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~ OSCILLATIONS OF NONLINEAR DELAY
 DIFFERENTIAL EQUATIONS—GENERAL
LINEARIZED OSCILLA TIONS RESULTS

Istvin GyYorI*
Abstract
Tt is shown that for a wide class of: the scalar and vector functional equations of the
delay and the nemtral type a positive solution exists if and only if the linearized

approximating equations are non-oscillatory or, equivalently, the characteristic equations:
of these linear equations have a real root. '

§ 1. In.troduction and Nofations

In the appllcatlons one often faees the followmg problem The blologlcal mode¥
or the physical system under 1nvest1ga,t10n is presented by a system of dlﬁ'erentla,E
equations and we ask about the oscillatory propeltles of the solutlons around &
steady state of the system. .

If the equatlons are llnear Wlth delays then there have been several papers
dealing with necessary, sufficient and also necessary and sufficient conditions for
the oscillation of all solutions via the characteristic equations(see. e. q.[10, 2, 16]}
or without the characteristio equations (see e. g. [3, 5, 7, 17, 21]and the referencesv
therein).

Recently the interest is growmg o study nonlinear delay dlﬁ’erentmlz
-equations, whose solutions exhibit an osoillatory behavior. The msin reason.is that
the del_ay differential equations which play an important role. in the applications
are nonlinear, and—for ingstance—in the biological applioations the delay equations
-give better deseription of the ﬂuotuatiohs ‘in the population than the ordinary ones
(see, o. g.. [20] and:the. references therein). | _ '

One of the most plausible ideas.is-to 1nvest1gate the osolllatlons in nonlinear
equations via linear approximations similar to the stab111ty ranalysus of perturbed
linear systems. - L " |
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Such linearized oscillation results for the delay logistic equations without
neutral term were initiated by Kulenovic, Ladas and Meimaridou™ and by
Kulenovic and Ladas'*® while for the neutral delay logistic equation were initiated
by Gybri® ., For some further general results we refer to [8] and [15] in the
congtant: delay cage while for piecewise constant arguments we refer to [6] and[11].

In this papgr, -onthe basis of the above mentioned results we ‘prove somse
general oscillation theorems for a wide olass of nonlinear delay equations. Our
results are essentialy new because they givé necessary and sufficient conditions both
for the oscillations in scalar equations with nonlinear neutral term and with mixed
monotone right sides and also for the vector case.

Agd i3 customary, we say that a function 2 [«, o0)—> R, (« R), is oseillatory if
2(4) has arbitrarily large zeros and nonoseillatory if #(3) ig eventually positive or
eventually negativ'e."A'Veotor valued funotion z= (2, -, %) *: [&, o0)~> R" ig called
positive if (5)>0, (1<i<n, #=a), and is called etréntﬁally positive (negative)
if 2;(4)1s eventually positive (negatlve) for all 1<¢<n. By using vector notation,
we express the fact that z()is positive by writing z(z‘)> 0, t=a. For two vectors ,
v€ R", u>v meansd that u>v;, (1<é¢<n), and w>v means that u>v, (1<i<n).
A funetlon 2 [a oo) —>R* ig ealled slightly positive if 2(t) >0 (t>a), and there is
& component 2(t) of #(s) which i positive on[a, oo) :

In section 2 of this paper we prove some results for the existence of
nonnegative, shghtly posmve and positive solutlons of the general funotlonal

equa,tlon o

_‘i“w}—b(t.m(.))]=—¢(¢,¢(.>),f @

‘where a{#, (+)) and (%, #(+)) are go called Volterra-type functionals deﬁned as

follows:

Lot £.y, #p and D be such. that —oo<t y<ty<<oco and DSO([t.y, o0), R") ‘Then
& functional ¢: [4, c©) X D—> R" is called® a Volterm—type functional if for any
(t @), (%, y)e [%o, o0) X D,

(s, a(+)) =c(#, "y(.-)); -
. where o(u) =y(u), (t.1<u<$). We say that ¢(f,o(-))is continuous if for all «€D
the functlon ¢(4, «(+))is continuous on [#y ‘o0)and: for all T'>¢, and =, yED
‘ max lc(t Js( ))-—c(t y (s ))l—>0

when a;(t) ‘tonds to y(t) in the fmax horm in (£, T]

|+ s onlled
monotone if g, yE R and m<y imply lz|<|y]. e
" We say that e(3, w( )) satisfies a Oharatheodory eondltlon 1f for all a;ED the
funotion ¢(t, o(+)) is locally bounded and loca,lly mtegra,b]e and furthermore, for




No. 4 ' Gyéri, I. OSCILLATIONS OF NDDE 487

all T>t, and o, y&€ D .
| ~ess sup (ot @(+)) —e(ty (1)) [0
when z(#) tends to y(#)in the max norm in [4y, T'].
" In geotion 2 we also give some oondltlons so that every shghtly pos1t1ve solutlon

‘ of (1.1) satisfies

lim m(ﬁ) 0 and L m(t)dt<°°

oo .

In seotlon 3 we glve necéssary and’ ‘sufficient condition so that a linear soalar

neutral autonomous dlﬁ‘erentlal 1nequa11ty has a positive solution” and o that a
system of autonomous linear: delay equa.tlons hag a shghtly posltlve solutlon
Unfortuna,tely we did not succeed in ‘proving these results for neutra,l system The

reason of this fa,llure is that we could only prove the foIlowmg conjecture in the

soalar netitral and in nonneutral system oases (see Propos1t10n 3 1 and 3 2 in Sectlon |

3 of this paper).”
N GonJecture 1.1. Oonsider the n—dsmenswml neuérml equation

[v(t) Ofv(t /r)]—B['v(t cr) fv(t a')] Afv(t "")ﬂ - (1 .2)

where v>0; a‘>cr>0 and r>=0 are constants, A B, OCRY" are n by n canstwm‘

mairices such that Ae#o of 6C R and e%0 .and the spect__ml mdws,o f the matris

Blo—a)+0. swtesﬁe., $he conddtion - - B T T TR UE
((a o-)B—}-O)<1 e - (1.8)
Then-Equation: (1.2) has a- slzghtly posstew solution, on SOme mtemal [to, oo) of and
only o f thereemist Ag<<O and-¢,C B such. that ; :

det (oI — ?»006""°'——B(6"'°"-e"°")+Ae“”) O AR (1.4)
and

(eI = MO8~ ""—B(e“’“"—e "°")+Ae"m)eo =0 and’ |eo| (1.5)
In the nonneutral system case, i. e. when O=0, ‘we could. use: heasymptotlo

representatmn of _the solutions of (1. 2) Vvia the cha,ra,eterlstm roots as f->-+oo,

Unfortuna,tely we do not know of such, representa,tlon in the néiutral case.

