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OSCILLATIONS OF NONLINEAR DELAY 
DIFFERENTIAL EQUATIONS—— GENERAL 

LINEARIZED OSCILLA TIONS RESULTS
ISTVAN G yoRI*

Abstract
It is showa that for a wide class of： the scalar and vector functional equations of the 

delay and the neutral type a positive solution ezists if and only if the linearizedi 
approximating equations are non-oseillatory or, equivalently, the characteristic equations  ̂
of these linear equations have a real root.

. • •

§ 1. Introduction and Notations
In the appliciation孕 one often faces the following problem: The "biplogioal model 

or the physical system under investigation is presented b y  a Bj&iem of differential

equations and w e  ask about the oscillatory properties oi the solutions around m
• . • ■ . ■ -

steady state of the system.

If the equations are linear with delays then there have been several papers* 

dealing with necessary, sufficient and also necessary and sufficient conditions for 

the oscillation of all solutions via the charaoteristio equations (see. e. q,[10, 2, 16]) 
or without the oharaoteristio equations (see. e. g* [3, 5, 7, 17, 21]and the references 
therein).

Recently the interest is growing to study nonlinear, delay differential! 

equations, whose elutions exhibit an oscillatory behavior. TJie raaim reason is tiiat- 

tlie delay differential equations whioh play a n  important rqle in； the appiioations 

are nonlinear, and—for instanoe^—in the biological applications the delay equations 

give better de^ription of tK© fluctuations in the population than the ordinary ones» 

(see, ©• g* [20] an4  vti^ :refi0reii〇es therein) •
O n e  of the most plausible ideas is to investigate the oscillations in nonlinear 

equations via linear approxiEa6tions similar to tho stability analysis of perturbed
linear systems.■_ • ■； '. . / ；
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Such linearized osoillation results for the delay logistic equations without 

neutral term were initiated by* Kulenovic， Ladas and Meimaridoucl4：I and b y  

Kulenovie and :LadasL133 while f<?r tlve neutral delay logistic equation were initiated 
b y  GySri118’93. For some further general resiilts w ©  refer to [8] and [15] in the 

constant delay ease while for piecewise constant arguments w e  refer to[6]and[ll].
I n  this p.ap^r, the b舶 ia of the 為"bove mentione迂 results w e  prove some 

general oscillation theorems for a wide class of nonlinear delay equations. O u r  

results are essentialy n e w  because they give necessary and sufficient conditions both 

for the oscillations in scalar equations with nonlinear neutral term and with mixed 

monotone right sides and also for the veotOr case.

A s  is oustomary, w e  say that a function [ay 〇〇)->i2, (a R), is oscillatory if 
.«(i) has arbitrarily large zero^and nonosoillatory if %(t) is eventually positive or 

eventually negative, A  vector valued fixnotion 2:= ( ¾  •••, zn ) T ： [«, 〇〇)->i2n is called 

positive if ̂ ( f ) >0, t>a)y and is called eventually positive (negative)

if 2；i(̂ )if9 eventually positive (negative) for all K i < w .  B y  using vector notation^ 

v e  express the fact that 12:(¾) is positive b y  writing For two vectors u,

v̂̂ ：R nj u > v  means ihei ( K i < ：n), and u > v  means that
... • .

A  function 2: [a, 6〇) i s  called sligMly positive if 2；(古）> 0，（；{ >〇{):，and there is

；a component  ̂ (i) of which is positive on [a, 〇〇) .

In section 2 of this paper w e  prov© some results for the existence of
. . .  . .., . 

nonnegatiye, slightly positive a n d  positive solutions of the general funotional

equation - » ■
■ . - • . . ■ . • . . ■

去 [>〇) - & 〇{，〇;(•))] =  - « 〇 ,《；(• ))， (1 -1 )

where a (¢, »(•)) and b(f, »(•)) are so called Volterra-type funotionals defined, as 

follows： ..

Let is%, and B  be suoh, that — 〇〇< ^ i < ^ 〇<〇〇 a i n d 〇〇), jBn). Then.

,a functional c: [i〇f 〇〇) x D - > i ? n is called4 a Yolterra-type funotional if for a n y  

(i, ®)» (t, y) € \t〇, 〇〇) X I>>

e(t, <〇{•)) =c{t, «/(•)),

where a; (m ) W e  aay that )) is continuous if for all t c G D

■the function c(t, a?(*))is continuous on[i〇, 〇〇)and for all ̂ >#0 a n d  〇},
m a x  |c〇, *(• ))-〇(#, «/(〇 )!->〇
n<t<T

w h e n  a;(i) tends to y{t) in the m a x  n o r m  27].
I h  this paper w e  will use monotone vector norma. A  yeotor n o r m  ] • | is balled 

toonotone if g/G R+  and x<,y imply | a; | <  | ̂ |.

W e  say that c (古，仿（•）） sat哀sfi細  a Oharafheodoty (̂ oiiditioii if for all J5 the 

fuaotion c(t, 〇?(•)) is locally bounded a n d  locally integrable a n d  furthermorfa, for
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all !T>i〇 a n d  x, y ^ B

©8S(sup \c(iy ^(^))-c(i, 2/(〇 >|">0h< t< T
w h e n  〇；(#) tends to 2/(55) in the m a x ： n o r m  in [iLi，21 * * * * * 7]. '

In seotiori 2 w e  tilao give some conditions ao that every sliglitly positive solution 

of (1 .1 ) satisfies

lim x(f) = 0 a n d  f x(t)di<〇〇.
¢-++00 J U

In seoiiori 3 w e  give necessary ind'sufficient oondition so that a linear sbalar

neutral autonomous differential inequality has a positive 1301^16^ and so that & 

system of autonomous linear delay equations- has a Slightly positive solution. 

Unfortunately w e  did not succeed in proving these results for neutral system. T h .0 
reason of this failure is that w e  could only prove the following oonjeoture in ther

...• . . . r. ' . . . . . . . .  • y  . ■ - ■ , .  ..

soaiar neutral and in nonneutral system oasea(see Proposition 3.1 and 3.2 in Section

3 of this paper).

Conjecture 1.1.
dt

Consider the. neutral equation
f-

(1.2)
where T > 〇U '〇,P>rPr'>〇  f ^ O  m e  co^ianU} A y B y 0^：M n̂ n are n by n constant 

mairioes mehihai ̂ ^ O .  if the spectral. md/im of the matrix

B ^ c f k & y + G  saUsJjm the bcmMUon : 、 : r ， h

. P〈（<7rr〇 5 十 : , “ (1.3>

Then Eq.uaiiM-；(^ has co sUghtly m  some interval li〇r 〇°) if »tm2
M y ”  ihereeodst h〇<A a破 取  mGh jh賊

det +  . (1.4)

1 %q〇 6S^ — -• e^x〇a) +  Ae"^tl;)e0^  0 imd \e〇\ (1.5)

In the nonneutral system pas月，i. e. wlien 0 =  0，we  cojald use theasymptotio 

representation of the solutions of (1 .2) via the oharaoteristio roots as #-> +  〇〇„ 

Unfortunately w e  do faot k n o w  of suoh represeniation in the. neutral ease.

