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ON THE HARNACK INEQUALITY FOR HARMONIC
FUNCTIONS ON COMPLETE RIEMANNIAN MAINFOLDS**

L1 Jiayu*

Abstract
First it is shown that on the complete Riemannian manifold with nonnegative R.lCCl curvature -
M the Sobolev type inequality ||Vull2 > Ch,allullza (o > 1) for all w € HZ(M) holds if and
only if Vz(r) = Vol(Bz(r)) > Cpr™ and o = .—"- Let M be a complete Riemannian manifolds

which is uniformly equivalent to M and assume that Ve (r) > Crr™ on M. Then it is prioved
that the John-Nirenberg inequality. holds on M. Finally, based on the Sobolev inequality and,
John-Nirenberg inequality, the Harnack mequahty for harmonic functions on M is obtained by

" the method of Moser, and consequently some Llouv111e theorems for harmonic functions and ..
harmonic maps on M are proved.. -

8L, Introductlon

Kendalll®#] used stochastic methods to prove that if M is any manlfold on which every
bounda,ry harmonic function is constant, N -is a complete' Riemannian manifold and ¢
M — N is a harmonic map with image in‘a geodesmally small disc, then ¢ is constait.

‘Combining this theorem and Tau’s result[® one’ obtains the Liouville thebrem ‘for har-
monic maps proved by Yul%l. By this theorem and Moser’s results!*l one can also obtain
the Liouville theorem for harmonic maps proved by Hildebrandt, Jost and Widman!”. They
proved that if (R™, g) is uniformly equivalent to R™, N is a complete Riemannian manifold
with the sectional curvature K <.B < o0, and ¢: (R™,g) — N is a harmonic map with
#(M) contained in a geodesically small disc, then ¢ is constant.

Kendall’s result shows that the Llouvﬂle theorem of harmonic functlons 1mp11es some
Liouville theorem of harmomc maps It is well known that the L10uv1lle theorem of har-
monic functions can be obtained by the Harnack 1nequahty for harmonic functlons There
are mainly two ways to obtain the Harna,ck inequality for harmonic functlon on complete
Riemannian manifold. One is Moser’s method(®36:14l Tn thls case, one uses the Sobolev
inequality and John-Nirengberg inequality which is not true in ‘general on complete Riemann-
ian manifold. The other is Yau’s method!%11:1518] The idea of Yau’s method is to estimate
the gradient of positive harmonic function. In general the gradient estimate depends on the
Ricci curvature of the complete Riemannian manifold. - :

‘Suppose M £ (M, h) is a complete Riemannian manifold with nonnegative Ricci’ curva-
ture, M & (M, g) is uniformly equivalent to M, that is c- hq (¥, Y) < 2(Y,Y) < C-ho(Y,Y)
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forallz € M, Y € T, M. In this paper, we prove that if V,(r) = Vol(B,(r)) > Cpr™, where

B.(r) = {y € M|dist(y,z) < r}, then there is no non-constant bounded harmonic function
on M, Therefore, we generalize the Moser’s result!*l and by the Kendall’s result we also
generallze the result of Hildebrandt- Jost- Widman.

In section 2, we consider the Sobolev type 1nequal1ty on M. In section 3, we consider the
Pioncaré inequality and John-Nirengberg inequality on M. Finally, in section 4 we prove
the Harnack inequality for harmonic function on M and particularly we obtain the Liouville
theorem for harmonic functions and harmonic maps.

In whole paper, Cy ..., denotes a positive constant depending on a,b,-- -, which may be
different in different places. ‘

- §2. Sobolev Inequality

Strichartz(16l proved the following L? boundedness of Riesz transform.

Lemma 2.1. Let M be a complete Riemannian manifold. Suppose f € L3(M). Then
(=A)Y2f is in L2(M) if and only if |V f] is in L*(M) and ||(=A)Y2f|3 = ||V f]|2-

In [16], Strichartz also introduced the Riesz potential on complete Riemannian manifold
M, | |

¥ e e .
(aytenE =t [ e G 00 0

where H(z,y,t) is the heat kernel on M |

The author('® proved the following boundedness of Riesz potent1al
" Lemma 2.2. Let M be a complete Riemannian manifold with nonnegative Ricci cur-
vature. Suppose that for any z € M, Vy(r) = Vol(By(r)) > Cnr", where B,(r) =

{y € M|dist(y,z) < r} and Vol(Bg(r)) is. the volume of By(r). Then the Riesz poten-
tial (—-A)"%"‘»,(O < a < n) is of type (p,q), that is, :

I(=2)"#*fllg < Cnpallfllp for all f € L7(M),

where 1 < p < ¢ < 00, %:%e%.