Our .ma.m‘lme._arlzed oscillations ,th,eo_rems are proved in geotion 4 where we
give necessary, sufficient and also necegsary and sufficient conditions for osoillations
in the’'nonlinear sealar and vector equations. S

- To demonstrate the] main 1dea, and some results of thls paper we glve the
followmg speela,l corolla,ry of our general results: ' '
Gorollary 1.1, Oonsider the scalar. mmtml delwy deﬁ”erentwl equation .

[w(t) -g (b w(¢—= = 1))] =A@ 0)) h(w(t @))—f( w(t—7)), (1.6)

where. 720,”..01>0’~>0« and: r2=0-are constanis, fy. ¢: [to o)X B .and h: R—>R are
continuous functions such that FG&, 2)>0, g(¢, 2)>0 and h(z) >0, (i=ty, #>0).. .-
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Then -
(8) if there are constanis @>0, b=0 and ¢=0 and 3,>0 such that b-+c<1,

morecver

| - f(t, 0)<aw, g(3, o) <bo and h(@)<en, (t>to, 0<w<B0), @7
and tlw lfmewfr equwtwn ' o
[u(t) bu (t—r)]=clu(t- &) ~u(t—a)] —au(ti— 'r,') (1.8)

has a positive solutwn then Hquation. (1.6) has a positive solution on [fo-—7y, o),
(y=max {7, o, 7}); _ T : | |

(b) if Sor all >0 small enough thefre e:msts a 3,0 such that
f(t, w)>(1 e)wm, g(t, z)>(1—8)bw and k(@)= (1—8)cw, (§=£, O<w<8 ),
e 3 : » (1 9)
whefre the nonnegwtwe constants @, b and ¢ swtq,t fy w>0 wnd b+c<1 then the emstence
of an e'ventually positive solution o f (1.6) zmplws that (1.8) has a posth/ve solution o'r

equivalenily the characteristic equation , .

‘ A.(l be"”) -c(e"“’——e"”) ae“” | | ‘(11.10)

has d negavive root. ‘ o
Onié can seo from the general results of this paper that a sultable modified
~ vergion of statement (a) of Corollary 1.1 is true in n dimensional system case, too.
But statement (b) of Corollary 1.1 could be proved .for systems under the

restriotions that g(¢, ) and A () are zero functions,
. The main ideas of the proof of the 'fundamental theorem about the existence

of a posutlve solution is based on the following observations.
Equatlon (1 6) is equnmlent to the following equatlon

O O O MOl R (R M CREY
and Equatlon (1 8) has the follovmg equivalent form
! ‘ [u(t) bu(t—r) — cJ: u(s)ds]——-wu(t ). | _(1?._12)

But one can see that in that forms of Equations (1.11) and (1.12) it is hard to
compare their posmve solutions because. of the negative signs and of the neutra,l
terms, Therefore we investigate the next more regsonable. funotional equatiop

2= g, oG-+, ” h(o(s))ds + J 76 as—m)as {(1_.1_3)__

and funoctional inequality . S S SR T o

. u(t)>bu’(t—'fr)+cJt_&u(s)ds-kf” au(s~w)ds, . . (1. 14)_

~ Namely, for instande,-if (1 14)has a posmve solutlon on. [to -, 00) and’ (1 7)holds
. then the functionals ;= & - TR O R RU T S AR S UL SRR
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alt 2()) =16 (=), b 2()) =g ot=n))-+,_. ha(e))ds
and

a(t, u(e))=au(t—7), B( u(~))=bu(t—-rr)+cL Uu(s)_ds

satisfy the inequalities
0<a(t, o(-))<a(?, u( )) and 0<b(t o(e ))<B(t, u(+)),
for all =4, and € {y €O ([t,—7, o), B): O<Sy(8) <u(®), 1=>to— 7).

-In that case the Shauder's fixed point theorem- is applicable to prove that
(1.18) has a positive solution on [f,— 7, o). But a positive solutlop of (1.13) is
a positive solution of Equation (1.12) and of its equivalent form (1.8). Therefore
- in this way we could coneluds statement (a) of Qorollary 1.1,

§ 2. Two Fundamental Theorems of Llnearlzed Oscﬂlatlon

Oonsider the followmg Volterra.~type neutral dlﬁ‘erentml equation

dt [fv(t)-b(t o(:))]=—a(, v(+)), t=to. 2.1)

‘Lot —oo<f,_1< to<oo We will need throughout this paper the followmg
hypotheses: : ' ‘ :
(Hy)a, b: [to, o0) x 0y—> R% are Volterra—type functionals such that w(t v(*))
is contmuous and b(t v(e )) satisfies the Oharatheodory condition, Where
Ou={y€ O([t-1, 0), BY): 0<y(s) <u(f), t=>t_s}
and the function %(%)is continuous, slightly positive and bounded on [f_s, °0);
(H,) there exist Volterra.——type functlonals % B: [t, o) XO,,——>R¢ such that for
all =>4, a.nd sE0,

(G, o(+))<alt, uls >> and b (¢, v(- ))<B(t Wy, @2
moreover : S )
Loa(s, vu(-))ds<0‘o and A4, u(°))—>0, 88 £ =+ 00} (2.3)
(Hj) u(t) satisfies the inequality -
_ w(HZBG u(+))+[ als, u(+))ds, ol ) (24
s @ >ulh), ba<t<to. | - @5)

" Now wé state our fundamertal theorem about the exmtence of & nonnega.tlve
‘solution of Equation (2.1). '
Theorem 2, 1. Assume that (Hi) (Hz) and (Hs) are swtzsﬁed and. qSEO ([t-;,
], B" )zs a gwenfunctwn such that =
o<¢>(t><u(t) —~ ko), t-1<t<to o . (2.8)
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Then Equwtwn (2.1) has at least one solution 'UGO( [t-1, ©0), B") such that

0<vw(t) <u(#), f_1<t <00, - @7
and

C0(8) = () +e, b1<I<Tp, ‘ . (2.8)
'whefre (o] = R is @ suitable vector. '
Proof Denote by BO the Banach space of continuous bounded functions on
[t_1, o0), with the norm ﬂfu[|= Sup ('v(t)l, rvEBO

Using the fagt, that u(t) is a continuous. a.nd bounded functlon on[t_s, 00), it
can ea,sﬂy be geen, that Oy i8 a bounded, closed and convex subset of BO.
On the other hand by (2 2) we have

J. as o(- ”‘“4 s, u: ))ds<oo @y

for all v€0,. _
 Define the. opera,tor T for ‘any vE Oy by

b(t, v(s)) -i—L w(s, v(. ))ds t>4u‘0,

Ty@={ s - (2.10)
B +3 o)+ [ als, o())ds, £t

. The operator T is defined for every v& 0, bhecause of (2.9) and (Tv) (2) is &

continuoud function on [¢_j, co) because of ¢(%,) =0. :

Now. we show that T'(0,) =0, and T' iy contmuous and compact on O,.

