVIATIONS FOR SYMMETRIC
DIFF USION. PROCESSES**

Qian ZuoveMIN (4 & R) " - WEI Guoiane (E )"

Abstract
Let a(:v) (@ (w)) be a umformly eontmuous, symmetrlc and matmx—valued functmn |
sat1sfymg umformly elhptzc condztmn, @, =, y) be the transition densﬂ:y functmn ‘of the'

diffusion process ‘associated with the Dirichiet spade (&, "H} $(B%), where’

ou(z) Ov(x)
8, vy= fn‘;} o, o, @

Then by using the sharpened Arongon’s estimates established by D. W. Stroock, it is
shown that

1}1? 2tInp (¢, %, ¥) = —d*(=, ¥).
Moreover, it is proved that 'Pg hag large deviation property with rate function
. :
I(w)=-12-f0 <o®); a (@), o) >di

as 8 —» 0 and y — x, where P§ denotes the diffusion measure family associated with the
Dirichlet form (¢#, H} (R“))

§ 1. Introduction

Suppose that X () is a d-dimensional diffusion process on R? associated with
the infinitesimal generator . '

13 0°
=_—_2_ :;;ww(w)m . (1.1)
For any ¢>0, definea process X, (¢) to be X (et), Then X, is a diffusion process on
'R agsociated with the infinitesimal generator
We denote by P, and P; the laws of processes X (¢) and X,.(¢) satisfying the-
conditions that X (0)=w, and X, (0) =, respectively. 8. R. 8. Varadhan™ proved
that if (+) is uniformly elliptic and uniformly Holder continuous, then P5 has

la,i'ge deviation property when e—>0. D. W, Stroockt™ gave a simpler proof of above
~ results under the additional condition that ay(s) are 0% In this direstion, M. I.
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FI edlhn and A, D. VVeni;z::ellf:”'J developed the theory of random perturba.tlons.

using the theory of stoohastio differential equations..
In thig paper, we deal with the large deviations of the symmetrlo diffusion:
process assoemted.mth‘ the mﬁmtesrmal generator

'~va ;ﬁ]aa, wsf(w) jd"’ o (13)

4,9

under less regula,r eondltlons made onda.( ). Our main results show that if @5 (a;)l

are uniformly contmuous then Pj has large deviation property as €—0 and y—> o,
where P denotes the law of X, under the condition that X, (O) ~y, X, denotes the
process assooiated with the infinitesimal genera‘sor C

L——__ 62 e() | (1 4)

N
It is obvrous that the methods given by D W Stroockm do not Work in thls oase

Uslng the Aronson’ 8 estlmate technlque whleh do not depend on the smooth
conditions made on g(- ), we show that the arguments grven by S. R. 8. Veradhen“‘”
also work well in this oase. In § 2, wé récall Aronson g estxmates for ‘heat kernels.
In partioular usmg the sha,rpened Aronson 9. estlmates estabhshed by D. W.
Strooek we ghow that '

' lnn 2t1np(t a;, y)=——d2(.fv, y) (1 5)

only under the assumptlon that w( ) is unlformly oontlnuous end umformly
elliptic, which can be regarded as an extension of the fa.mous S. R, S Varadhan’s
theorem in [9]. C : o _

~ Under the same conditions, we give a 1a,rge deviation prineiple of Markov
processes with state space R" 1n §3 and then a,pply this result to symmetmc
'dlﬁ'usuon processes. SR o

A§72- Arenseﬁ's'Es-timates N

8. R. 8. Varadhan o proved that if p(t y) is the fundamenta] solution
whlch solves the equa,tlon N

F W@ =0 |
where a(e) is unlformly Holder continuous and Setlsﬁes the oondltlon
- 7\,Ina<w( )<7\.’1I,,, @y
for some A€ (0, 1], then [ P S T R AR
lm3%InpG, 00) = 8@ 9), - (2.2)

where 'd(w, y) denotes the. geodeslo megfric determmed by matrlx @™ In: this
sectlon, we show that if a(x) = (@;(w)) is a symmetrie, uniformly eonti’ﬁiidus,
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matrix-valued function satisfying (2.1), d>8, p(¢, o, y) is the transition density
funotion of diffusion process associated with the generator (1' .8), then (2 T2')" also
holds, Our sole contribution to this result is the observation that the sharpened
Aronson’s estimates established by D. W. Streocki™ ensure (2.2)."