In this section, we will use the two results and the estimate of the heat kernel proved
by Cheng-Ll-Yau[S] and L1—Yau[13] to prove the following result, which was proved by
Varopoulos®” when a = 1 using totally different ideas.

Theorem 2.1. Let M be a comp]ete Riemannian mamfo]d with nonnegatwe Ricci

curvature Then the Sobo]ev type inequality N
IVull; > Collullsa (@21) - o (2.1)
holds for all w € H?(M) if and only if for all z € M, Vz(r) = Vol(B,(r)) > Cpr™ and

a= L5,

Proof. We first prove that the condition is sufficient. Note that['® if f € L2(M), then
the definition of Riesz potential (—A)“%"‘ f agrees with that given by spectral theory. We
therefore have u = (—A)~Y/2(—A)Y/2y for all u € HZ(M).

By Lemma 2.1, we have -

I(=2)"2ull2 = [Vullz. | (2:2)
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By Lemma 2.2, we have
lullznnz) < Call(- -A)Y 2ull (2.3)

Clearly (2.2) and (2.3) imply (2.1) with o = 2.

Now we prove the condition is necessary.

Suppose (2.1) holds for all uw € HZ(M). Assume that z is a fixed point in M and ¢ is a
fixed positive constant. We set u(y) = H(z,y,t) where H(z,y,t) is the heat kernel on M.

( / H**(z,y,t)dy)"/* < Cn,a / [VH(z,y,t)|dy. (2.4)
M M
Ifa=1,
| Beuowsc [ V@R (2.5)
M M
By the estimate of the heat kernel proved by Li-Ya,u[13] we have
H(xz,y,2t) > Cp———=- 2.6
By the estimate of the heat kernel proved by Cheng—Ll-Ya,um, we have
/ [VH (2, 0fdy < 2 H(z,3,1). 2.7)
» M g _ .
In [13], Li-Yau also proved that.
. H(z,y,t) < Cp—r- 2.8
Substituting (2.6), (2.7) and (2.8) into (2.5), we obtain
1 1
<Cp———=
| Vo(V2) T "tV (\f )
that is,
N, .,
> Cnt 2.9
Va(V2). | (29)
By Bishop comparsion theorem!1215, we have o . :
Va(V28) < (V3 ' ‘
< 2.10
T s e

Clearly (2.9) is contrary to (2.10). Therefore, we may assume o > 1.
By Holder’s 1nequahty, we have

/ H2(@,9,8) < ( / By, )dy)w( / H (3,5, )dy) 2, (2.11)

Where - =2 and 5 <a <L
Substltutmg (2 11) mto (2.4), we obtain

( / H%(z,y,t)dy)* < Cn,a f |VH(z,y,8)?dy( / H™ (z,y,t)dy) = . (2.12)
M . M _ M
Noting that [,, H(z,y,t)dy <1, by (2.8) we have

( / H? (3,1, )dy) ¥ < Cra ' (2.13)
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Substituting (2.13), (2.7) and (2.6) into (2.12), we obtain

1 - - - 1 . 1 20’ -1
—— Cn o - - = T,
Vaa - o tvx<ﬁ>(.vx<ﬁ))

that is, o
VEWD o 1 @14
V22l = T EVE) -
lB (2 10) and (2. 14) we have o . | |
V(WD) > Coat TR Lo (2.15)
Applymg Bishop comparlson theorem, one obtains _ |
V,(VD.< o2 (2.16)
So t3 > C’n,at% fox"‘ all't > 0. -
We therefore have 125 = %, that is,
o= (2.17)

By (2.15) and (2.17) we have V;(r) > Cnr™ forall z. € M. |

Theorem 2.2. Let M be a comp]ete R1emann1an mamfold with nonnegative Ricci
curvature. Suppose M is a complete Riemannian manifold which is uniformly equivalent to
M. Then the Sobolev type inequality (2.1) ho]ds for allu € H 2(M) if and only if, for all
z €M, Va(r) = Vol(By(r)) 2 Cpr® and a = L. |

