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AN INVARIANCE PRINCIPLE FOR STATIONARY
p-MIXING SEQUENCES WITH INFINITE VARIANCE**

SHAO QIMAN*

Abstract :

This paper establishes an invariance principle for statlonary p-mixing sequences under the
assumption Eng(Xo) oo for some continuous nondecreasing function g(z). In partlcular,
-under the infinite variance assumption, the result improves the theorems of Bradley (1988) and
Shao (1989). .

§1. Introduction

Suppose (X, k € Z) is a strictly stationary sequence of real-valued random variables on
a probability space (2, F,p). For —oo < m < n < oo let F; denote the o-field of events
generated by the random variables (Xk,m < k < n). For each natural n > 1 define the
dependence coefficient ' - o

p(n) :=sup |Corr(f, g)|
real f € La(F2 o), real g € La(Fe).

The stationary sequence (X, k € Z) is said to be p-mixing if p(n) — 0 as n — oo.
Ibrag1mov (1975) showed that for some stationary p-mixing sequence of random variables

with finite variance, the partial sums are attracted to a normal law under the assumption

Z p(2™) < 0. Peligrad (1987) considered the more general case and obtained the central

11m1t theorem under assumptions EX0 9(Xo) < o0 and
' ' ' logn] -

g(n %)>> exp( 2+¢) Z (2%))
- k=1

for some increasing function g(z) and € > 0 Shao (1989) proved that the weak invariance
principle also holds under the same hypothesis. Recently, Bradley(1988) established the
central limit theorem for some strictly stationary p-mixing sequences under infinite variance
assumption, which extended the classic result for i.i.d.r.v.’s. The purpose of this paper is to
establish the invariance principle under infinite variance, even more general case.

In the statement of our main result we shall use the following notations: log denotes
the logarithm with base 2. The notation a, ~ b, will mean nll)ngo an/bn = 1, and the
notation a, << b, will mean a,, = O(b,). The greatest integer < z will be denoted by [z].
( (t),0 < t < 1) will denote the standard Wiener process. The partial sums of our given
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sequence (X) will be denoted by Sy, := X; +--++ X,,. Given a function f : [0,00) — [0, 0)
such that f(z) > 0 for all z sufficiently large, we shall say that f(z) is slowly varying as
z — o0 if V£ > 0, 11m f (ta:) /f(z) = 1. Throughout this paper we shall assume that

"'g (—oo 00) — [0,00) i 1s an 1ncreasmg continuous even function

and for every 6 > 0, z° / g(x) is increasing for z sufficiently large. (1.0)
Let
[log z] (log =}
e(z,¢e) := exp(e Z p(2%)) and x5 := exp( Z pr(2%))
k=0 k=0

for every x > 0. Here, and in sequel, log z means log(max(a; e)).
Our main result is as follows: .
Theorem 1.1. Suppose (Xk, k € Z) is a strictly stationary sequence of non-degenerate
real-valued random variables. Suppose that
H(z) := EX2I(|Xo| < z) and G(z) := EX2g(Xo)I(| Xo| < ) (1.1)
are slowly varying as £ — oo, '
EXo=0, | (1)

<y Y

H(z)g(a) >> G(a)e(a?,2 + &) for some 0 < & < 1, and (14)
g(z) << g(z/zs), or ‘ (1.5a)

G(z) << G(z/xs), for some 0 <6 <1. (1.5b)

Then there exists a sequence ‘(An;n € N) of positive numbers with A, — 0o as n — 00,
such that :
Wa(t) = W(t)

as n — 00, where Wy (t) := Spng/An(0 <t < 1).
Corollary 1.1. Suppose (X, k € Z) is a strictly stationary sequence of non-degenerate
real-valued random variables. Suppose that (1.2) and (1.3) are satisfied and that
H(z) is s]ow]y Varymg as T — oo, (1.1)*

Z p(2") < oo. . (1.4)*

Then there exists a sequence (Ap,n € N ) of pos1t1ve numbers with A, — 00 as n — &,
such that W, (t) = W(t) as n — oo. ‘ '