O m；r ma/in；lin,earized osoil^tioM proved in section 4  where w ©

give neceasary-j Sufficient and also necessary and suffioient eonditions for 〇$oillati〇ns

in the^aonlinear gcalafi aaid yeetor equations. :

T o  demonstrate the] m a i n  idea a n d  some results of this paper w e  give the
• ：V ' . - ' . ；, . ... V ' , ' ........following special G〇r〇llary of our general results：

Corollary 1.1. Consider the scalar neutral delay differential equation :-

[〇;〇 ) 〇*))-/0 > (1 -6)

where g* m e

eonUnuom funotiom meh that f(t7 a))>0, g(t, 〇〇) > 0  and k(co) >Q.,
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Then

(a) if there are constants a > 0 y 6>0 and c>0 and 8〇> 0  such that 5 + c < l ,  

moreover

f(t? a>)<accy g{iy a>)<ba> and 〇<oo<8〇)f (l.T)

4tnd the UneaT equation

[w(i) — 6w(i—r)] =  ctw(i (1 .8)
m

has a positive solution then Equation* (1.6) has a positive solution on [t〇M y, <x>), 

(7 - m a x  {r, a, r});

(b) if f〇T all e > 0  small enough there exists a S«>0 such that
• -

/(i, s)aaj, g(i} s)6aj and A(a?)>(l—8)ca?r 0 < £ C < 5 3),

• (1.9)...... •• • . •• ‘ ：.
where the npnnegatiw comtants ay b and c satitfy a> 0  and & + c < l ,  then the existence

of an ev6nku6lly positive solution of (1 .6) implies that (1 *8) has a positive solution or
equimlently the charaoteristio equation

X ( l - 60~Ar) (1 .10 )

has d mgatim root.

0ii6 oan from the general results of thiis paper that a suitable modified 

versidil of statement (a) of Corollary 1 . 1  is true in ti, dimensional system case, too〇 
But statement (b) of Oorollary 1.1 could be proved for systems under tHe 

restrictions that g(ty co) a n d  h(a>) are zero functions.

T h e  m a i n  ideajg of the prodf of the ̂ fundamental theorem about the existence 

of a positive solution is based on the following observations.

Equation (1.6) is equivalent to the following equation

4  [aKO — SfO, a ? ( # - r ) ) - J ^  Wa(s)ds] = = - /〇, a(i-T)) (1 .1 1 )

and Equation. (1.8) has the folloving equivalent form

— bu{t-■t)_ o J" u(s)ds j =  —<zu (1 .12 )

But one oan see that in that forms of Equations (1.11) and (1.12) it is hard to 

oompare their positive solutions because of the negative signs and of the neutral 

terms. Therefore w e  investigate the next more reaiSonable functional equation

(1.13)

(1.14)

Namely, for instance, if (1.14) has a positive solution, on [f〇—yf 〇〇) and (1.7) holds 

then the functionals .

ftrr$ . .. (•〇〇. .a;〇 {) = 5r〇 f， ®(̂  — r ) )+ j#, fe(a5(s))(Zs+J  ̂ f(s, x(s—v))ds 
and functional inequality

(*f—a /*〇〇r ) + c  J M (s)d s+ J |
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a(t, 〇>(•)) =f(t, b(f, »(•)) ==̂ ()5, oo{t-T))-\r^ h{x{s))ds

and

a(t, =  0(t, u(>)) =  bu(i—r) + c  u(s)dsJ t—<T
satisfy the inequalities

0<«(#, 〇/(•))<«(#, «(•)) and 0<：b(i, a：(<>))<^(#, «(•)), 

for all t>t〇 and 〇〇Q.{y^.〇 {{t〇—y, 〇〇), B): ^>i〇—7}.
In that ease the ghauder^s fixed point theorem is applicable to prove that 

(1.1B) has a positive solution o n  [i〇—7 , 〇〇) . But a positive solution of (1.13) is 

a positive solution of Equation (1.12) and of its equivalent form (1.8). Therefor© 

in this w a y  w e  oould oonolude statement (a) of Corollary 1 .1 .

§ 28 Two Fundamental Theorems of Linearized Oscillation
• . ■

*

Consider the following Y 〇lterra-type neutral differential equation

Let —〇〇<i_ 1< #〇< 〇〇. W e  will need througliout this paper the following 

hypotheses:

(Hj)a, 6: [#〇, 〇=>) x O u -» B +  are Volterra-type funotionals such that a(t, u (•)) 

is continuous a n d  b(t, satisfies the Oharatheodory condition, where

<?«： ={«/€〇 ([i-i, 〇〇), i2n) ： 0<u^)<u(ty, 

a n d  the function %(i)is continuous, slightly positive and bounded on 〇〇);

( H 2) there exist Volterra-type funotionals a, X <7<|->丑； such that for
all f>t〇 and x Q 〇 u

a(t, u(>)) and b(t, v(*))</8(#, «(•)), (2 .2)

v(〇 ) ] = = - «〇, -y(*)), t>t〇. (2 .1)

moreover

I!
a(s, m( » ) ) cZs <〇〇 and 0(t, « ( • ) ) - » 0 ,  a s ^ ->  +  〇〇； (2.3)

( H 3) u(t) satisfies the inequality

' . ,61x ^0, 00),,
: . • . . . .

(2.4)

(2.5)

芮〇分 itate bur fundamental theorem a*bout thb bxl^fcence of a noimegative
. . ■ , . .   ̂ ■

solution of Equation (2.1).

(2 ‘S )
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Then Equation (2.1) has at least one solution v^O([i}~ir 〇〇)y B n) stcoh that 

m d
(2.7>

(2 .8)如0 0 = 沴 （ 0 十…古 ‘ 

where OQ,R% a suitable motor.
Proof Denote b y  BO the Banach space of continuous tounded functions o n

[^i, 〇〇), with, the n o r m  1^ 1 =  Sup |̂ (i5)| ,

• • \
Using the faot, that u(i) is a continuoua and bounded function on[i_i, 〇〇), it 

can easily be seen, that is a 1)011X1(16(1，closed.and convex subset of JBO.

O n  the other hand, b y  (2.2) w e  have

/*« /*〇〇
；〇̂  a(Sy v(^))ds <  u(^).)ds<〇〇9

J J t〇

for all

Define the operator T  for a n y  g  O u by

(2.9)

{Tv) (t)

6〇{，公（•）） a(s，<y(*))ds，#>f〇，

沴〇5)十 &〇?〇, 如（。））+ |  從（§，幻 (《) )取

(2 .10)

T h e  operator T  is defined for every because of (2.9) and ( ¾ )  (i) is a

continuous function on [#_i, 〇〇) because of =0.