(1) T(O) <O

Let v€ Oy be a,rb1tra,r11y fixed. Then by v1rtue of(2.2) and (2 6), from 2. 10)
it follows that . P
86, 4(+)) +j°°a(s, w(+)) ds, 134,
(Tv) ()< SR | .
u() = ulin) +8 o 1()) + | a(s, u(+))ds; 1<t
But since u(%) is a solution of (2.4), the last inequality yields
: (To) (B) <u(®), $:4<t <00,
that is, T'(0,)0,. '
(ii) T is continuous.

Let v,€ 0, be arbitrary fixed, and let rv,.é 04, (n>1), be'a Sequence, such that
“Un"f" vo|—> 0, a8 n—>-+oo. Note that the Volterra-type functionals a(#, v(+)) and

b (t, v(e +)) are such that a(t, v(s )) satisfies the Oharatheodory condition and

2@, v(s )) is contlnuOus
. Therefore .. .~~~ . . L
D @t 0o(+)) =Hma(, v.(+)), 8. o, onlty 00). .

Moteover by (2.9), it follows that .= '
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O<J.:°a(s, ?z}”(o))ds<fja(s, u(<))ds<oo, m>1.
Thus, on the basis of Lebesque’s integral theorem, We obtain
Jim [ a6, an(-))as= [ a(s; vo())as,

On the other hand smce b(t v(s )) ig a contmuous functlonal we have
Sup lb(t ’vn< )) b(t ’Do( ))l—-?O aSn—>+oo

Therefore lT@,.—vaol —>0, as§ n—>-+oo, which means that operator T ig eontmuous
(iii). T i3 a compact operator on O,. 5 . -
According to one of Levitan's theorems™®), if for any. real number e>0 the

interval [{.4, oo) can be divided into a ﬁmte number of subintervals {Ik},c_o, S0

that ’ B

: m&x | (T0) () = (Tw) (4) | <s, ,

t1s02€

for every v €0, and for 0<Xk<< N, then operator 7' is compact.
Let 60 be an. arbltra,mly ﬁxed real number Then by (2 3) and (2 9, Ve
obtain : ( e

j a(s, fv( )) ds<J oa(s ine ))ds<s/2 | ) ‘»_. (211)

and : : Co e
0SBl o(N<BG wN<e B (@.12)

for.all v €0, and for a fixed s5>>4, ,,la_rge,enough. Tosen i

Thus (2.10) yields o
maX | (T') (82) — (T0) (8) | <mex {| (T'0) (tz)l+l(’-"‘v) (t1)|}<s

tut: I,

on the interval Iy~ [so, oo) for every funetlon quO
Furthermore for >0 there ex1sts a 0= 6 (8) >0 such that if ti, 2 € [to, So] and

|#1—%a| <8 then |

U a(s, o(: ))ds |<{ s, u( ))ds <s/2 0E0,
and ' ' t S
- sup {|b(ts 0(+)) =ty v(+))|: vET} <s/2.
ThlS yields that if’ by, £a€ [, S6] and |41~ t5] <8 then e

l (Tq)) (39) — (Tw) (#1) | <s, for every IvGO.,
This also means that the interval[4, s;]can be dnnded into subintervals Ik(lo 1,
o N ), the lengths of which are-less than 9, and
max. | (Tv) (tz) (va) (ti) I <s

tlr 9€ g

for every v €0, and 1<<h< N, where N-is a natural number dependmg on 8,
: Such a d1v1emn of the interval {#_4;-t0] can- obv.lously.be found ,b_eqa.use
(T’D) (t) =¢<t) +C t—1<t<to‘, capb et g e Ui
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where ¢ (£)is a continuous function such that ¢ (), -—-O and | ,
Ce=b(t, q;<_..))+r¢(s, 2(+))ds=0 L (2.13)

is a constants vector for every fixed v €0,.

Since for an arbitrarily fixed £>0 we could d1v1de the interval[f_j, oo) into a
finite number of gubintervals a,ccordlng to Lev1tan s Theorem, it follows that the
operator T' is compact on O '

As.0,= B0 is bounded, closed and convex, T . is contmuous compact and
T(0,) =04, so according to Shauder's fixed point theorem™!, there ex1stvaEO,,, for
which o= va This means at the same time that

' <o) <u(®), t=t.1, . (2.14)
and _

o(8) ={ b5, v(+)) +f:w(s, v(s))ds, >ty @.15)
R IO T A <t

where O E€RL is deﬁned by (2.13). | :

If both sides of 2. 15) are dlfferentlated on.the mterVa,l [to, oo) then we gee
that v(#) is a solution of (2.1)on[t_;, o0) w1th initial condition (2.8).

The proof of the theorem is complete, .

In the next corollary we' g1ve a condltlon for the existence of a slightly
positive solution. e o

Corollary 2.1, Assume that the assumptbions of Theorem 2.1 are satisfied.
Furthermore assume that: »

(H,) there is an indes 40 & {1, *++, n} ‘such that u;(?) >u¢o(t0)>0 (t_1<t< to),
and for all (41, @) € [to, ) X Oy, the fmequwhty w,,(t)>0 (t_1<t<t1), implies

Bt w<->>+--jt @ (5, (+))ds>0,  (2.16)

where %, @, @, and b, denote the ith components of u, », @ and b, respectively.
Then Equation (2.1) hasa slightly pos‘étq)ve solution on [$_y, o). '
Proof By Theorem 2.1, we have that for the initial function
g —u®-ule),
Equation (2.1) has at least o one solution fv(t) on ¢4, co)suoh that (2.8)holds where
0¢ By is defined by (2.18).
Now we show that c,,>0 Indeed from (2 13) a,nd (2 16) we have

o =bu -w<->>~+j @05, 0())ds>0.