It is well-known that the mixing rate (1.4)* is essentially sharp, even in the case of finite
second moments. However, the followmg result is very 1nterest1ng suppose Xg in Theorem
1.1 has density function '

| pl@) = o{L + [of) "
for z € R', where ¢c™! = [ (1+ |z[3)~1d. Let g(z) = exp(log(l + |z|®)®) for some
0 < a < 1. It is easy to see that as ¢ — oo
H(z) ~ 2elog(1 + [af*)/3,
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G(z) ~ 2c(log(1 + |2/*)) " *g(x)/(3e).
Suppose that for some a < -%a and every n sufficiently large - :
p(n) < a/(2logn). ' (1.4)**
Then we can easily verify that the conditions in Theorem 1.1 are satisfied but the condition
(1.4)* in Corollary 1.1 fails. Hence, we say that the condition (1.4)* may be not essentially
sharp in some particular case of infinite variance, even of finite variance. -

Theorem 1.1 is an extension of Theorem from Shao (1989) except for (1.3) and will be
proved in Section 3.

The following notations will be used: Ternié like a; will be written as a(b) when that is
needed for typogrophical convenience. Notations a A b and a V b will mean min(a,b) and
max(a, b), respectively. The norm in L, will be denoted by || - ||o(p > 1). The capital letter
K will denote a constant that may be different even in the same equation. |

§2. Preliminaries

In this section we shall give some lemmas that will be used in Section 3 in the proof of
Theorem 1. Lemmas 2.1 and 2.2 below are the general cases of Pehgrad [(1987) Lemma 1]
and Bradley [(1988), Lemma, 2.3]. ' -

- Lemma 2.1. Suppose (r(n),n € N) is a non-increa,sing sequence of non-negative num-
< bers such that hm r(n) 0. Then, for every € > 0, there ex1sts a positive constant

D= D(e r(- )) such that the following holds:
For every sequence (Yy, k € Z) of square-integrable random variables such that t;he con-
dition

Vn > 1, p(n) < r(n)
holds, one has that :
Vn > 1,Var(Yy + -+ Yy) < Dne(n,1+¢) max. Var(Yz). (2.1)
Lemma 2.2. Suppose (r(n), n € N) is a non-increasing s;q:zence of non-negative num-
bers such that r(1) < 1 and lim r(n) = 0. Then, for-every.¢ > 0, there exists a positive
constant C = C(g,r(-)) such that the following holds:

For every strictly stationary sequence (Xk,k € Z) of square-mt;egrable random Vanables
such that the condition

Vn > 1, p(n) < r(n)
holds, one has that -
Vn > 1, Var(S,) > Cne(n, —1 — £)Var(Xo). | (2.2)
Lemma 2.3. Suppose A and B are two o-fields, V and W are real-valued random
variables such that V € Ly(A) and W € Ly(B) for some 1/p+1/¢=1,p>1and ¢ > 1.
Then .
[EVW — EV EW| < 14p(A, BRP V|, |Wll;. (2.3)
Proof. Without loss of generality, assume p < ¢. Let
=VI|V|<c)=-EVI(|V|<Lc)and Vo, =VI(|V| > ¢) — EVI(|V] > ¢),
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where ¢ = [|V||,0~%/? and p := p(A, B). Then

|EVW — EV EW| < |EV,W — EVy; EW| + |EVaW — EVy EW|.
By the definition of p(.A B)

\BVAW — BV, BW]| < pllVilla Wil < 20c®=P/2 V272 - [ W],

(|EVaW| <(E|Va|P) 29 (B |V, [/ [wa/2y2la
<(EVal?) =2/ 3(B| V[P EIW|Y/? + p.- (EIVzl”EIWI")l/z)Z/q |
<BePAYVBIW g + 202/ 4V 51 g
' S‘lOPz/q“V”p”W“q- '
BV, EWI < 261 "IlVllpllWllq = 2pz/qllV||p||WHq
This proves that (2.3) holds. S
. Lemma 2.4. Suppose (Xk, k € Z) is a strictly stationary p-mixing sequence of random

variables with EXy = 0 and E|X,|*t% < oo for some 0 < 6 < 1. If there exists a constant 0
with 0 < 8 < 2 — 22/(2+8) guch that for every n > ng

ms@-07te, (24

where n, = [2n] ne=n—-ny, o o2 = ES2, then there e:ast;s a constant K = K (n0,9 p(*)
such that for every n > 1

m.amx(an1 )

[log ]