This theorem easily follows from: Theorem- 2 1, because that M is uniformly equivalent
to M implies that the gradient and the volume element on M are also uniformly equivalent
to those on M. ‘

§3. Poincaré Inequality and John-Nirenberg Inequality

In the following two sections, we suppose" that M 2 (M, d3?) is a complete Riemannian
manifold with nonnegative Ricci curvature; and we assume that M = (M,ds?) is a complete
Rlemannlan manifold which is umformly equlvalent to M, that is,

Mds? < ds? < A2ds° (3.1)
where ) and A are positive constants. The gradient and :th'e' volume element on M are
denoted by V and dV respectively; the gradient and the y'o'l'um'e: element on M are denoted
by V and dV respectively. The ‘ge‘odesic distance from z.to y'on M and on'M are respectively
denoted by p(z,y) and p(z,y). Clearly, V,dV and p are also uniformly equivalent to V,dV
and p respectively. We set ' : '

Bulr) = {u € Mlolo,u) <1}, Belr) = (v e Mpte,) <,

V(1) =/ 14V, Vm('r') =/ 1d_‘7.
Bg(r) - Bg(r)

Vz(r) and V,(r) are obviously umformly equlvalent In addition we assume V (r) > Cpr®
for all ¢ € M.
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Let z be a fixed point in M. For u € (0, 1) we define the linear operator V), on LY (B (R))
by

Vihe) = [ eyt (32)
, Bag (R) o
and define the linear operator V, on LY(B,,(R)) by '

(V@) = /B IRCCO O (33)

The following lemma implies V,, and V, are well defined.
Lemma 3.1. Suppose 0 < § = % - % <, wherep >1and1< g < oco. ThenV, is a
bounded linear operator from LP(B,,(R)) into LI(By,(R)), V , .is:a bounded linear operator
from L1”(B$0 (R)) into LY(By, (R )), and '

IVufllg < 0~ 6( )1 6(2R)"("“5)||fllp, (3-4)

Wl < <<A>”ﬂ =t J

where )y, is a constant dependmg onn a,nd A A are the constants in (3. l)
Proof. We set h(z,1) = (p(z,1))"*~D, h(z,y) = (3(x, )", |
LS S Y Pt (3.6)

=) -5-(2R)"<”"5>nf|lp (3.5)

Suppose z is a point in B,c0 (R). ., o )
J— DA < / (3la, )" d.
Bug (R) B.(2R). :
By Bishop comparison theorem, we have

/_ (A, y)) BTV < wyoy / prp=1rn=1g5
B.(2R) > A

(2R);l’l(i+ll-;1)r)
"o+ (u-1)r)’

where wy,.; = Area (S”"l) “So ,
‘ 6 LA it . . s >3
o | thlr <O 6(_—5)1 SRy, - (3.7

Note that B, (R) C Bwo()\" R). So
/ h’”(&:;y)dV < An/ : (Aﬁ(m,y))n(#—l)rdf/'"”_
a:o(R) Bf”o(A IR)
(ZR)“(H(“ 1r) A
Yol + (u 1) )N

< Wp—1

Then :
1-6

1-6
Al < 93—

)i (2R)”.‘f‘"5)-(%)”(1"5)- S (3.8)



6 : CHIN. ANN. OF MATH. : » Vol. 14 Ser. B

Using Hoélder’s inequality, one obtains

VAl {f Rl / (o, g)dV PP

1 / F@Pdvye | (3.9) -
and .
Vil S{f,  F@li@Pmy e[ Ty
-{f- lf(y)lpdV}" o | (3.10)
: B‘;,,O(R) ' )
- By Minkowski’s inequality one obtains
IVafllg € sup { A" (@, y)dVI" | fllps (3.11)
sz(R) O(R)
IVufllg < sup{ " (2, y)dV I £lp. (3.12)
BmO(R)

Clearly, (3.7) and (3.12) yield (3.4); (3. 8) and (3.11) yield (3.5).
We define M?(B,,(R)) = {f € L(By,(R))| there is K > 0 such that
Jo. (R [fW)|dy < K - r*(=1/?) for all ball B(r) C M},

1 £l (B, (R)) = inf{r=(1=1/P). | f(y)ldy}.
B (R)NB(r)