Thus vy, () =¢;, (2) }—c,o>0 t_1<t<to, and’ by usmg “the same argument as above
one can see that 4, (£) >0 for $=4 i The proof: of the corollary is completo, - '
A'gimilar result can be proved for .the ex1stenee of ‘a positive. solution with

- minor changes in the proof-of Corolary:2.1..



No. 4 : @yori, I. OSCILLATIONS OF NDDE 483

Corollary 2. 8. Assume that the wssumptzons 0 f Theorem 2. 1 are swtzsﬁed g
Fuyrthermore assume that: 4

| (Hs) w(t) >u(d) >0, (t_1<t<to), and for all (t1, @) E [to, 00) XO,,, the znequwlzty
o(3) >0, (_1<t<ty), implies that

b 2D +[ale a(nas>0. @)

Then Equwtioﬁ'(z Dras ¢ positifve solution on[t_y, oo).
- Now we will prove our second fundamental theorem which 18 very useful in
the subsequent disoussion of the qualitative properties of nonodcillatory solutions.
Theorem 2, 2. Assume that a, b: [to, 00) X O ([t-1, 00), D") —> R*(D*"<R™) are
Volterra—type functionals, and that there ewist constanits >0 and To>ti+r, ‘and @
matrio QE BV such that for all yEO([t_y, o), D"),y(£)=0, (t=To—r)we have
a(t, y(+))=0 and 0<b(t y( ))<A max y(s) (=To) 1 (2.18)

(where maw is meant componentwise) .
Assume further that the spectml radius of the matrio A satisfies the condition

p(A)<1. A | (2.19)
Then R
(a) for every functf:,on a:EO ([t..i, ©0), D") such that _
L [o(5) =G, o NI<—alha(), B2t (2.20)

and o (1)=>0, (t=To— rr), one has thwt a;(t) zs bounded on [t_i, o), moreover
| Q,}ﬂ(m(t)-—b(t,,mc.))),e_}z* L, a(s, o(+))ds<o0;  (2.21)

(b) if we also assume that for all eventually slightly positive function
~ YyEO ([t °°)_y R”))
}ilfl inf |y (8) | >0 tmplies that

o t o
K ot sl

then

' thinm(t) Lim 5(t, o (- ) =0,

Rema,rk 2 1. For' the condmon p(A) <1 of Theorem 2 2 to hold 1t is

1. e. when n=1, p(A) is equa,l to the absolute value of the scalar value 4.
To prove the Theorem 2.2 we need the next lemma which i a slight modified
version of Lemma 2 in [10] with the same proof. ‘
Lemma 2.1, Let A ER’”‘" be w nonnegwt'we mwtmw, fr>0 a rrewl number, &€ R
a mnnegwtzfve vector, and '@: [To Ly oo)—> R" o negwtwe contmuous functwn, cmd
.suppose thwt the fveotomwl mequwlziy _ - L
w(t)<d+A max w(s), t>To T ._;}"(.2.2_4)
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holds (where < -and maws are meant componentwise) .
Assume that the spectral mdzus of the matriz A swtzsﬁes the condition (2, 19) Then
there ewist positive constants p, g and R such that - _
|o(t) | <, max to(s) |exp(—p(¢— R)) +¢ld|, t>To+R ' (2‘.’25).~

Tomr<s<To+R
' /. Now we are ready.to prove Theorem 2,2, :

Proofo f Theorem 2.2 (a) Since @ (£) >0, (#=>To—r), and it satisfies(2.20), we
have that () —b(3, #(e)) i3 a.monotone nonincreasing functlon on [T, o),
because of (2 18), Therefore there exists a vestor d € R} such that

S . o e()<d+b(, w(e)), =Ty, .
tha,t is by v1rtue of (2. 18), we obtain that () Satlsﬁes the mequa,hty (2 24) Thus
by Lemma 2, 1 we obtam that »(f) is bounded on [#.y, ©0). But using the same
arguments, one can see that the limit -
~m=lim (w(t) —b(, w( )))

i3 & nonnpegative yvector. Therefore, from (2 20)by 1ntegmt10n, 1t follows tha.t
m—(o(Te) =b(To a(+)))<~lm [ a(s, a())ds

Which means that (2.21) holds. The proof of statement (a) i3 complete,
~ (b) First we show that m=0. Otherwise there is an 1ndex 4€ {1, ++-, n} such
that m;>0 Moreover there is a T >To such that
o ' a',(t) b (t w( ))>m¢/2 t>T;
But 5,(¢, 2(+))=0 =T, and ‘congequently w;(t) >m;/2 and lw(t)l>m,/2 for
all 1=T,, Therefore by virtue of. (2.22), we obtain R ‘

[Tt atyas| =

which contradicts (2.21). Thus m=0.
Since m =0, we have a functmn filben, oo)—> Rr such that hm f(t) =0 and because

of (2.18) : .
o 0<m(t) b(t a;( ))-l—f(t)<A max w(s) —t—f(t), t>To . (2 26)
On the other ‘hand M = lim sup. m(t) isa nonnegatlve vector and (2 26) y1elds 0<
[ T

M<AM, Smcez p_(A)'<’1, Wwe obta,lnf M=0 and the prooffof the th‘eorem is complete.
_§3. L1near Systems of leferentlal
Inequahtles and Equatlons

fo In this section we glve some equlvalent statements a.bout the ex1stence of 'the
shghtly posmve as well as’ shghtly pos1t1ve and non—mcreasmg solutions of the
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inequalities L
.-K :

—‘%—[w(t) - Zomm(t—’rm)]<2_31[w(t'éi)"'w(t'f-.ﬁi)] -2 Akw(t T
me=1 f=1 . - k=
and : Do
M
o) > Eomw(t-—rrm)—}-ZB ]
88 well as the equation . _
-@-[v(w e m] z:B,-[M,-)—v(t—a;)J - 24;@(&-@,. . (3.3)
§=1 P S k=1 . . Lo -
where we aggume that . '

(1) =0 (1<70<K), a;/or,>0 (1<9<J) and Trn==0 - (1<m<M) are:given

constants, v =max 7y ¢ =max {max §;, max trm} and {_y={,—max {7, o};
1<k<K 1<j<t 1<m

(ii) A, (1<k<K), B, (1<3<J), and On (1<m<M), aTe nonnegatlve n
anmatrlces such that Do e ea e el e aae le e Do

t—a;

m(s)ds+r- é.Ak m(:s;— )48 (3.2)

R ST Co) _
(2 Ak>e#0 1fe€R andex0, (3.4

=1

and the spectral radius of the matrlx 2 O,,. —l—E B; (0‘;-0‘,) satlsﬁes the condltlon

( S g, -}-23,(0, a,))<1

m=1

"At the end of this seetmn we w111 also consider the characterls’olc equatlon of (3 2)

Me=1

under the conditions (i) and (if)..
First we prove the following useful lemma.