Throughout this paper, we assume that a(z)= (ay(z)) is a uniformly
continuous, symmetric matrix valued function satisfying (2. 1) and d¢>3. For any
functlon zﬁE 0“(1%d R), deﬁne ' . .

R R R RS oL 2 @.9)
where ||, denotes the essential upper bound with Tespect to the Lebesgue measure
on R’ By (2.1) one knows that To(h) <oo if and-only if |Vi|.=[<{V, V| 1/"’<
oo, Denote by a (&) = (a%()) the 1nverse matrix of a(w). It is easy to see that a~
also sa.t1sﬁes (2 1). Lot d(m, y) be the geodesm metrie from @ to Y determlned by
the matrlx Va,lued function a~* (@) (henoe by as(a;)) deﬁned by |

oo, ) oy LD IDL, e ora B}

I's(h)
—sup { @) (ll‘g(y” WECHBY ) and |tv¢||wf1} -
=sup {|¢(@) —¢(y) |: Talp)<1}.. (2 4)

For @y aTe unlformly oontmuous by Va,rmtlona,l pr1nc1p1e it is easy to oheok thet
(899[6]) S N S
| d-x(a;, y)_mf{j <65(t);w-1(w<t))-as(t)>dt:

o 'a)EOi([O 1] R") Wlthw(O) wand co(l) y} | (2 5)

Where ) denotes the generahzed der1Vat1ve of the functlon . Using (2. 1), we
know that there exists a constant 8€ (0, 1] depending only on A and d, such that

Blo—y|<dg:(w, y) <B*|o—y|.
Let p(a) equal « exp(|w|2—1)"*if {w|<1, and 0 if |@|>1, where « is a constant

such that J p(w}dw=1, Then p. belongs to the Schwarz space, For any >0, define

ps () =t—7p(7=). Denote by pt*w‘i the matrix (e;feaff), where 'pg*w" denotes ihe
convolution of functlons Pt a.nd ¥, defined by ; ' |
: - | pt*w"(w) j pt(w y)w" wi. @l
In pa.rtmula,r, for any &= (&) E JRd we have : _
S omat @i | =) zfiea'f(y)dy,

«that is, pjxa™? (henee (pt*aﬂ) 1)) setlsﬁes (2 1) We note tha,t p,*w" are’ bounded
Smooth funetlonsonR‘z : . ST srs o e
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Lemma 2.1, I}, 3()>% converges to I's(P)? as t—>0, uniformly over
Y€ C*(R% R) such that Illlxll«.<1 o
Proof - Slnce :
IT (pexa73) (4’)2 T (‘l') ]
=<V, (peva) g YR KV, a. V¢>f [
<KV, ((pera D)1= @) V] g
<[ lpa™ Y olal) Vi ]Morar ~a M
and the fact |p, *a"—-a" l »—>0 as t—->0 due to the fact @ is unlformly contlnuous, we
get the lemma. ' - ' ' '
Here we denote by |a|. the L.~norm of the matrix a.
Corollaxy 2,1. For any », y € R%, we have .
dg- (@, ) ""H-m 7 v l(‘vr ?/) - . . (27)

ung formly over all w,. -y such that |o—y| is bounded :
Proof Note that 1’(,,,*‘,~,)-1(1[;)2>?\.||v¢|2 Hence for any tpEOI(R" R) such
that | Vi.=1, we have :