N o w  we  show that T ( O u) d O u a n d  T  is continuous and compact on O u.

( i ) :T ( O u)c:Ou.

Let be arbitrarily fî ced. T h e n  by  virtue of(2.2) and (2.6), from (2〇10) 

it follows that

(Tv) (i)<^

召 (¾ w(*))+j^ a(s，《(•))(&，i > 《〇，

议(#) 一奴(古〇) + 0  .(#〇，w (。））十 [ a (琴，认('))ds，
J'ta

But since «(i) is a solution of (2.4), the last inequality yields

(Tv)(t)<u(t), t.^tKoOy ；

that is, 37(0«)(=0„.
. -' ' • ...

( ii) T  is continuous.

Let v〇Q 〇 u be arbitrary fixed, and let vn£ 〇 u> (n>l), be a sequence, such that 

i^«— as «-> +  〇〇. Note that the Volterra-type functionals ¢(^, v(>)) and 

6(^ ^ ( 0 )  are such that a(ty /〇(•)) satisfies the pharatkeodory condition and 

bit, <»(•)) is continuous.

Therefore •

a(t, v〇(»)) =  lim a(«, vn(〇 ), a. e. on[i〇, 〇〇).
7l «->〇〇

Moreover b y  (2.9), it follows that
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a(s7 a(s? w(«))(2s < 〇〇, n>l*

Thus, on th© basis of Lebesque^ integral theorem, w e  obtain

f*00 - /*〇d v
lim a(s, -y„(»))'ds= a(s, v〇("))ds：»•-♦  + <» J to J to

O n  the other h a n d  since ,b(iy -y(«)) is a contiiiuous functional, w e  have .

s u p \b(i, vn('))-b(t, -y〇(»))|->0, asw-> +  〇〇.

Therefore 12^„—3 ^〇|->0，a肖抑- > + 〇〇，which m e a n s  that opertor 27 is Gontinuous。
(iii) r  is a eompact operator o n  O v.

According to one of Levitan’s tlieorem^18]，if for a n y  re?al 2111码 ]5肛  e > p  the 

interval [f„1? 〇〇) oan be divided into a finite n u m b e r  of submtervals {1 ¾ } ^  so 

that '

m a x  1 ( ^ ) ( ^ ) -  ( ^ )  ( ^ ) 1¾  ;

for every v ^ O u and for then operator T  iB compact.

Let s > 0  be an ar|)itrarily fixed real number. T h e n  b y  (2 .3) and (2.9), w e  

obtain :

f a(s7 v(*)) d s <  f a(s7 u(*))ds<s/2 (2 .1 1 )J st . Jsi
find ... . .

0<b(t, m (.))< e/2, t>s〇, (2 .12 )

f〇r all v^：〇 u and for a fixed s〇>^〇 large enough.

Thus (2.10) yields

m a x  I {T.<〇) (is) -  (Tv) (h) \ < m a x  { | (Tv) (¾) I +  I (Tv) (tt) |} < 8  ,

on the interval J〇 = [s〇, c〇) for every ftinction v^.Ou.
Furthermore for s>〇  there exists a 8=5(s) >〇  9u〇.h that if t±, [f〇, s〇] a n d

| i i ~ t h e n

fti(35(S? v(^))dS <
cu

a(sy <Cs/2,

and

sup {|6( ^  ^(0 ) - 6( ¾  ^(*)) I： v £ O u}<8/2.

This yields that ii it9 h €： d̂] \ h —h  \ then

I (Tv) (i2) -(Tv) (h) I <6, for every v e 〇 u.

This also m e a n s  tliat the interval [i〇/Si] oan be divided into siibiriteryals 1,
2, iV), the lengths of which are less than S; and

for every^ v £  O u and where N  a natural n u m b e r  depending o h  8,
Such a division of the internal i〇] qan ob^ipxasly be found,； teeause

(Tv) (t) ==^)(¾) .
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where a oontinu〇u9 function such, that =0 and

c =  b(t〇, ,y(*))-l-J a(s, v(>))ds>0 (2.13)

is a constants vector for every fixed <〇£0„.• •
Since for an arbitrarily fixed e > 0  w e  could divide the interval[i_i, 〇〇) into a

■ • . • . ■ . . . . .  • - :. 
finite n u m b e r  of subinteryals according to Levitan^ Theorem, it follows that tiie

operator T  is compact on O u,

' A s  0 «c ：jB O  is bounded, closed and G〇n vex, T  is continuous, compact and 

T(Ou)ciOu, b o according to Shauder^ fixed point tHeoremC4：l7 there exists-yG〇«, for

which This m e a n s  at the same time that

- 0<^(#)
and

似 ⑷ <• ))十 h  » 〇, w (。）)取  

>.<j&(i) +  c,

where Gi?+ is defined b y  (2.13).

(2.14)

(2.15)

If both sides of (2.15) are differentiated on the interval [i〇, 〇〇), then -we see

that v(t) is a Solution of( 2 〇〇)with initial condition(2.8).
T h e  proof of the theorem is complete.

In the next corollary w e  give a condition for the existence of a slightly 

positive solution.

Corollary 2.1, Assume that the assumptions of Theorem 2 . 1 are satisfied. 
Furthermore assume that-.

(Ki) there is m  index i〇G{l, •••, n,} such that uk(i)>iiil>(t〇) > 〇, 

and for all (#1, a>) G  lt〇, 〇〇) X 0 „, the inequality. <ciQ(t)>〇, implies

U f c  咴。( V ® (‘))ds>0, (2.16)

where Mge, and bisi denote the i〇th components of u} a?, a and by respectively.

Then Equation (2 .1 ) ham sUghily positive sohition on [i-i, 〇〇) .
Proof B y  Theorem 2.1； w e  have that for the initial fuaotion.

4>(i) ̂ u(t)-u(t〇)r ‘

Equation (2.1) has at least one solution v(t)on[t-lt 〇〇)suoh that(2.8)holds where 

0  G  is defined b y  (2.13).

'^()W.we』sb〇：̂t^at.(^>Q..Ind!?ed.fi：om(2.13),.^id(2.^L6)weh^Ye...

Gi^hito, ̂ ( 0 ) +  i v(〇 )c2s > 0. -

Tlius = = ^0( i ) a n d  b y  using the same argument as above 

one caii isee that ̂ ( i ) > O  f〇r T h e  iproof of tlie corollary is completo, ^

A  similar result can be-proved for the existence of a positive Solution with

miaor ekanges in the proof of Ooroll ary 2 .1 .
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Corollary 2. 2. Assume that the assumptions of Theorem 2 .1 are satisfied  ̂

S'urthermore assume that: •.

( H 5) u(t)>u(t〇) > O y(t^1< if<t〇)f and for ^) € [̂ 〇> the inequality

ip(i)>0, ^implies that

K ‘ ® ( 0 )  +  f % 0 ，i ( 0 ) ^ > 〇. (2.17)
Jt〇

Then Equation (2S)has a podtive solution on{t^ly 〇〇).