Lemma 3.2. Suppose § = 1% < . Then for almost all x € B, (R)

' 1-6
Vif @) < (G=5)CR NS llaan . my (3.13)

if f € MP(B,,(R)).
Proof. We assume f(z) = 0 if z € Bg (R) = M\Bg,(R). Since

f € M?(By,(R)), V(p) =/B |F W)y < || Fllage 8oy ()™ P, (3.14)
w0 (P

IV, f()) < / (o(z, )™=V f(3)|dV < / o P U@,

wo @
We choose the geodesic spherical coordinates about z. Since the measure of Cut(z) is 0,
we may ignore it and assume that dV = 1/g(p,8)dfdp where § € S™! and df is the Haar
measure on S®~!. Then '

2R
@l [ oo [ 1re01a 0
-/ = 0y )
0
. R
= QR IVER) tn-p) [ V() D (315)

0
Obviously (3.14) and (3.15) yield (3.13).
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Lemma 3.3. Suppose f € MP(B,,(R)) (00 > p > 1), g = V,.f, u = 1/p. Then there
exist positive constants Cy; and Cs which depend on n and p such that

g A
ex dV < Cy(2=R)", 3.16
L PR < 03 (3.16)

where K = ”f”MP(Bzo(R))
Proof. For any q > 1, by Holder’s 1nequa,hty one obtains

19(@)] < (Viasgl SV Vool S 9. (3.17)

Using Lemma 3.2, we have
VisualfI < (0~ Dg@RM®K. (318)
Using Lemma 3.1, we have ‘
/ Vu/q|fldV <Qn-pyg- K(zR)n(l—l/p+1/(pq))(%)n,' (3.19)
zg
Therefore
[ ldtav <3 {o- DeKYCSR) (3.20)
Bmo( ) o ‘
where ;t}’ —2—
. N
lg|™ ' A p=1l,m"
———dV <p' - Q- (2=R)™ )Y ( " —
‘/wo(R)m om'!(C'lK)m " ( A ) :4;0 (o m!

If (p — 1)e < C4, then

exp( )dV<C'2(2 R)
/ 2o (R) ClK |

that is (3.16). .
Lemma 3.4. Suppose u € H} (B,,co((ZA + 1)R)). Then for almost all x € B, (R)

u(2) = Uy ] < o [ (@) Vu)lav,  (3.21)
By, ((24+1)R).

where.

1
B, (0 = T /B PRL

Proof. Clearly we may assume u € C*(By,((24 + 1)@ For any z,y € By, (R), assume
7:[0,p(z,y)] — M is a geodesic segment from z to y in M.

P9 dou(F
ue)—ut) == [ 2,
| 2o) o
Vao (R)(u(®) ~ uB,, (m) = = /B @ /0 ’ L%E(i)—)dtdv. (3.22)

Clearly

#(t) Bm(2%R) c Bmo((2%+ 1)R).
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We set V(y) = [Vu(y)|. Then

Vao (B)|u(z) — up, (r)| < / > / V(7(t))dtdV
. | By

p(m,y) '
< A / / £)dtaV. (3.23)
a:( 5y R) ‘ » ’

We choose the geodesic spherical coordinates about z in M , and assume’
dV =+/g(p,8)d0dp.

Then ‘ :
[4e) = 5., 0] < / / Veyar [ 1\/9_(-p_,_d9dp-

By the Bishop comparison theorem, we know E_gn(f’l ) is a decreasmg function. Since
D
r < p, we have

2R
[u(@) = vB., ] < 5 V, (R / / /Sn . rt="y T)\/Tdﬁdrp” Y45
< Vo (R) /EE(ZRM)W?L(:U)I(p( ) mdV

A 2AR 1 / -
< (=) " z, " Vu(y)|dV.
f( /\) (. 3 ‘) ano(R) Bw0(<z%+1)n)(p( ) " Vu(y)|

That is (3.21). .
Now we can prove the following Poincaré inequality and J ohn—Nlrenberg 1nequa11ty
Theorem 3.1. Suppose u € H (B, ((24 + 1)R)). Then

lu—up,, (R)l|Lo(Bay (&) < Crir ARI|Vu||LP(BEO((2%+1)R))'
Proof. Lemma 3.4 and Lemma 3.1 yield this theorem.