@ 9@ [bE@ b [? | _ Lo y| e
I (4,)2 F(m*a 1)-‘(4’)2 < ,lr(p*w v (lp) T (l’,) [

Now (2.7) follows from Lemma 2.1 1mmed1ately
Remark 2. 1. Because p,*m"i is-continuous, g2 ,q- (m, y)'can be rewritten as

@ ) =Int {[ €605 ™ (@) 664 e
, wEOl([O 1] R") Wlth'w(O) mandco(l) y} ' (2 8)

Now we recall Aronson’s egtimates for heat kernels. Let (&, H}(R?) be the
regular Dirichlet space on L (R dx) del:_termlned by the matrix-valued function

@, where

Then there ex1sts a positive real- Valued functlon p(t, o y) €0((0, oo) x R“ X R%)
satisfying

p(s-}fﬁ; @ y)—#J,,p(t, o, Z)P@r Y, z)dz, :

(t @, y) p(t) Ys o) (2.10)

and there exists a constant I depending only on A and dsuch that

Mltz oxp (= —l?fi‘ﬂ“l‘)ﬂ“(“' @ ?/)< 9XP< l“wTu“z_l‘> -<2'11)

p(t, @, y)generates the Dirichlet space (&, H} (R"))m the senge 'to'f‘M Fu1§u8him&t4] '

The mequahty (2.11) is’ called Moger's inequiality or "Aronson’s’estimate; ‘As a
résult of the Aronson’s estimate, we have the followmg Nash’s inequality:

& (u, v) =" f <‘7u,w\7/v>(m)dm ' T (2 9)
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+ There éxist congtants 0>0 and o€ (0, 1) whloh onIy depend on A a,nd d, sueh
that - :

|p(#, o, ) =t @ ¥) | <
for all (t, =, y), (¥, o, §') € [3% oo) xR X B? with |s—a'|V |y—y'| <8.

Using the E. B. Davies' method for ob,tainipg off-diagonal estimates, one hag
the following stronger-estimates for the upper ~1ooi1nd, Whose proof can be found in
D W. Stroock [7] , .

Theorem 2, 1. There is @ constant K >0, which only depends on 7\. amd d, such
that for any 3 € (0, 1] we have

fo'r amy (£, @, y) € (0, 00) X B¥x RS,

We note that there is not any smooth assumption made on a. For the lower
bound, we have the following Theorem 2. 5 under the additional oondltlon that @
is smooth, which was proved by D. W. Stroockt™, ' '

Theorem 2, 2. Assume a(w). is uniformly consinuous. There i a constans M>1,
dependéng only on A and d, such that fo'r any 3€ (0 1T we have

oM 14 8) & o
- 20 @ WS exp( ( ) 2’; (. ”)) N By

forrwny (¢, o, y)E(O o0) X R*X RS, o

Proof We can choose a sequence of bounded smooth, symmetrm, matrix—~
valited funotlons a® (m) (a,,(a;)) Sat1sfy1ng (2 1), such that |a¥f ~a”|.~>0 when
1 <> 00, where ‘(a¥)={a")". Then a(+)=> ay(+) almost everywhere. Denote by
pa(t, e ¢) the transition ‘-dénsirtyv funotion correéponding to :¢"(+). By Nash’s
inequality (2.12), we know that p,(, @, ¥) >p(%, @, y), When n->oo, uniformly
on any compact subset of (0, o0) X R x R?, Since |

[ Tper )"~ Lo (871 <14, (porai?) o a5 =a™) (pira™) 7.

we have

F(p WORE? (‘l’)2f"11(p:ua“)“ W),
when n—> oo, uniformly over € O*(R%; R) such that | Vi|..<1_ So we get
o Lim d%,e g (@, ?/) "“:df»*a‘&mr_?/)é

]

For any n, we have (see [7], Theorem 3.9) .

Ceun 4 (4 +8) dPoua5t (@, ¥)
Pn(t w? ?/)> td/d exp( 2t )o

Let n—>»oo, one deduces (2.14). . R :
- Theorem 2. 8, = Assymg w(m) s umformly cont'muous Tkefn

ltl_?g,%.lnp(,t, o y)=—=dgsle, y) ... . (2:15).