N o w  w e  will prove 6nr second fundamental theorem which is very useful in

the subsequent disbussion of the qUalHative pr6perti的  of no n o白dilatory solutions.

T h e o r e m  2. %m Assume that a, b: [t〇f 〇〇) x O  〇〇), D n) B n(Dnd R n) are

VoUerru-iype functionals} and that there emst cmsianfs r> 0  and T 〇̂ i ± + r } and a

matrix Q€ i24.Xn such that for all y€.〇 ([t-i9 〇〇), H n),y(i)>〇i (i>T〇—r)we hme

2/(0 ) ^ 0 0<b{t, v (9) ) < A  m a x  y(s), ( ^ ^ o )  (2.18)
.卜

(where max is meant componentwise).

Assume further that the spectral radius of the mattics A  satisfies the condition

p(A)<l. (2.19)
Then

(a) for every function <s g ^°)j D n) M 〇h that

^(•))}< — a(t7 so(^))} t>t〇f (2 .20)
at

and o?(i)>0, ( i > r 〇—r), 〇n$ has that x(t) is bounded on [t~i} 〇〇), moreover
/*«9

m 0=lim — ^：R% a n d  . «(s, ®(®))ds<〇〇； (2 .2 1)¢̂ +00 Jr。

(b) if we also assume that for all eventtmlly sligMly positive function

〇〇), M %

lim inf \y(t)\ > 0  implies that
爹•>+«〇

./ lim I a(s, y(»))ds| = ? + 〇〇,
+« J ftf

then
lim x(t) =  lim 6(i, aj(〇 ) = 0〇

古 ~» + 09
B e m a r k  2.1» For tite condition p ( A ) < l  of Theorem 2,2 to hold it is 

sufficient th&t \A\ < 1  where) • |ma y  denotes a n y  matrix norm. In the Scalar case, 

i, e. w h e n  7i=?l, p(A) isjequal to the absolute value pf the scalar value
T o  prove the Theorem 2.2 w ©  need the next l e m m a  which is a slight modified 

version of L e m m a  2 in [101 with the same proof.

L e m m a  2. 1. Lei A b e  a mnnegaiive matrix, r > 0  a real number9 a ^  R n 

a nonnegative vectory and x: lT〇—r, 〇〇)-̂ > JS+ a negatim corhtim(m funotion, and 

suppose that the vectorial imqmlity

a>(t)<d+A m a x  co(s)y t > T 〇 (^.24)
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holds： (where <  amd m m  are meant componentwise}^

Assume that the spectral radius of the matrix A  satisfies the oondition(2019) . Then 
一 . ,* 

there emst^ positive comiants p, q and M  suoh that

\x(i) I <  m a x  \c〇(s) |exp( —-«(i —i2)) +  ̂ |d!|, (2.55)-
!T〇 — ê ŝ rg +2¾

；■ • 1 N o w  w e  are ready to proy©' Theorertt- 2 ̂ 2..

Proof of Theorem 2.2 (a) Since an^ it satisfies (2 .20), w e
have that x(t) — 6 ® (•)) is a monotone nonincreasing function on [T〇, 〇〇),

be〇au$Q 〇f (2.18)* Therefore therp exists a vector d £ B %  such that 

., ,, w(t)<d+b{t, «>(•)), t > T 〇,

that is b y  virtue of (2.18), w e  obtain that a? (i) satisfies the inequality (2.24). T k u s  

b y  L e m m a  2.1, w e  obtain that cc(f) ii9 bounded on [#_i, 〇〇)^ But using tlie same 

arguments, one qaa see that the limit

m = l a m  (̂ x(t)—b(t, «(•)))

is a noniiegatiye YfiGtor. Therefore, f p m (2.20)]jy integration, it,follows that 

m - ( x ( T 0) - b ( T 0, f  a(s, x(-))ds,
f->+oo J

which means that (2.21) holds. Tiife proof of Stateinent (a) is complete.
, (b) First w e  show that m —0. Otherwise there is an. index {1, suoh

that TOj>0. Moreover there is a T { > T 9 Such tliat

But bi(t, » (*))> 0  {fP=Ti)t and consequently xi(i)><m i/2 and \co{t)\>mi/2 for 

all t > T t. Therefore b y  virtue of：(2.22), w e  obtain

JT。
aCs, x{»)) ds： = + 〇〇,

which contradicts (2.21). Thus m  =  0.

Since w  =  0，we  have a funotion’/: [Li, .<>〇) - > ' suoklliat lim /(#) =  0 and becmxse 

of (2.18) c；/

0<x(t)=b(t, co( > ) ) + m a x  x ( s ) t > T 〇. (2.26)

O n  the 〇体 er h a n d  ̂ M ^ l i m  叫 p 芩（岭拎  a;o?ineg峄tive vec夫or arid (2.26) yields ()< 

M  <AM^. Sinde^ p( J.) <1, w e  obtain Jf ̂ O  a nd the proof of the theorem is complete,

§ 3. Linear Systems of Differential 
? . Inequalities and Eguations

In  this section w e  give some equivalent statements about the existence of the 

Mightly positive as well as Slightly positive a n d  ndix-increasing solutions of the
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inequalities

去 [®00 色 ) -ic〇- P v ) ] -  g  知 (卜 :办 )，.

(3.1)
and '. ..

®(*)> 2  〇 m(e(t~rm) f j a;(s)ds+- ( S  x(；s - v k)ds (3,3)
?rt=sl j苗  1 J t—<r̂  J t fc=l

as well as the equation
. . . .  . , . •f i  r  M n J  ' . K  .

— v(t) — — —^/)] S  . ■ (3.3)CuV l- 饥=*1 J js*：l Aj=1- ' ' ' • • ^
where w e  assume .that ' .,..

( i ) Tfc^O, and -rm> 0 areVgiven

constants, r = = m a x  v-h, cr =  m a x  { m a x  &,, m a x  rm} and i_i=i〇—m a x  {v, 〇■}； ； ' *l<1c<K l<j<J
( i i )  Atc ( l < h ^ K ) ,  B} and Om are rioiinegiatiYe n

.IT ...义 . :..
2  -4.¾ je=¥〇, if and e=%0,ft=l /

aiid the spectral radius of the matrix ̂  a 3) s a t ^  tte condition'  We=1 : /s=1

At  tiie end of tliis seotion W e  will also consider the dharacteris^c equation of (3.2) t 
d e t(V l— S 〇U~Arw ) —全 取 (>，為 —r 叫 ） +  S  A 厂… )=〇\ \ m=i / fc«l 5 /

under the conditions (i) and (ii).,,.

First w e  prove the following useful lemma.