“Lemma 8.1, Assume that conditions (1) and (i1) are satisfed. If @ continuous

function @ [£_1, 00)—> B" satisfies (3.1) on [t, 00) and it is eventually slightly positive
then (%) is bounded on [t.4, o©) and there is a To>to such that © (t) sabisfies (3 2) for
all t>To o : :
Pfroof Slnce m(t) satlsﬁes (3 1), we obtam tha,t w(t) is a SOIutlon of the
iiiequa,hty L
[w(t) - Zamm(t »r,,) zB j m(s)ds]< EA,,m(t fk), 3.1
fora11t>to ’ o EEE R
. Set

w<t m( )) 2 Akm(t 7k)8‘nd b<t’ m( )) Eomm(t"’rm) }‘Zij‘ w(S)ds

idjc
“for ‘all (3,-@) E[fo, o0) xO([t,_i, 0o); R"). Then the asstmption: of Theorem 2.2
about a(#,°c(+)) and (s, #(+)) are satisfied and the 1nequa,11ty (2. 20) reduées to the
‘inequality: (2. 30) Therefore by Theorem 2.2, we. obtam

(3:1).
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mo=1im [a(2) ~b(s, a())]>0 and f él Ay (s~ ) ds <o,
Thus by integrating (8.7) from # to +oo, we have . o '
o(8)>mo+ 2 Ot (6 — m,,.)+2 B j _:w(s)ds-}- j 2A,,m(s ) ds.
Therefore (8,7)is Sahsﬁed and the proof of the lemma is complete, -

Now we prove the main theorem of this section.

Theorem 3.1, Assume that conditions (1) and (ii) are swtzsﬁed Then the
followmg statements are eqmmlent '

(a1) imequality (8.1) has a slightly positive solution on an interval [£1, o0);

© (82) dnequality (8.1) hws a shghtly posztwe and. non—gnereasing solution on an
énterval [13, oo): B SRR T .

(ag) . dnequality (3.2) has @ slzghtly posq,twe solutwn in an zfntewwl [tg,OO),

(as) eguation (8.3) has a slightly positive solution on an jnterval [ts, o0);

(as) equation (8.8) has a shghtly Ppositive and non—increasing solution on an
interval [%5, co). ' .

- Proof By virtue of Lemma 3,1 one can see that if one of the statements (a.),
- (a2), (as) and (as) holds then (as) is also satisfied.

Now assume that (as) id satisfied, that is, there exists a slightly positive
.solutlon x(#). of (3.2) on an mterVal [3—7, o0), where &€ B and y=max {7, ¢}
is deﬁned by condition (;) .

Let u(%) be defined by

u(t) = J’ m(s)ds, t>t3—y. . e (8.8)

Then- u(t)ls a continuous and slightly pos1t1ve functlon on [f5—1, oo) a,nd u(t) =
§ On the other hand,, from (3 2), ‘We obtam L S
2[00 ~ B 0mte-m | < B Bilut—9) ~uG-09] - 3 A,

: ' (3.9)

for all >4,
+/This means that u(t) is'a. slightly positive and non—lnoreaSmg solutlon of

(2 a7) on [#3—7, ). This means that if (ag) is satisfied then (ay) and (az) hold, -
too. By using the same argument as above, one can see that if w(f) is a shghtly '

| posutlve solutlon of (8.8) on an interval[ts, oo) then u(t) d?eﬁned in (3 8) ig a shghtly
pos1t1ve ‘and non——mcreasmg ‘solution ‘of (3 8) Therefore (a4) 1mphes (a,s)

It remains only to show that (as) 1mphes (2s).. If (ag). holds ‘that is,:(8.8) has

,aa;»shghﬂ»ypos;twe_sqlut;op.on [4s; o0)which is denoted by w(t), then u(¢) by (3.8)
satisfies inequality (8.9) on:[fs, o). But in that case by virtite of Lemma 3.1.we
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have

u(s)ds-!—jt S dw(s—w)ds, >, (3.10)

t—~04

w(t)> EOmu(t q~m)+23 j

moreover : ‘ _ _

’“(t) >u(ts), ts— 7<t<t3, o - (8.11)
and there is an index 4,€ {1, 2, ++n} R c : _
Sob 'uio(t)>’“w(ts)» tg— ')’<t<fs : L (8.12)

a(, v(s))= é Ayo(i—m) and b, w(e))= Edme(t q’,,J-!—ZB,f_ js(é)dg,
for aH(t ’U)E[f’o, °°>><0<[753 ? 00), R") and o e T

iw(t u(o )) ZAku(t fu‘k) and b(t (e )) ZOmu(t frm)+2B J u(s)ds, t=>to.

Then from conditions (i) and (ii), it follows that the assumptions a.bout a(t, v(o ))

- and b(%, v(+)) as well as those about «(t, u(. )) and B(% u(+)) are satisfied in

Theorem 2.1 and in Oorollary 2.1, Thus by virtue of Oorollary 2.1 wé have that

Equation (8.3) has a sllghtly positive -solution om [t3—7y,. oo) The proof of the
theorem is complete -

The oscillations in the llnear delay dlﬁ.'erentlal equatlons and systems have

been the object of intensive analysis in numerus papers and notably in [1 2, 3

5, 7, 16, 17, 21]. . - :

The results in this dlreotlon can be class1ﬁed into two groups results Whmh
are proved withont the characteristic equatlon and regults which are proved through
the ocharacteristic equation., The following fundamental theorem: .about -the
characteristic equation was proved by Arino and Gyori in[2]: . co

A gystem of linear homogeneous neutral differential equations has a
nonoscillatory selution if and only if its characteristic'equation has a real root.