Theorem 3.2. Suppose u € Hj i (Ba, ((ZA +1)R)), and assume that there exists a pos1t1ve
constant K such that for all metric ball B(r) in M

/ - . |VuldV < K-r™t. (3.24)
Bao((24+1)R)NB(r)
‘Then there exist positive constants i, z,a and C, x ., which depend on n, A, A, such that
/ : ('u’n AA lu ug,, ®))dz < Cpa aR". (3.25)
20 R)

Proof. Using Lemma 3.4 we have'

fin,\
exp(—=— En A lu —u (my)|)dz

< / exp(p’n,)\,

< / exp(unf’:."A A Viyn| Vul)dz
By ((24+1)R)

A Cn,A,AVI/nlqudm

where

Vil Vul(z) = / rpan PV IV (3.26)
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Obviously the theorem follows from (3.24), (3.26) and Lemma 3.3.

§4. Harnack Inequahty and Tts Applications

We first use the Moser’s method to prove the followmg Harnack inequality for Harmonlc

function on M. .
Theorem 4.1. Suppose o is a fixed point in M. Ifu € Hf(Bmo (6(2 +1)R)), u >0 and
Au =0, then ; :

su u<Cn inf . - 4.1
} mo(pR) - '\ABmO(R) - ; (.1)

We set ¢(p, 7") V (r) meo( )updV) s, Where % = u+A, A>0,and set V = 'u,'c k# 4 5
Lemma 4.1. Suppose w satisfies .the hypotheses of Theorem 4.1. then for any ¢ €
C§°(Bao (6(% +1)R))

(f (o)l =Dy Y-/
Buo (6(4+1)R) - |

<Chra( 2k"_ )2/‘ [Vo|2V2dV.
2%k -1" Jp,64+0)R).

Proof. Since ¢ € C§°(Bq, (6(% +1)R)) and AZ = 0, we have

/_ QP lAGAY =0
Bag (6(4+1)R)

(2K — 1) / O e vgdy
Bao(6(4+1)R)
=2 / Y2 IV Vadv
By (6(L+1)R) ’ . -

Sz(/ 2 2k 2IVUI2dV)1/2(/ ] ,a2klv(p|2dv)1/2
Bz0(6( +1)R) By (6(4+1)R)

We therefore have

and

/ - VYRV < 42y / O Vepviav.  (12)
Bu, (6(4+1)R) 2k - 17 Jp, (6(4+1)R)

Applying Sobolev inequality one has

(f (p-V)#ay) ==
Bay (6(4+1)R)

<Cra / V(e V)PdV
I Bag(6(4+1)R) i

<Coan [ (VoY) + - VVP)aV. (43)
Bio (6(4+1)R) :
Lemma 4.1 follows from (4.2) and (4.3). _
Lemma 4.2. Suppose u satisfies the hupotheses of Theorem 4.1. For any p > 1, .
¢(°O>R) < Cn,A,/\,p¢(p, 2R). (4.4)
Fora,ny0<po<p<,3*;—_—2-, '
¢(p, 2R) < Cn A Np,p0 ¢(p0, 3R) (45)



Choosing h = hy =14+ 27Y, b = hyp1, Do = ﬂ;’p and using (4.8), we have
h v
Bpuss; hopiR) < Ol G )7 () 60 B B)
v — byl Dy —
< Ci{K?A,pzv.l/pv $(pv, v R)

138 LY L
< (Cranp) = -27 0% * $(p,2R).
Letting v — oo, we have (4.4).

Similarly one can obtain (4.5) and (4.6).
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For any p < 0,
¢(p, 3R) < Cn,A,)\,p¢("OO,R)' (46)
Proof. Let
1, z € B, (WVR),
o(z) = _ )
0, z&B;,(h'R),
0<p@) <1, |[Vo|<—O —
A —(p © — ? So —_— (h""h')R,
where 0 < b/ < h < 2h', C is an absolute constant. By Lemma 4.1 one has
2k 1 1
V#avye< ¢ 2 2 / V2dv.
(/Bmo(h'm A S e Bog (hF)
Let p = 2k # 1. The above inequality yields
i ),
- aPPdV /B
(Vwo (h’,R) By (W' R) )
p 1 121/ o (RR)"
< n . 14 N
P v h 1 / -
<C, aPdv. 4.7
- ’A’A(P - 1) (h - h') Vao(hR) JB,, (hR) 47
So,if p> 0,
h
$(Bp, H'R) < Co/%  (—=) (2= )*/24(p, hR); (48)
h—h p—1
if p <O,
_ h P \_
< C-Yr (2 _y=2/p(—£_)=2/p4(p, I'R). :