E|Sa|**® < K(nexp(560 Y p(2F) @0\ E| X, [+ +02+6) (2.5)
- k=0

Proof. Let ¢ = 1 + (2 — §)~(3+9)/2, Fix a natural mg such that
2(1 +2520(mg)?/ 29 1 48810g™2 mo)(2 — ) "3+D/2 < ¢,
For every n < 2no V m3 V 27, (2.5) obviously v'ho‘lds. for K = Ko := (2no V mg v 217)%+0,
Forn > 2no Vmi Vv 2Y, let ny = [in], ny =n - nly,vn3 = [n%] and Sk(n) = zn: Xiix. Bya
trivial inequality ' ‘ : =
c (L+42)*+0 < 1495 + 9™+ 4 g2+
for every x > 0 and 0 < § < 1, we have that \
E|Sn[*0 <E|8,, |2 + EISm (ng)|* o+
+ 9E|Sn, |5, (n2)[ "+ + 9E|Sp, (n2) /S, |1+5
(2 3) and (2.4)
E|Sn,||Sn, (n2)|1+6 < Elsm —n3||5n1 (ng)] "0 + EiSm—ne, (ns)HSm (na)|'*°
<Oyt 4+ 140(n3)* 0|y g |45 S 1515
+ [[Sn, |l2+5||3n2~||§3:2
< o7t + 14p(ns)CHO(|| S, 1515 + [15n, 1245
+ 16 1og ™2 1| S, |[515 + 16 10g" 1]| g 135
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The above similar inequality also holds for E|Sy, (n2)||Ss,|*+°. Hence
E|Su[**? <(B|Sn 1%+ E|Sn, |**°)(1 + 288log > n + 252p(n3)2/ (2+8)y |
+ 1802+% 4 288E|S,,, >4 log* n. (2.6)

Let (Kp,n € N) and (J,,n € N) be two increasing sequences of positive numbers with
Jn A Kn 2 Ko such that for evety n > 1 :

E|S.*" < K nE|X0|2+5 +J, 02+5 (2.7)
For n > 2no Vmi v 217, by (2.6), (2.7) and (2.4) A
E|S, 28 < Ko, (1 + 2520(n1/2)2/(2+8) 4 288(1og™2 n +n~Y /2 log* n))nE| Xo|?
o+ Ty (1 + 252p(n1/2)2/(2+0) 4 288(10g“-2 n) (o2 + o2ty
4 288J,, log* noZt? + 180200 < o
By (2.4),V¥n > no | ,‘ | |
R ot < (202 <2 o0%,
Hence, by recurrence, we can get that . _
s S n- Y/ 7an.
Taking into account that n > 217 we ﬁnally obtain that -
E|S |2+5 <Kn, (1 +252p(n 1/2)2/<2+5> + 488log ™~ n)nE|X0|2+5
4 (18 4 2J,, (1 + 252p(n 1/2)2/<2+5) + 488log 2 n)(2 —- 0) (2+5>/2) 246
Hence, we can define o : : ; B
K, = Kp,(14252p(n'/?)?/(3+®) 1 4881og™%n) (2.8)
and | .. Lo o
Jn = 20, (1+252p(n/?)?/C49) 1 48810g % n)(2 - 6)~C+O/2 118, (2.9)
Noting that o , _ | ‘ |
| 2(1 + 252p(n*/?)%/(3+) + 488 log=2n)(2 — 8)~CG+/2 < ¢ < 1,
we get that for every n, by (2.9)

J < max(Ko,18/(1 = c)). (2.10)
By (2.8), it is easy to see that . - S '
[log n}. :
Kn < Ko exp(560 Z (2" 2/(2+5))exp(488) o (2.11)
k=0 : ~ : IR

(2. 5) now follows from (2. 10) and (2.11), as desired. .
Lemma 2.5. Suppose that H(z) is s]owly varying as & — oo and that C’ and D are
two sequences of positive numbers with C,, — oo and D,, — o0 as n — oco. Then

n—oo
Proof. By the well-known property on slowly varying function (e.g., see [5]), V0 < & < %,
there is a positive zo such that for every z >

sup H(y)/H(z)<1+e.
r<y<2z '
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So there is an integer ng such that for every n > ng and every £ > 1

sup H(zD,)/H(2*'D,) <1%e.
2k~1 < p <2k » o

Note that
‘ o . [IOECn]
H(C,D,)/H(D,, ) H(C’ D )H(zlbgcnlp H H(2'D;)/H(2'1D,,).