By using this general result we prove two usefu.ll statements

Proposmlon 3.1, OOm'zdea" the soalar equwtwn

o [m(t) > On (i~ m] zba[e»(t—o,) o(t- m)]—zaw(t W,
‘ (3.13)

| 'whefre the constants Ty, o‘,, o, and T swtes fy oondetwn (1), .moa*eovefr >0 (1<70<K),
| 'b,>0 (1<3)<J) and en=0 (ISm<M) are such that

i 2 “k>0 | ( o (314)

zom-kszaj—aad C e

m=1

~ Then Equation (8. 13) has a posztwe solutwn on some 'I/nte'rml [to, oo) i f amd only if
* thé characteristic eguwmon N RS



498 .. ' OHIN.ANN.OFMATH. . Vol. 13 Ser. B

(1 S0 e‘""') é by (e-m,e-éva) + ,;231 a3~ =0 (3.16)
has @ negwtwe root.” ' | S
Proof From the above mentioned general theorem it follows that (8.16) has

& real oot if (8.18) has a positive solution on an interval [%,, o). But under our
conditions it is easily seen that evéry real solution of(8.16)is negative.

-~ - Now we agssume that Equation (3.16) has & negative root, say A,. Then the
function( »

: o Lov(@®) =gt .
isa posﬂ:lve SOIutlon 0f(8.138). The proof of the proposition ig complete

, Corollary 3.1, Assume that the conditions o f Proposq,tzon 3.1 are swt%sﬁed and
f0fr ol £>0 s'mall: emmgh iherre are T E€Rand & ‘continuous fwnctwn fv,, [T ——fr, oo)-—a»
(O IS0 ) suoh that ' ’ i SR ’

- (1=6) 3 Opote- r,,,)]

ﬁ"‘?’”(l B)Ebf['vs(t &) —v,(t— o‘;)] (1 3)2 wws(f, z') t=>T.. . Gy

Then Eguwtzon (3 13) has a poswwe solutzon or egmwlently the chametefr zstw eguwtwn
5(3 16) has a negamfue rroot o '

o Pfrdof Sirice for a,ny 8>0 small enough (3.17) has & posutlve solution on an
mterVaI [Ts, _00) by vutue of Proposmon 3. 1, we have that the equatmn

A.(l (1 ) E O e‘”’") (1 8)2 b,(e"“”——, "“’f)+(1 s) 2 a0 M"‘—O

“hes & negative root. Then ag'e->0, we obtain that Equation(8.16)hasa nonposﬂnVe

root. But A=0 is not.rdet of (8.16). Therefore (3. 16) has a negatwe root. The proof
-f--of the corollary is-somplete. - o o o
«Proposition 8. .. Oonsider the n-dimensional delay’ eguatwn

OE EBa[v(# 0':‘) ’v(# Ga)]—-ZAw(t m),_ - (8.18)

where o',>a,>0 (1<3<J) amd 7k>0 (1<k<K) are com'mfnts .
| y=maX {ma,x 0, max 'r;k},

) l<jd 1<k< '

h wnd B E R"x" (1<3<J ) and A, € RY" (1<k<K) are gw(m mwtmees such that
T (B a)exvifechiandon0, | (3.19)
I (2 BJ(O'f 05)><1 3. 20)

| - I'hen Hquation (3.18) has a slzghtly positive solut@on on some interval [to, o) 4 f wnd
- ,only zf the chwmctemstw eguw#wn ' - ’

wet(pr-E B e + § a0 T @



No.&4 . . Gyoré, 1. ” OSCILLATIONS OF NDDE 499

has & negative root Ao and the eigenvalue—equation - ,
J N K R .o
(ol — 2 By(e 01— a7roosy + 33 4 o)e=0 - (3.22)
= k=
has an eigonvector soluiton eo such that ' e
00>0 and |e| =1, (8.23)
Proof If Ao i8 & megative root of (8.21) and ¢, i3 a solution of (8.22) such that
(8.28) holds, then it is olear that w(£) =g~ i3 a slightly posutlve and non—-
inoreasing solution. of (3.18). '
Now assutne that equation (8:21) has no realroot. Then from([12](ses also
[19]) we know that the solutions-of (8.18) can be written in the form -

‘ e pr(t) cos (a4 By) +o(the™o) - T (8.24)
’ in which @-+6ay i8 a Toot of the characteristio equation, p,(t) are Jome polynommls
and k denotes the grea.test power of the. po]ynommls p,(t) Smce 2 o cos(a, b+ -8B
has a zero mean value, it i osoillatory functlon 1f 2[0@,[ >0 a,nd c,E R (1< J<N)
are Such that Zlc,| >0 But in that case 2 ¢4 COS (oa,t—}- ,8;) is a.lmost perlodlc, there—
fore the functmn deﬁned in (3 24) is osclllatory

Now agsume that (3 18) has & slightly positive solutlon Then by Theorem 3.1 .

-~ we have that (8.18) has a solution a;(t) such that o(t) 1s shghtly posutlve and
non-increasing en some interval. [T, o). But in that casge Equatlon (3 21) hasa
real root Ao such that : . o
w(t) =™’ p(%) —l—o(t”e“), as t->_+'oq, : (8.25)
where p(t} = 2 ou-it' 18 & polynomml of degree k

Since w(t) is a shghtly positive and non-increasing functlon, (3. 25) y1elds‘ that
%<0 and ¢ is a nonnegative vector such: that |eg|>>0. But from [12]we know that
eoe“” is a solution of (8.18), which means that 6o i8 a solution of (3.22).

Now we show that Ao<<0. Otherwwe Ao=0 a.nd w(t) =¢p i3 & solutlon of (3 18).

But this means that 2 Ay eo-O that is ¢p=0, which. is a contradlctlon The proof

of Propomtmn 3 iy complete.

Corollary 3. 2. Assume that the conditions of Proposition 3.2 aré satis fied and

for.all >0 small- enough: there' are T, R. and & econtinuous awd.sm_ghtly postiive
fumtwn v: [Ts— 7, ©0)—> R, such that ' '

Q’s (t) (1 8)2 B.f ['vs ($ = 0'1)’—' ‘vs (t"" 0'!)] (1"' 6) 2 .A.].;“D(t 77#) a t>T0°

Then Eguwtum (3 18) hws a shghtly poswtwe solutwn, on an @ntefrml [To. 00)

e300t
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v, o©)—> R% which satisfies (8.25), then by virtue of Proposutlon 3.2 we have that.
there are a A;<0 and an e,,GR"‘ such that

det <}\.sI ~ (1—8)2 B (e’“‘”—e"“"’) +(1—s8) i A;,.,e;"‘f“>= 0,
§=1 k=1 : ’
and.
( A JI—(1— 6)2 B; (e“"e"f—e"“"d) + (1-—6) E A @M )e =0,

moreover |e, l =1,

But in that case Ap=:lim A, exists and it 1s a nonposﬂ;lve solutlon of (8. 21) On:

£0

the toher hend, since ¢,>>0 and |¢,| =1, there ex1sts 8 Sequence {8,}ouy such that-

lim ¢,=0 and o= lim ¢,, exigts. But one can s0p. that 0o satisfies (8.22) and (3.23)

LS f-d-f o0}

Therefore Propomtmn__ 3~.2_oomplet_es the proof of the_ oorollaxf_y.