Lemma 3.1. Assume that condiUdm (ii) are satisfied. If a conUnuous

funotion cd: [i_i, 〇〇)-►  J2n satisfies (3.1) on [<〇, 〇〇) and it is eventuallp sUghilp posifim 
then £C〇) is bounded on 〇〇) avid th^re is a T 〇>t〇 such ihâ bSG (i) mUsjim(Z.2) for

a,U t> T 〇.
Proof Since x(i) satisfies (3,1), w e  obtain that co(t) is a Solution of the

inequality

4 卜 (*〉— 耳 仏 ®(卜 〜 )—笞 丑 士 、 (5)办 ]■^一 S 』fc如(bffcX (3.7)
• •• -• - . ,  . - . ： ,.. .•； .. •. .... • - . . . . . .  > ,

for all 糾 〇. ‘' ■ ̂  , : 乂- ：.二‘卜 ■ >：.： '' ：K；. . ， ‘ - ；：；. ■' • ：feet - i-'-'； ;； - ■■ V ：.\■■>：■■ ■ U 7 :卜卜

for all (¢, a?) g  [i〇, c〇) x 0 ([Ci,.p〇) ^ ^ n)^^^^^ tit© assmsmptipn. of Theorem 2 .2  
about 4>(i, ic(*)i) and b{t, a}(^)are iSaAisfiê ttitd tJie inequality(2 .2〇)x6jdudeato th? 
inequality ^.30). Therefore fey Tfeeoreiri 2.2f w e  obtain； ： n o v ^



49@ OHIN. ANN. OF MATH. Vol. 13 Ser. S

TO〇= l i m  \s〇{t)— bit, 〇?(•))]> 0  a n d  2 ] J.fco;(s—Tfc)(2s < 〇〇.
+ J t fcssl

.... ，

Thus b y  integrating (3.7) from < to -f 〇〇, w e  have

ai(i)>m〇+  2  〇 mx(t — rm)+^jBj I x(s)ds-)r 53 A^xis—v^ds.
J ¢-cj J t fc=«l

Therefore (3,7) is satisfied and the proof of 1jhe l e m m a  is complete.
N o w  w e  prove the m a i n  theorem of this section.

Theorem 3. 1. Assume that conditions (i) and (ii) are satisfied. Then the
.. :.. . ' - .• 

following statements are equivalent:

(ai) inequality (3.1) has a slightly positive solution on an interval 〇〇);

( & wegualitp (B4iy has a slightly positive and Tmi^rwreasinp solution on an 

interval ■ 〇〇):
'■  - ■ ■ ....

(b̂ s) ineqmliip (3 ,2) has 0 sUghtly positive soluUtm in an interval 
(a4) equation (3*3) has a sliqhtly positive solution on an interval [t^ 〇〇);

(a5) equation (3.3) has a slightly positive and non-increasing solution on an 

interval [#5, 〇〇).

Proof B y  virtu© of L e m m a  3,1 one can sep that if one of the statements (a^), 

(如），（a4) a n d  (a5) holds then (a>3) is also Satisfied.

N o w  assume that (a3) Satisfiedy that is, there exists a slightly positive
$olutio拜印(古) of (3 .2) on 今总 interval (¾—7 , 〇〇)，whei;e 热n4 {节，〇•}
is defined b y  condition (i).

Let u(t) be defined "by

co(s)ds, — (3.8)
，古，......... . :.:

Tlien a continuous aad sligiitly positiy© functioii on [ ^ - 7 , 00) a n d  4 (0 =*

O n  other hand, from (3.2), ;；̂e  〇M  1

一 [议(古― ^ ( 卜 心 ) ] —2  办 )，pit JL. ； 4 . fc»l
(3.9)

for all ̂ >#3.
.'■.:.,.TWsj^.ean.s:W^t.w(古） is;a.枓 ightly .positive...;啟 nd.. .non 一 inore 姑  jing solution of 

(2.27) on its — y, 〇°). This m e a n s  that if (a3) is satisfied then (a^ a n d  (^) hold, 

too. B y  using the same argument as above, one can. see that if <c(t) is a slightly 

positive solution 〇f(3.3)on a n  interval[¢4, 〇〇)then «(i)defined in.(3.8)is a slightly 

po^itiy© a n d  non-increasing Solution of (3.8), Therefore (a4) implies (a5).

■ It remains only tp show that (a3) implies (a^) ̂ If (as) J^olds, i^lx^ has

:¾. sligMIy positivejSplutionrojido)^Moh b y v̂('〇? tjiep. u(t) })f (3>8)
Satisfies inequality (3.9) orx [i3? 〇〇).. But in that oaSeiby w  .$..1 ：w 〇
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have

A f  J  f t  一 K
u(t)> m (s)(2s +  s  i>ia, (3.10)

7U=1 jss% J t—O-j J t fc»l
moreover

u(t)>u(ts), ts—y < t < t 3, (3.11)

a n d  there is a n  index i〇£  {1 , 2, •••%}

Ui9(i)>^i〇(h), h ~ 7 < i < h f  .. (3.12)
Set

a(t, «)(•))= S  f̂c) a n d  、 (s)cZs，
fc—1 饥=*1 j〇=l J

for a]l(i, -y) ̂  [i0? 〇〇) X 0 ( ^ 3--7 , 〇〇), R n) and 

,  K  M j  , f t - $ j
an d 5 ( i ? w(»)) S  + S  5 ；* u(s)dsy t>t〇.

fc=*l m̂ =i :- 扣1 Jt-& j
T h e n  from conditions (i) and (ii), it follows that the assumptions about a(i, v〇 ))

a n d 6(i, ^(*)) as well as those about a(ty u(»)) and 7 3 ¾  w(〇 ) are satisfied in- ..........
T h e orem 2.1 a nd m  Corollary 2.1. Thus b y  virtue of Corollary 2.1 w e  haye that 

Equation (3.3) has a Slightly positive solution oa 7 , <^), . The proof of the 

theorem.is complete.
• • •. • +. , .  - . . . . . . . . .

T h e  oscillations in the linear delay differential e4uati〇ns and systems have
been the object of intensive analysis in numerus papers and notably iri [1 , 2, 3,
5, 7, 16, 17, 21] .

T h e  results in this direction oan be classified into two groups： results which 

are proved 耶 1七釭〇11七 ttie characteristic equation and re白ults which are proved through 
the characteristic equation. T h e  following fundamental tfceorem .铁bo：u U I ? e  

characteristic equation was proved b y  Arino and Gyori in [2]：

A  system of linear homogeneous neutral differential equations has a 

nonoigcillatory iSolution if and only if its eharaoteristio equation has a real root〇

B y  using this general result w e  prove two usefuJJ staitemejits. 