It fbilows that for n > ng ,
- H(CnDn)/H(Dy) < (1+¢)' 8%l < 4C2%,

Now the lemma follows from the fact that C,, — oo as n — o0.. - :
In the proof of Theorem 1.1 the following result proved by Bradley ((1988), Theorem 1)

plays an important role. ' _
Lemma 2.6. Suppose (Xi,k € Z) is a strictly stationary sequence of non-degenerate

real-valued random variables sat1sﬁ1ng the cond1t1ons of Corollary 1. Then S, /a, — N(0,1)

in distribution as n — 0o, where a2 = Var(z X; I(|X | < 8,)) and s2 = nH(sy).

o =1

§3. Proof of Theorem 1.1

Throughout th1s section suppose (Xk) is a stnctly statlonary sequence satisfying the
hypotheses of Theorem 1.1.
It follows from (1.1) that lim z~2 _1(:1:)G( ) = 0. Let M* be a positive integer such
=00
that o : L

supz 2~} (z)G(z) > 1/M*.
x>0

For each n > M* def.inevthe po’Sitivé number
| tn :=sup(z > 0: 27 % (z)G(z) > 1/n). . (3.1)
It is clear that . | . | | ‘
. tn, — 0o monotonically as n — 0. | . (32)
Note by a trivial argument thét | | - ‘ o
Vn 2 M, t2g(tn) = nG(tn). | (33)
Remark. If Z p(2’) < 00, then w. 1 0.g., g(z) in (3.1) i is assumed to be equal to 1. By
(1.0), (3.3) and the fact that G(z) is slowly varymg ' '

V0<e<%' 1€<<t2<<n | (3.4)
Hence, we have
Ve >0, e(n,1)<<e(t2,1+e). (3.5)
Lemma 3.1. Asn — oo

Gt (altn/t(6)) H(ta)) ™! << e(n, 2 — %e*). (3.6)
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Proof, If (1.5a) is satisfied, then (3.6) follows from (1.5a), (1:4) and (3 5). If (1.5b) is
satisfied, then by (1.4) :

G(tn)/(H(tn)g(tn/tn(6))) << G(tn/ta(8))/ (H(tn/ta(8))g (tn/tn(5)))
L << e((tn/tn(6))?, 2~ €.
It is easy to see that o
Ye >0, t,(6) <<n®.
Hence _ A
Ve >0, 17 << (tn/ta(6))? << nite
and _ . » I
Ve >0, e(n,1) << e((tn/tn(6))?,1 +6).
It follows that ‘ e :
1.
| G(tn)/(H(tn)g(tn/tn(6))) << e(n, =2 = 5¢7)
as desired. . \ -
Lemma 3.2. Asn — oo
[log n} _ o
exp(6006" ) p(2)Y/+0)) << 1,(6). | @)
z..__O N S
Proof. It suffices to prove that if ¢,(§) — oo, then
S [logn] - ) flogtn] :
S @ o 3 p@ ) (38)
4=0 ) -4=0 .
Note that for every natural k L
[log n] - [legt(n)] S
Z p(2i)2/(2+5) < Z p(zi)2/(2+6) +p(tn)2/(2+5) logn
i=0 i=0 L B
' o [egt(m)
<k+p25)% Y7 p(2)'70 4+ 3p(ta) D log tn
i=0 .
[IOgtn]
< k+ (p2%)°72 + 3p(ta)*/2)( Y p(2)*- “)
=0
(3.8) now follows from the fact that ¢,(6) — oo and p(2™) — 0 as n — oo.

m .
Lemma 3.3. If Y p(2") < oo, then for every 0 <t <1
] i=1

t[znt] Jt2 —t, asn — oo. (3.9)
Proof. In this case, we have for every n > M* that by (3.3)
' | 2 =nH(t,). ' (3.10)
It follows that | S
£ H (b1 / (2, H (£)) = 1/2, a5 1 co. -~ (11)

We now show that
limsupt?/ t[znt] < o0. ’ (3.12)
n—oo : '
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In fact, if hm sup t2 /t[nt] = 00, i.e., there is a subsequence n such that 11m t2 /t[nkt] =
then by Lemma 2.5

B H b))/ W H ittt Bin))) = 00,
which is contrary to (3.11). By (3.12), there is a positive constant M such that

tn/ting) < M, for every n > 1. .