- §4. Necessary and Sufficient Conditions for Osc1llat10ns -
| m Asymptotlcally Linear Equatlons

In this sectlon we give some oond1t1ons for the osolllatlons in non-linear-
scalar and vector equations Vvia Some correspondmg 11nea.r equatlons ‘and the1r~

characteristic equa,tlons
At ﬁrst consxder the soalar dlﬁ‘erentla,l equation

[w(t) ~h(t, w(t m), .- ,w(t—fru)]

—ztgxw(t—-a',-)—g;(w(t—m))]-’-'f<t w(b=msy o o(i—7r)), (4.1

where we sta.te the followmg hypotheses which Would be used as indicated in each:

result

gonstants, v=. max X 7 o=max {max o, max rr,,.} and {_;=ty—max {7, o};
A<j<d 1<

(Az) S [ioa °°)><R”“’R gr R—>R (1<J<J), and s [to, oo)xRM—>R are-:
eontinuous functions such that’ ' : _
(& @)=0 ((4, @) [to, o0) X BY), gj(y)>0 (1<3<J, yE R+) eand
k(% 2)=0 ((3,2) E [to, o) X-R}), morepver,

: f min {f(&; o5, -, @)t B=9, 1<Io<K}dt Heo, -‘(4.2)ﬂ

for all 5>0;
(Aa) ‘there are consta.nts @=>0 (1<k=>K), b;=0 (1< ]<J ) y em=0 (AI<m< M),
and 80>0 such tha,t o

f(t7 a’ly 1.,¢kj)<"k2ﬁ1“k@k’,_ 12140, wkE[O’ 80)71<k<K) oy (4.3)

(Al) 7=0 (1<k<K), 02260 (1<3<J), and r,=>0 (1<m<M) are given.
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and . o ST
g:‘(?/)<bi'.% ?/E ,[07 6_0)7 1<.7<J? (44’)
and _ , | .
M .
Bt 24, *+°, zm)gg,] Cattmy %€ [0, 80), 1<Sm<H, (4.5)
moreover 4 '
;} a,>0 and 2 cm-t-z b,(O', é;) <1; (4.6)

(Ay) for all e>0.small enough there ex1sts a 8,20 such that -
K
f(t7 a’:l; % mk)>(1_8) E BTy t?%i a’ke [07 33)1<k<K9 (4'7)

and ,
. yi(y>>(1—3)b1y! ye [Oi ab)r 1<j<Jr L
and ’ - P L
: \ w |
bty 21y +++, 2a) = (1—8) 2 Crfmy 2 € [0, 8), 1Sm<<M,
here the constants ay, b; and ¢, satisfy (4 6), v
In the next theorem we give a sufficient condition for the existence of a posutive

Solution,

Theorem 4. 1 Assume that assumptzmzs (Ai) (A2) w'nd (As) wrre swtzsﬁeal and
tlmt the lfmewr eguatzo'n

—(—z—;—[w(t)-’— E c,,-.a:(t——q*-,,,)] '--é bila(4—87) —a(t—0p)]— é wkm(t—.—w) (4 10)

has @ positive solution on an interval [T, o). Then Equwtwn (4.1) has a posetwe

:solution on [fo, o°).
Proof Since Equation (4.10) is autonomous, one can .50 that if Equatlon

(4. 10) bas g positive solution on an 1nterVa1 [To, ) then it has. & positive solutlon

on [f_q, c0), too. Therefore by Theorem 3, 1 we obtaln that there ex1sts & pogitive
functlon € O([£-4, o0), R.) such that

uo(i)>uo(to) (#-1<t<to), and hmuo(t) =0, (4.11)

| u(8)=B(t, to(+)) +J:°d(s, w())ds, >t (4.12)
'where ' _ :
| w(f uo( )) Z‘ “Wo(t—"'z'k), t>to, (4.13)
and ' N S o
B(t, uo(+)) = 2 cm‘wo(i ) +2 by j | u.o(s)ds, N CED!

Let ¢ be & posxtwe constant such that the functlon 0) defined by u(t) ==
et () (—y<t<oo) satisfies the mequahty 0<u(®) Kd(—~y<si<oo). In that case
(4.11) and (4.12) yield
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u () >u(te) (3-1<1<%,), and tl;iﬂ’u(t) =0, . (4.15)
and - .
w($) =B, u( ))—l—f a(s, u(s))ds, t=t. (4.16)
Now define the functionals a(t, 2(«)) and b(¢ o(s)) by - .
w(t, w(-)>=f(t, w(t—-'vi), w(t~7k))', @.17)
- and

Mtﬂ))hﬁwﬁavw~mﬁvw>+2j "ga()ds,  (418)

for all (¢, @) € [fo, ©0) X Oy, where O, is defined in our hypothe.sm (Hy) in ‘sections
a. : . . |

Then in Qorollary 2.1 the assumptions about a(4, (s)), b (%, @ (o)), a(t, u(s))
and B8(3, u(+)) are satisfied. Therefore by this corollary, it follows that Equation
(4.1) has at least one positive solution on [f_y, co). The proof of the theorem is:
complete, - e

. Now we give neceSSary condltlon for the ex:stence of a pos1t1ve solutlon of'

( 4.1). : ‘ _ . :

Theorem 4.2 Asswme that conditions (Ay), (Az) and (A4) are sa#@sﬁed wmz"
Equwt'wn (4. 1). has an eventually posq,tfwe solrmiwn on [t_1, ©0). Thevn Eguwtm (4 10)
has a positive solution.