O{It»—-tlZVlfvglely ?/l) (2.19)

PG & 0 <75 exP(%%‘) e
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unéformly over m, y such that {o~y| bs bowndeéd
Proof By Theorem 2.4, for any 3¢€ (0,-1]. we have

a—i(m’ y) .
2t1np(t, w, y)<2tan dtln‘o‘#- —-———-————-——1+5 ». o
Hence by (2 6) We got o : ’ '

]Jm2t lnp(t, w, y)< da—i(‘v: ?/)

unlformly over w, y Suoh that |z— yi is bounded By the same a.rgument HSmg

Theorem 2.2 and Corellary 2.2, we get - I

T e hmmfztlnp(t, @, y)> d‘,,_i(w, y)

The proof 1500mplete S TR ey et T s ST
" Remark:2. 2, Using: Moser 8 1nequa,11ty, (2 15) and ‘conditional diffusion:

processes; we have proved that Theorem 2.3 also holds if p(t a:, y) ig the tre.nmtlon

dengity function associated with the generator BN e anand g

B P PN OB L AOTL

where we only assume that b,,.(m) ‘BTo ;boundedmeqsurab_le (see [2]). .o

§ 3 Large Dev1atlon Property

In this section, we, w111 show tha.t the Moser . mequahty and the asymptotw
Telation (2.15) essentially ensure a diffusion ‘process ‘in: o small interval having
Jarge deviation property. In pa,rtlcula,r, diffusion processes with continuous
:-d;ﬁ’g_smn coefficients in gmall :intervaly: have: large deviation properties. We
basicelly follow the argument of 8. R. S. Varadhan®™®, but there are a few
difficultiey to-overcome;, MoreOVer wé use the Moser's mequahty, withowt: assutmng
:any smooth conditions on diffusion. éoefficients ag in- 107 G Dol s ld

-+ Throughout-this.gection; we assume that p(t, @, y) El( (O Bo). ><R"><R") is a
positive trahsition density function (without Symmetrio:assumption): satisfying:
-(-25.'311)." for-any:(t; @, y) € (05 1] % R¥% R%for some constant M >0. Tiet:Q = O¢[o;4];
R?) with the.topology: of: uniform “convergenoe on::[0,1]: Assume’ thiere existy a.
-eontinuous, symmetric and matrix-valied function - (Zv) = (ayj(w) )i BE-5 REQ R
Setisfying (2.1)for some constans A Let I be :the rate functlon "oni Q assmmtedz
with the functlon a(w) defined by gots B R L

B (EEYREORCOIO I G

‘Then It 2~ {0, 0c]iy lower semieontinuous; end:has. compact level sets. Moreever,
 Tet d(w, ¥) be the geodeslo ‘metrio functlon deﬁned by (2 4) Satlsfymg the: folloWwing
sonditions AL e g
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]Jm2tlnp(t w, y)———dz(z, y) (89

uniformly over », y such that Ia: y] is'bounded.

Example Let a(a:) (ay(@)): RP—> REQR? (d=>3) be a _symmetrio, bounded,
uniformly continuous and matrix—valued function satisfying (2. 1), p (% 2, y) be
the transition density funotion associated; ‘with, the regula,r Dirichlet space (2.9)..
Then by (2.5) and Theorem 2. 3 1t ig easy to cheok tha,t p(t, @) y), da-.(a:, y) a,nd
1 satlsfy ‘above conditions. :

Let () be the coordinate process on £, an&f F, ; be it natural filtration..
By Moser’s inequality (2. 11) and Kolmogorov's crlterlon, it is easy to see that for
any « € R? there is a unique probability P, such that (Q, F,; F; w(t), Py) is s
strt’mgl'y‘ Feéller continudus; Markov process with transition probability-P (¢, », dy) =
2, @,.y)dy. For each ¢€.(0,:1], st p. (%, o, ¥). -—p(et &, y), then ps(t, @, y) also-ig:
a tra,ns1t10n density functlon on R¢ and satisfies R N R LTI :