Proposition 3.1. Consider the scalar equation

d 
dt

v J JC■ v (t)~  S  〇 m v(t~rm) -  2  akv(t-vie)t
- 和《0 4 fc=l

* * ； (3.13)

where the constants <r,-T &j and rm satisfy oondition (i)? moreover ^ > 0  
bi^O (K ^ < t/) «tuZ cm>0 are such thai

K
21

and
fc«i

S  &>0〇•/-
mss3

(3.14)

(3.15)
'：V 0；；

Then Equation (3.13) h m  aposiUm soluUm m  some interval [#〇, 〇〇) i/ and only if 

the eharacteristie equaiioW ； ：. f f
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/  M \  /  A JTMl™ 2  + s  (3.16)\  m=l /  'j—l fc—1
has a negative rooi.N

Proof F r o m  the above mentioned general theorem it follows tiiat (3.16) has 

a retil root if (3.13) has a positive Solution on an interval [i〇, 〇〇). But under our 

conditions it is easily seen that every real Solution of (8.16)is negative, 

v N o w  w e  assumo that Eq[ua,ti〇n  (3.16) lias a negative root, Say ^〇. T h e n  the 

function

i : . 。 .一  v ( i )  =  0^ at ^
ia a positive Solution of(3-13). T h e  proof o;f the proposition is complete.

Corollary* 3； 1, Assume that the condiUons of Proposition 3.1 are satisfied and 
for all s ^ 6  smaltMaugh ihere a r e T ^ R  arid a cordinuoas function %'\T9--Tj 〇〇)-> 

'X〇);<̂ y  such that - • • ;

：：■■■■ ■ ■：■■；- . ; / . ；
J  ' K5 ) 2  ~ —矽s (古一 〇 "/)] 一 (1 —̂ &) t*)> i ^ T Q. , (3.17)fc=i

Then Equation (3.13) has a positive solution or e^uimlently the e'har&eier isiic equation
. . . . . . . . , % ■ 二 .. .  ：：%. ' ■ ' . ：： -(3 ̂ 18) has a negative root.

' P n b /  良iAce for a n y  s > 0iniall endugh，（3.17) has a p6sitive> sold 
interval [T61 〇〇), b y  virtue of Proposition 3.1, w e  have that the Equation

a - s )  a — 十 t t - s ) ,•,：• : ■ 3̂ 1 ':: •' • ;ft=l
clias a iiegatiY© r〇〇：t, Tlien. as s^> 〇, "we obtain that Equation (3.16) has a nonpositive 

root. But X==0 is not.^ot of (3.16). Therefore (3.16) has a'negati^© root. T h e  proof 

of the corollary is Complete. i .

Proposition S； 2. Oonsidef the n-dim&Tisimal delay' equation

^ 艺 爲 如 〜 一 —奴(卜 0V)] — 2  - ^ ) ， (3 . 18)
卜1 -.- • k^ . . ：： . . . .

where 〇*,*>〇■；> 0  and r ^ O  (l^Jc^K) are Gonsianis,
. . . . . . . .  . . .

^ —二二 -)/ =  m a x  { m a s  cr̂  m a x  irfc},
l<i<J l<k<K

arid and A ^ £ R f <n (1<A<ET) are given matriees such that
(3.19)

(3.20)
) i f  and
_- « 
：, ( 3 i i )

and

• • y  '• ' .Ak \e ^ 0  i f  e£M% and e^O,

Equation (3.18) has a Rightly posj/ti辦 sohdfon on some inierml [t〇, 
only i f  the charaGterisiio equation

•XT
det( U  +  S\  ft=i
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hm a negative Toot %〇  and the eigenvalue-equation
“〇I —S  取 O  一 病 —卜 。 +  b
\ ĵ i »=1 /

has an eigenmotor solution e〇 such that
CITbd |̂〇 I " l *

(3.22) 

(3.28)

Proof If ̂ o.is a negative root of (3.21) and e〇 is a solution of (3,22) such that 

(3.23) holds, then it is olear that is a slightly positive and n o n -

inoreasing solution of (3.18).

N o w  assuibae that equation (3^21) has no realrooi. T h e n  frota [12] (see also 

；[19]) w e  k n o w  that the solutions of (3.18) can be writton ill the form

; V ^ ；|]约 ⑷ 咖 (颂 + 啟 ) + 〇(古V ， V  (3.24)—i
in which a+ia^ is a ̂ root of the oharadteristio equation, ̂ (¢) are some polynomials

N  ■
^ n d i ； denotes the greatest power of the polynomials »/(#). Since S  cos(«y ̂ +/8/)

y
has a zero m e a n  value, it i$ oscillatoiy funqtion if S | a ;*| > 0  and ci€i2rt ( K j < N )

N  女  卡 1
>are such that 2 1  句 | > 〇• But in Uiat case 2  句 cos(os/{+私 ）is almost periodic, there—. =̂i >=*1

• - . . . . . .  . ;

lore the function defined in (3.24) is oscillatory..

N o w  assume that(3.18)has a slightly positive solution. T h e n  b y  Theorem B.l •
• •

■we have that (3.18) has a solution x(t) Such that is slightly positive a n d  

n o n—increasing on some interval.[史〇，〇〇)• But in that case Equation (3.21) has a» 

real root X0 Such, that ,

x(t) =^elotp(t) j as i- > + 〇〇, (3.25)
>■ . 'K

where ji(i) -  2  a polynomial of degree Ts..j ss Q
Since o;(i)is a slightly positive a n d  non-increasing function, (3.25)yielda^tjhat 

%〇< 0  a n d  eb is a nonnegatiye vector such： that | e〇| >0. But from [12] w e  k n o w  that 

«〇0A〇f is a solmtioa of (3.18):, w M c h  m e a n s  that e〇 is a solution of (3.22).

N o w  w e  show that ̂ 〇<0. Otherwise X〇= 0  and <c(t) = e 〇 is a solution of (3.18).

But this m e a n s  that 2  JLfce〇==〇, that i3«〇=0, whioli is a contradiction. The proof 

• . . 
of Proposition 3 .2 is complete!.

■ . .

Corollary 3. 2. Assume ihat the conditims of Proposition 3.2m e  satisfied m d

for,all s> 0  smaU- T eQR. (md a emU^nuous and slightly posiime

ftmeU〇n ve:[Ta--y, 〇〇)~>B+ such that

<  ⑷  4  这 高  h  (0 “ 祕 一 福 > — >)3;山 (1 一  g).'2 1 .'為 fc® 办 ):^ 你 2 »̂.
i=l k=l

. - . •• •' _ i .■ 1.: -.- ； , ; ....

Then Equation (3 • 18) has a slightly positive sohcticm on an interml [T〇, 〇〇).

Proof If there © x M ^  a sligiitly positive o&rtiiiiiuotfs fuiiotion v9: iT9—
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y, 00)-5. ¾  whioh satisfies (3.25), then b y  virtue of Proposition 3.2 w e  have that, 

there are a 、 < 0  a nd a n  such that

det("x8I - ( l - e ) S  - 6 - ^ )  +  (1-6) S  A^ e - ^ A ^ O ,
\ ft=l /

and

+  S  A 0 - ^ ) e 6- O 7
\ M  k̂ l /

• : ； .

moreover I0J  = 1 .
But in that case ̂ a=?=.lim "ka exists and it is a nonpositiye solution of (3.21). O m

e—〇 \

the toiler hand, since es> 0  and |̂ s( = 1 , there exists a sequence {6„}~=1 such that- 
lim g„=0 a n d  e0=  lim ein exists. But one can sep that %  satisfies (3.22) and (3.23)*B*4+〇〇 ' ft-̂ +OOj
Therefore Propositjom 3 .2 completes the proof of the oorollary,

....................  * • 1 . .. . ， .