Proof of Theorem 4.1. Applying Lemma 4.2, we know that it suffices to prove there

is a positive constant py such that

¢(po, 3R) < Cna,x * ¢(—po, 3R). ,
~ For this purpose, we set W = log% and assume 2r < R, B(r) N By, (3(24/\\- +1
where B(r) is any metric ball in M. Cleraly B(r) C By, (6(3 +1)R).
Suppose 7(z) € C§°(Bg, (6(3 + 1)R)),

1, z € B(r),
n(@) = {o, TEB(2r),

(4..10)
)R) # 0,
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No.1
0<n<land|Vpyl < %, where C' is an absolute constant

We choose ¢(z) = 19?(z). Then >

0= / VoVudV
. JBgy(6(4+1)R)
= _/ ' n?|VW|2dV + 2/ nVn - VWdJV.
Bay (6(4+1)R) . IBap(6(4+1)R)
So [p(ry IVW|[?dV < Cpr™~2 and therefore Jo@ry VWAV < Cor™™
Similarly one obtains
/ IVW|dV < CpaaR™.
Bm0(3(2§+1)R) A _

So wao(3(2%+1)R)nB(r) |[VW|dV < Cpr™ ! for all 7 > 0.
Applying Theorem 3.2, we know that there exist positive constants py and Cy, x o which

depend on n, )\, A such that
/ eV~ Wolgy < G,y AR,
By (3R)

where
1 ,
Wo= —c- / WdV,
°” Voo(3R) Jp,_ @m)

So -
: o f ePoWdv . / e PW 4V < C, A A R™, (4.11)
2o (BR) 20 (BR)

Clearly (4.10) follows from (4.11).

= The following Corollary easily follows from Theorem 4.1.
Corollary 4.1. Let Q be a domain in M. Suppose u € HZ(Q), u >0 and Au =0, If

Q' cc Q, then there exists a positive constant C(n, A\, A,Q,Q) depending on n,\,A,Q',

such that
supu < C(n, )\ A Y Q)mfu
QI
One can also obtain strong maximum principle for harmonic functions in
Now, we consider the global behavior of harmonic function on M. Suppose u(z) is a

harmonic function on M. We set
M(r)= max wu(z), pu(r)= min u(z),
 p(zo,z)=r p(-'(:o,w)=.r

where g is a fixed point in M. By the maximum principle we know that M(r) is an increasing

function and u(r) is a decreasing function
Theorem 4.2. Ifu(z) is a non-constant harmonic function on M, then there exist positive
M(r) = p(r) 2 Coa, A%

constants Cp, x o and o which depend on n, A, A such that W(r)
Proof. We consider the functions M (2r) — u(z) and w(z) — p(2r) in By, (r). Using

Theorem 4.1 we have
M(2r) = p(r) < Ca(M(2r) = M(1)),
M(r) = p(2r) < Capal(p(r) — u(2r)).
So W(2r) > W (r), where 0 = %:‘:—;‘-—2%
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Therefore - S Y
W(2¥r) > 2vlo8: Op7 () R (4.12)

for allv =1,2,-- . Clearly this theorem follows from (4.12). A_
Corollary 4.2. There is no non-constant boundd harmonic fanction on M.
Theorem 4.2 obviously implies this corollary. In fact, we have the following result.
Corollary 4.3. There is no non-constant positive harmonic function on M.
Proof. Suppose u(z) is a positive harmonic function on M. ug = 1nf u(a:) Then there

exist , (n =1,2,---) € M such that u(z,) — uo. Since W(z)= u(m) uo is also a pos1t1ve
harmonic function, for all R > 0, we have

sup W(z) < C, . 1nf Wm,ﬂ
A (2) < Curn - ind W(a)

where z is a fixed point in M. Letting R tend to oo yields W = 0. So u = uq.

Applying Kendall’s result and Corollary 4.2 one has the following Liouville theorem for
harmonic maps.

Corollary 4.4. Suppose N is a complete Riemannian manifold. If  : M — N is a
harmonic map with image in a geodesically small d1sc, then ¢ is constant.
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