In partlcula,r, there is a udique prbba:bility P“ for each mER" ‘such that (Q;
F, F s, (8), P) is a strongly Feller continuous, Markov process with transition:
density funotion p, (¢ #; ¢). For any sibset BCQ, define’ B,={w: w€B with
w(O) «}. The main result in this section is the following

Themi?em 3 1. Por any closed subset 0 Q, and open subset GCQ ‘we heve

llm elnP;(O)< 1nf I(w),

hminfelnPZ(G) I%fl'(w) SIS (3 4)‘
e ;:.'p ) wely . L o

. As: 8 consequEncs of thig result applied to the dlffuswn process assoolated with
the infinitesimal generator (1.3) (see: Example), we have the following =

Theorém 8. 2. - Assuine that a(z)= (@) is @ bounded, uniformly: contmuous,
Symimietiic ‘aq.gs,d_,.matmm-—mlued Sfunction on’ R*(d>8),. which. satisfies (2.1) for some:
constant & € (0;:-1] o edich €0, lot. (w(8), P:).be the Symmetric strongly Feller
condinuous, Markov process associated with the Dirichlet spacé (¢&, Hy(R %)), where &
is defined by (2.9) and x(t) is the coordinate process on Q. Then PS:-has large deviation
propery with rate function I defined by (8.1), when € — 0 and y - v, in the sense of
Theorem 8.1, that is, (8.4) holds. T e el ey

The remains of thls _paper are devoted to provmg Theorem 3. 1

Wirst we prove the upper “bound, :

- .For each, partltmn w0 to<t1<w L= 1 denote by T the ma,p from Q t6*
.R"""‘"'” defined by - Lt T A culmsbosy niiad (o i

Tiom (o), - 0} @5y
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If 4 is Borel set, and 0=T;4, then L g _ .
P 5(0) = J HPs(ti—'is-m Yo yl)d?/h T (3.8)

where A,= {(yo, ey )EA yo—-y} Usmg (3 6), (3 2), Moser s mequahty (2.11)
and the follow1hg ‘ e

R B @) e
inf I = —r e 3.7
“ﬁ;w(g"w (w) , iwzl {tﬂi"tl g 8.7

one oan easily check (for the details, see [10], Lemma, 3. 1)
Lemma 8,1, If ACR¥®™ s q closed subsst, O=T'A, then
h.melnPe(O)<-—1nf I(w) e (8.8)

6-0. ¢
Yo

Lemma 8, 3, Thereisa constant 0>1 whwh depends on M and &, such that for
any €€ (0, 1] we have - ’ :

P"'(sup Ia:(s) --m(O)l>rr)<Oexp( gzt) (3.9
forwn.?/ (¢ ») € (0, 1] XR" >0, Pt T £ e
-+ Proof Let {,=inf {{>0; lw(t) m[ >,,-} By strongly Markov property, we
got Dy
Pe(t, o, Bla, )7 v')") — BF [P‘(t cr, _w(cr), B(w, r)") Z.:,<t], e
where B(a;, r)={y: |Y—~o|<r}, P($, o, dy).=p:(i, o, y) dy. By the lower bound
of Moser's inequality, one knows that there.is:a constant: 320, depending -only on
M and d, such that for any £ €2(B(z, rr)), §>0, and €& (0,.1], we have:.