§ 4, Nedessary atid Suffieient Conditions for Oscillations 
in Asymptotically Linear Equatibiis

-

In this seotion w e  give some conditions for the oscillations in non-linear- 

scalar a nd vector equations via some corresponding linear equations a n d  their 

oharacteriatic equations.
.* * • • 、，'■ • . . *

At first consider the scalar differential equation

a(i-ri), •••, aj(i-raf)]

J
[访(必(古—̂ V)—仍«古一^))] —/(古，̂(古―艾 1，…，① ^ ：))， (4.1)3

J«i
* ’. - * . * . ■ ■ •

■where w e  state tbe following hypotheses which would be used as indicated in each^

result：

..(Ai) r?s>〇 ( K i < J S r )，.〇v> ^ > 0  a n d  (l<w<M)... are given.-

constants,； -r=■ m a x  vie, 〇•= m a x  { m a x  Vj, m a x  rm} and i〇—m a x  {r, <r};!< }< J l<m<M
(A2) f: ti0, 〇〇) }< B 111B, and h: [t〇, 〇〇)><. R M - ^ M  &v&-

continuous funotions such that

f(t, x ) > 0  ((t, »)(=[#〇, 〇〇)xBf), gj(y)>0 ( K j ^ J ,  y^ B + )  and

h(t, «)>0 ((i, 2) € [«〇, 〇〇) X  i2?.) , moreover

f m i n  {/(#, a?i, «c„): ^ > 8, K ^ j S T J c J i  -̂  +oo^ 
J u

( 4 . %

for all 8〉 0;
( A3) there are ponstants aifc> 0  b}> 〇  cm> Q

a n d  d〇> 0  fiuch that
■ ' ■ • . . . . . . ,

 ̂；, S   ̂ (4.3>
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轨n d  i.

d i ( p ) ^ b ^ y } y €  [〇, S〇)? K j ^ J t  (4 .4)
and

M
h(tj zlt S  [〇, So), K m < M y (4.5)?7l==l

moreover

K iW j 盧
S  afc> 0  and S  c « n + S  &/(〇■ / - ( 4 . 6 )
fc?»l i«i

( A 4) for all e> 0  small enough there exists a 86> 0  such that

/(V % ，” •，叫 ) > ( 1 —s) S  從 美 泛 ^，办 €  [〇, 久) 反 ， （4 *7 )fc=i
and

9 ^ y > a - B ) T > ^  s^e [〇, §fi), ；

a n d  .

的 ，办，…，如)>(1-6) 23 <?— ，知S [〇, 5〉，
饥》j

vriiere the constants %, 6,- a nd cm satisfy (4.6),
•. - . . . : -

In the next theorem w e  give a sufficient condition for the existence of a positiy© 

solution,

Theorezn 4,1. Assume that assumptitm (Ai), (A2) and (A 3) are satisfied a îd 

.that the linear equation

|卜〇〇一 黑  - 〜 ) ] 如0(卜^7)—如(#一0V)] — S  從抑(卜 W  (4.10)

b̂as 0 positive solution on an interval [T〇y 〇〇). Then Equation (4.1) has cb positive 

^ohction on [i〇, 〇〇) .

Sin ^  Equation (4.10) is ̂ utpnomoii$, one can . see that if Equation

(4.10) has Bi positive solution on an interval [T〇} 〇〇) then it has a positive solution 

'〇n  〇〇), too. Therefore, b y  Theorem 3,1 w e  pbtain that there ©xi$tsi a positive 

Junction 〇〇), i2+) Such that
w〇〇) > % ( # 〇) (5f-i<sf<#〇), and lim u〇(t) =0, (4.11)

十 O®• ■■J
通rid

u〇(t)>/3(t, w〇(〇 ) cc(s} t>t〇f. (4.12)

where

K
oc(t； «<〇(•)) =  2  % « 〇(#— t>t〇, (4,13)

f t s s l  . .^ a d
U  ； . ； J. ft-&j ..

Ua( •)") ̂  ^  CmUfi(j — Tm) + ¾  &i 1 %(s)<2s, (4.14)

. ■ ； ； ...... • ； _ - .-̂ •• • . -

Let c be a positive constant such that the function u{t) defined b y  u(t) =

ôtc〇(t) (—7 < i < 〇〇) satisfies the inequality 0< w ( i ) ^ 8〇(—7 ^ i < 〇〇). In that case

,(4.31) and (4.12) yield ，
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奴 〇 〇  >w 〇5〇) (#-i<;5<if0) ， and lim ==0 ,
and

« ( * ) ) + j t a(s, u(>))ds, t>i〇-

N o w  define the functionals a(t, 〇?(•)) and b(t, 〇>(»)) b y

峨 》( 〇) = / 〇, a?(#-Ti)，… ， (B(#-Tfc)),
and

(4.15)

(4.16) -

(4.17) 

gj(x(s))ds, (4.18>b(t, x(*))=：h(f, ®(^—Ti), ?•», a?(f—Tar)) +*^ Jt-Vj
for all (t, x) € [#〇, 〇〇) X<7«, where 0„ is defined in our hypothesis (Hi) in section

2.
Tlien. in OoroUary 2.1 the assumptions about a(i, *(•)), b(t, ®(0)), «(^ «(<■))■ 

and « {〇 ) are Satisfied. Therefore b y  this corollary, it follows that Equation

(4.1) has at least one positive solution on [^t, 〇〇). T h e  proof of the theorem is： 

complete.

N o w  w e  give necessary condition for the existence of a positive solution of
； ■' •

(4.1) /

T h e o r e m  4. 2. Assume that conditions (At) 7 (A2) and ( A 4) (ire satisfied and-
. . . .  . . . . • •

Equation (4.1). has an eventually positive solution on [i„i, 〇〇) . T h ^  (4.10)

has a positive solution.

Proof A s s u m e  that a;〇: [#-i, 〇〇) ->J2 is an eventually positive Solution of (4.1 )■ . . .  • . ..:
T h e n  a>〇(i) is a solution of the equation■ • ' > '' * • • :■ , . . .

d
■h>(t)-b(t, «(•))] =  - 〇(«, 〇?(•)), (4.19>

where a(t, 〇?(•)) a M  6(i, as(»)) are defined in (4.17) and (4.18), riespeotiyely.