. Proof . Agsume that ot {1, oo) ~> Rigan. eventually posmve solution of (4 1)..
- Then (%) is a solutlon of the equation -

2 (- B a(Nlmma (ol . 419)

Where w(t cv( )) and b(t @ s)) are deﬁned in (4.17) and (4. 18) respectwely
But under our hypotheses w(# &(e )) and (¢, #(-)) Satlsfy the condltlons in.
Theorem 2.2. Therefore by Theorem 2.2, we obtain

Lim (%) =Lim b(t @0 (+)) =0 an‘dv_J‘T_ a(s,_mo(vo))@s<oé, T (4.20)

where T'o>>1, is defined such that @ (¢) >0, ¢=>To— max{z, ¢}.
In that case from (4.19), by 1ntegra,t1ng from # to +oo, we obtain that @ (2)
' satlsﬁes the equation

wo (%) = b(t zvo( )) +J. as(s, wo( ))ds, t=T,. (4 21)

Now let >0 be an a.rbltra.rlly sma.ll ﬁxed number Then (4 20) yields that there
exigtsa T',>>T, such that 0<wo(t) <y, 1T, —max {7, o}, Wwhere B, is defined in.
~eondition (A,). Thus by virtue of (4.7), (4.8) and (4.9), we have

‘ “(5:wo('))>(1“8>,§1 aka;o:(t’é'v‘k)o >/ R
and e
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b (%, 'mo(‘ ))A>(1—s) é Cmo (5—Tm) + (1'—‘-&) é b; j't—jﬁ mo(s)ds; t>Ts,

where we used the deﬁnltlons (4 17) and (4 18) of a(t m( )) and b(t z()),.
respectively. :
Therefore from (4. 21), it follows that

wo(t)><1 S) [2 Omwo(t ')”m) +2 b, J mo(s)ds +J’ 2 bkw()(S 'vk)du, t>T°.
But by vn'tue of Theorem 3 1, we obtain that Jche equatlon

[fv(t)—-(l e) 2 cmfv(t fr,,.)]
= -2) b 0(4-6) — (-]~ (1-) f: ()

has an eventually pos1t1ve solution,

Since 8>>0 is arbitrarily small, by Oorollary 3. 1 we obtaln that Equatlom B

’ (4 10) has s posmve solutlon on some 1nterva1 [To, o<>) The proof of the theorenm
is complete ' ' ‘ '

From Theorems 4.1 and 4.2 it immediately follows a necessmrj ‘and sufficiexit.
condition for the existence of an eventually ‘posiﬁiije solution of (4.1):

Theorem 4. 3. Assume that conditéons (Ai),‘ (Ag), (Ag) and (Ay) are satisfied..
Then Equation (4.1) has an éventuwl_ly._‘pog@t@vet solution. on [t_i,‘w) 8f and only if
Equation (4.10) has an pos'i,ifz)fve solution orreqw)edlenﬂy the charavteristic equation.

x<1—mécme,‘.*"")-,=.;§:]11b,_ [6=*8s-e=404] - g aeTAT (4.22%
has @ negative root. " _
- Now we a,pply Theorem 4. 3 to the equatlon o '
a(t) =g(&(t=0a)) ~f(a(t~7)), | (4.23%
where we assume , _
(i ) 7 O are Some nonnegatlve constants 7 . max {7:, o-},

(i) f, g R->R .are continuous- funotlons such that f (w)>g(az)>0(w>0), |

“and for all >0 smajl enough thereis a 8,>0 such that
(1--e)pa<f () <ps and (1 -s&)ge<g(o)<gw, 2€ [0, 8,,),
where the constants p-and ¢ satisfy the conditions . .
o 0<g<p end 0S¢ (v—a) <1L. o
Then Equatlon(4 23)has an eVentually positive. Solutlon on [fo—1,e0) 1f the equet:xom
oL A= ge""’——pe"" G L '
haSanegatNe root. S e T
Proof Since Equatlon (4. 23) 1s equlw,lent to the followmg equatlon
C a(®)=g(@-0))-g(a(t~ w)) [f(w(t—v)) g(w@ v))]. \
by Theéorem :4.3the proof-is. completed
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 Now we consuder the differential system

&(#) = Efg;(w(t 69) ~9(@@—0o))]1—f( s(t—my °~°,w(t—7x)), (4.24)

‘where we state the following assumptions which would be used as indicated in each
wesult : . :
(Bi) 7=>0 (I<I<K) and 0;>6;=0 (1< 3<J ) are given constants,

T=maX {max T MaX a;} a.nd boa=to—m;
l<k<K <J<t

(B2) f: [to, oo) % R > " and 9sB"— B (1< j<J) are contmuous functions
guch that » :
F (&, oy, -, vw;,)>0 and ¢;(z) >0 (I<j<J, € R}, 1<I<K),
and - » » ' '
| ”:o min{f(t 1y > wk),:w;;>c, 1<k<K} dt | = +oo,
for all o€ RY such that [e|>0; .~ o

(Bs) there are nonnega.tlve n by n matrlces A,, and B, and 8 posﬂuve vector
60612" such tha,t .

f(t, Dy *o%y WK)< 2 Akﬁk; t>ﬁo; 0<$k<50y I<k<K, -

| 9:(@) <By, 0<y<dy, 1<j<J,
aoreover R U RN L
(2 43 Jox0 it o€ By ds such that o0, (4.25)
~and the spectra.l radius of the matrix 2 B; Satlsﬁes the condltlon
Y =T
o(ZB)<t
J=1

(By) for all s>0 small enough there ex1sts a 8, € R} such that 8 >0 a,nd
JG, wi, o a:k)>(1 e) 2 A;,ka, t>to, 0<mk<8,, 1<k<K

and
05(5)> (L=8) By, 0<y<8, 1<j<7,
‘where the constant matrices 4; and B; satisfy (4.25)and (4.26). - :
By using Proposition 8.2 and Corollary 8.2,. a repetition of the proof of
‘Theoterns 4.1 and 4.2, with appropriate changes, proves the following thearems.
Theorem 4. 4. Assums that conditions(By), (Bp) and (Bs) wreswt@sﬁed Assume
,fwrthefr that the linear equwtwn ) SR

w(t) EB:[w(t a;) w(t cra)]*ZAmv(t vk) (4 27)

has a sl@ghtly pos@twe solut@on on an 'mterfvwl [To, go) Then Eguwt@an (4,24) has
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a slightly positive selution on [fo—=, o0).

- Theorem 4. 5. Assume that conditions(B1), (B2) and (B,) are satisfied. Assume
Jurther that Equation (4.24) has a sl@ghtly posztwe solution on [fo—w, o). Thern
Hquation (4.27) has a slightly positive solfn,twon on an fl;ntefrfvwl [T, ).

Theorem 4. 6. _Assume that conditions (By), (Bs), (Bs) and (By) are satisfied.
Then Equw‘ﬁon (4.24) has a slightly positive solution on [to—w, ) ¢f and only &f
Equation (4.27) has a slightly positive solution on an interval [To, o) or equivalently
sherew exist a’negative number Ay and @ vector e, & R such that

J " ' K
(ol 31 B, (¢4—g7%) -+ 3 iy Joo=0
and { 60[ >0. v
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