Pe(s, £, B(@, 1)) =P(es, ¢, Bla, 1))°>3.
On the other hand; using the upper bound of Aronson’s estimate, one easily oheck
that R T I |

2
Pé(t, o, B(a;, fr)") P(et, @ B(w, a‘)")<A exp( jor t>
*Where A end B are constants dependlng on M and d. Hence
' P:,( sup [w(s) — 2(0) | >r) = P‘,(Z,<t)<6_1.P5(t x, B(w, Ny

R
<0 Aexp( —-—-Bet ;
the prooflsoomplete o e R TR
For a.ny n, denote by . the partltwn 0 to<ﬁ1< <t,. 1 t,— — Let w"(t)be
the process such: that w"(t,) ~m(t¢) (E=0,.0r, n) and j joins the successive ones by one

.of geodesics connectlng (%) and a:(tm) For s1mp1101ty, we denote by d(a:, y) the

(2 9). y
Lemma 3,8, For amya>0\

Tim Iim sup e 1n P5( Sup d(w(t), w"(t)) >S)== -90, (3,10}

- Hioe  G¥0 &
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Proof By defintiion, for any 1€ (3;, +1)'We have :- W bero .
. d(mn(»L) " () <d(z" (t,.,_l), @ (t,)) d(w(t5+1), a;(tj))< sup d(m(t), ﬁc(t;))o

3 j 1}
.-H?noe wehave . , |
S sup d(w(#), mﬂ(t))<2 sup sup d(m(t}, m(t,))

<f<n~13€ [t4,L5]

Usmg Markov property and. Lemma 3 4, one. deduces that -
P"'[sup d(w(t), @ (t))>‘o‘]

<P [" mp o a6, s3] -

t0<j<n-—1te [t:; f; 1l

< ’i P; [ Sup d(m(t), w(t,)) >-—]

L€l 314-1]

. n—-1

tx 5_;) sup P2 [ sup d(w(t), ‘”<0>)>"“], "

2E€R? te [0rd]

;<nMexp (—— fjf;)

Now (8.10) follows immediately. : 1 _
Using above lemma; and the game argument as [10], we ocan get the upper

bound. For completion, we outline the proof as follows ' N
Let o, be.the partition of [0, 1] as above, For any_ ‘W€ Q, define w,€Q such

thato, () <w(t) (4=0, -+, n) and joins the successive ones by one:of geodesics

connecting @(#;) and o (4;:1); such that w,.(t, ax) m(t o:,,) Let OCQ be a- closed.

subset. Forany:-8>>0, deﬁne " Th bR ST

. -Os={w €0 d(w(O), o). <8},

Y {7 sup. d(x(t), @ (%)) <3 for some w€0s}, ... -

I"(w) “mf {I (')') sup d(?’ (i), w(t)) <5},
P aa=1nf I(a)) '

: . wGOe L - .
Beoause y ~» - we-can a,ssume d(y, a:) <8 Note the fact a)GO, lm phes I"(w) >a.,,,.
bence

P;(O_J.f—;rz(da)gfz(zécm)>aa>.
On the other hand e
.Ps (co° I"(w) >a3)<P‘{w sup d(m(t) , co,.(t))>8}+P {a)* I (w,.) ;aaa}

But

SN dz(w(t;), w(t,+1))
I(w.,) ’% T T e

Usmg Lemma 3 2 for set {m‘ I (co,,) >ds} we get
hm eln Py(w: I(w,)>as) < ~owpics i
y-»z '

: By Lemma 3.3, one can 6heck \

. A 1 e R el e
A T VS IS S A P
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lim eln P{(0) < — o
€0
Y~z

for a,ny o>0 Since I is lower semicontinuous, we have

S 11ma5=1nf1(“’)
-0 . WeEQy

Thus we have proved the upper bound
By the proof of Lemma 3.4 in [10] , We know that lower bound of Theorem 3.1

is a consequence of Lemma 3.3, Theorem 2. 3 and upper bound. For the details, we

refer to [10].

Remark 3. 1 Theorem 8.2 also holds for the dﬁfus:on asgociated with the-

opera,tor ’

| L=-;~2; ay(o) 2+ o)

23

where (ay) is continuous and Sat1sﬁes 2. 1), (b,) is bounded measurable (compare-

with Theorem 3.1 in [3]). RS
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