B u t  under our itypotheses a(t, and 6(̂ , «(•)) satisfy the conditions ia,

T h e orem 2.2. Therefore l>y T h e orem 2.2, we  obtain

ip 〇〇
lam a;〇(i) =  litn 〇;〇(•)) ==0 and a(s, »〇(•))(Zs<〇〇, (4.20)«

' t-*+〇〇 t~*+〇〇 J Pi

where T 〇^t〇 is defined auch that 〇?〇(#) > 0, ^>^0 —max{r, 〇•}„

In that case from (4.19), b y  integrating from i to + 〇〇, w e  obtain that x〇(i)f

satisfies the equation

®o(0 = & (^ »〇(•))+ | t «(«> x〇(-))ds, t > T 0. (4.21)-

N o w  let s > 0  be an arbitrarily igmall fixed number. T h e n  (4.20) yields that tilers- 

exists a such, that 0<{C〇(i) < S s, i>!rs—jnax {-y, cr}, wliex© 8? is defined ia.-
oondition(A4). Thus b y  virtue of (4.7), (4.8) and (4.9), we have

E

and
« (^  «〇( • ) ) > (1 - s )  S  ^ft=*X
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6(#，怎〇(0))>(1 —S) 2  古一 +  (l-*®) 2  ^  f iC〇(s)d$, t^ T 6,
7M=3 夕=1 Jt—̂j

where w e  used the definitions (4.17) and (4.18) of a(i7 〇?(•)) and b(t7 

respectively*

Therefore f r o m (4.21), it follows that

(幻> ( 1  —e) S  一、）+ 2  f /%(s)咖十 f S  k 〇(s —心办，备 2VL«»=s] 卜 1 J t 一 O' . .. J t fc=»l
But by virtue of Theorem 3.1, w ©  obtain that the equation

d p 好 •
v ( i ) - ( l—e) S  cmv(t-rm)

L _

(1 —S ) 2  —冷/) — v(名一°^)] 一 (1 一5) S  Q%〇〇(f —fc»l

has an eventually positive solution.

Since 6 > 0  is arbitrarily small, b y  Corollary 3*1, w e  obtain that Equation

(4.10) has a positive solution on some interval [T0j 〇〇). The proof of the theorem^ 

is complete

F r o m  Theorems 4 fl and 4.2 it immediately follows a necessary and suffioient- 

condition for the existence of an erentually positive solution of (4,1)：

T h e o r e m  4. 3. Assume that conditions (Ax), (A2)r (A3) arid ( A 4) are satisfied̂ - 

Then Equation (4.1) has an eventually positive solution, on [i_i, 〇〇) if cmA only if' 

Equation (4.10) has an positive soluiion or eqvivalenUy the GharacterisUo equation

\  /  fcs=l
has a negative root. .

N o w  w e  apply T h e o r e m  4.,3 to the equation

x(t) =g(jx(t-a)y--f(a}(t-T)),  (4.23>

where w e  aissume

( i ) %  a  are some nonnegativ© constants, 7 = m a x  〇*};
• • • . .

(ii) f ,  g： i ? 5  are continuous fuiaotipns such that f  (x)>g (〇>)>0(<〇>0)  P. 
and for all e> 0  small enough thereis a 8S> 0  suoh that

(l--e)jp®</(a/)<^a5 and (l -s)g»^(»)<iyaj, [〇, Se),

where the oonstaonts f.ajid g. Sati孕fy tlwo.nilitipas
... 〇< g < p  and 0<gr(<r-cr)<l.

T h e n  Equation(4 ;23)has an eventually positive solution on [i〇—y, <?〇) if the equatloa 

 ̂ X ^ q e ^ —p e''^  - •： .(：,
has a negative root. .s.'.

Proof Since Equation (4.23) is equivalent to the following equation

by T h e o r e m  4.3 the proof is completed."
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N o w  w e  consider the differential system
.,- •

£̂ 00 = 2 [办0 ( ) ) - « 古，〇V))] - / 0 ,  …， 卜 Tvr))， (4.24)
^here w e  state the following assumptions which would "be used as indicated in eaoii 

resu lt
(Bi) f̂c>〇  and 〇■/>〇*,*>0 are given constants,

^r= m a x  { m a x  m a x  and i〇—r；l<k^K l<j<J
(B2) f ： [#〇, 〇〇) X BnN -> jRnand gj：En jR̂1 are continuous functions

auoJb. that

f(t, xlt •••, a;fc)> 0  and 5r,(®a) > 0  Wn€̂ +, l<Js<K),
sand

min{/(#, xi, •••, x^ixj^c, l < h < K }  dt + 〇〇,
for all c¢ 22+ such that lc| > 0;

(B3) there are noimegative w b y  w m a t r i c e s a n d  5/ and a positive vector 

^ 〇G  such that

；and

anoreoyer

f  (tf (C±y ĵt) ̂  2  i ^ t 〇i
fc=*l

... • . .... ；' ; • .. ' .-

gjCyj^Bjy, 0 < p < d 〇,
：'■ ., ' ■ ■■ ■ • v ■ : ; '■ '

^ S  ^ ^ = ¥ 0  if is such that e^Oj

j
银nd tiie spectral radius of the matrix satisfies the condition... x

P ^ S  B ^ < l y
(B4) for all e > 0  small enough there exists a 8SG ^ +  Such that 8S> 0  and

(4.25)

S  4»®», t>t〇, 0 < 〇̂ < 8 9, K I s < ^ tfc=l
,®nd

S rK g /)> ( l^ e )B ^ , 〇< y < 8s,
where the constant matrices and 5,- satisfy (4.25)a n d (4.26).

B y  using Proposition 3.2 and Gorollarjr 3.2,: a repetition of the proof of 

^lied^ems ̂ .i iand 4.2/ ̂ ith appropri OliangeS, proves the folldwing theorems.

Theorem 4. 4. Assume that ooiiditioTisiBx), (Bz) anA (B3) aresatisfied. Assume 
further that the linear equation . ■：

1 ) = ¾ 為 — — ：£  ’ , . 27)
■ / • ■ - jpl - ： ； ： 4 ■ \：., k=l- ' . - •；

•• • i j *

has a slightly positiw solution on an interml [T〇r ，pp) , Then Equation ：(4>24)： hâs
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a slightly positive solution on [̂ 〇— 〇〇) .
Theorem 4. 5, Assume thc&t conditions(B )̂, (B2) and (B4) are satisfied. Assume 

further that Equation (4.24) has a slightly positive solution on [#〇—r, 〇〇). Then- 
Equation (4.27) has a sUghily positive solniion on con mterml [STo, 〇〇)•

Theorem 4. 6. Assume that ccmditions (Bx) y (B2) ? (Bs) and (B4) are satisfied. 
Then Equation (4.24) has a sUghily positive solution on [i〇—r, 〇〇) if and only if 
Equation (4.27) has a slightly positive solution on an interval [T〇y 〇〇) or equivalently 
ihereco exist cfnegatim member X〇 and a vector e〇Q R \  such that

+  S  A n e - ^ ) e 〇̂ 0
\  fc«i /

md\e〇\>0.
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