By (3.10), it follows that T

n/[nt] < ¢, /t[nt] < nH(Mtiny)/([nt]H (tny)),
which implies (3.9) by the fact hm H (Mtpng)/ H (t[nt]) =1 and hm n/ [nt] =1/t.

The following lemma is 31mllar to that of Bradley (1988)
Lemma 3.4. :

. JmonP(Xol2t)=0,ad AR
Jim (ng(t) G~ (8))} ELXol(1Xo] 2 1) = 0. ®)

Next by the trivial fact that E|Xo| < oo and EXp = 0, we have e
VarXoI(lXol < tn) v H(ty) as n — oo. (3.13)

Define the positive constants g
C :=C(r(),e1 =€*/6) and D := D(r(-),e1)
from Lemmas 2.1 and 2.2 with r(n) = p(n ) Vn € N. ' (3.14)
Define the following random varla,bles ' ’

Vn>M* ke z, X" = XkI(IXk| <tn) — EXkI(IXkI <tn); and
Vo> M*, me N, S = X" ot XG.
Note that by the definition of C and D in (3.14)
Vn > M*, Ym € N Cme(m, -1 —6‘1)||X n)||2 < ||,S'(")||2 < Dme(m 1+61)||X n)”% (3.15)

and
Vn > M*, finite non-empty sets SC N
IS X2 < Dse(s, 1+ eI XV, (3.16)
keSS

where s = Card S and &, :=¢€*/6.
For each n > M™* define the numbers .

A%(m) := us<">||2 and A2 .= A%(n). (3.17)

By (3.15) and (3.13) L - , o L
ne(n,—1— el)H(t,;) << A,z1 << ne(n,1+e1)H(ty). (3.18)
In order to prove Theorem 1.1 it suffices to shov;r that
Wa(t) = W(t )

where Wy, (t) := Sipy/An. By Lemma 3.4, (1.4) and (3. 18) we can easily verify that
Ve >0, lim P( sup IS[nt] S[ 7:]| > edy) =0.

n-—00 0



No.1 Shao, Q. M. INVARIANCE PRINCIPLE 35

Hence, by [Billingsley (1968), Theorem 4.1, p.25], to prove Theorem 1 it suffices to prove
that

Wi(t) = W (t) as n — 0o, where W (t) == Sin) /An. o (3.19)
By [Billingsley (1968, Theorem 19.2, p.157], it is enough to show that
Vo<t <1, A2([nt])/AZ — t as n — oo, (3.20)
. Y0 <t <1, {W}(t)? : n > 1} is uniformly integrable, (3.21)
and Ve > 0, there exists a constant A > 1 such that
P(Oénax IS > AA,) < e/X\2 (3.22)

for all sufficiently large n.
We first prove (3.20).
Lemma 3.5. Forevery 0 <t < 1, asm — oo in n > M* uniformly

AZ([mt]))A;%(m) — t, and (3.23)
A7 (m) max(A2 ([gm]), 43(m ~ [m]) - 2. (3.24)
In particular, .
| A2([nt])AZ%(n) — t, as n — oo. - (3.25)
Proof We first prove that for every integer p > 2
Az ([m/p))A5%(m) — 1/p as m — co in n > M* uniformly. (3.26)
(i+1)q m
Let g := [m/p] Y XMfori=0,1,--,p—land¥%:= Y. X{". Note that
it _ v j=1+pg
A%(m) =pAl(q)+ Y _ EY;Y; + EY2.
i#]

For i # j and every natural k, by the definition of p-mixing and Minkowski inequality
|BY:Y;| < 2(%ill2ll S 12 + 60l e
Hence, by (3.15)
472 (@) A%(m) - 2| < 0+ DA @ISl + p(k) + A7 @II115)
< (p+1XCTHK* + p7)a 7 Pe(q, 1+ e1) + p(k))
<@+ DXE + M+ (k) e
for every m sufficiently large. For arbitrary € > 0, but fixed, by p(k) — 0 as & — oo, choose

an integer k such that (p+ 1)3p(k) < £/2. Hence for every m sufficiently large inn > M*
uniformly :

|AZ (m)A;2(Im/p]) — pl < €
as desired.

Case I. If ¢ is a rational number, that is, ¢t = p/q for some integers p and ¢ with p < ¢, by
(3.26)

A2 ([mp/q]) A;2(m) = A% (Imp/4)) A% (mp) A% (mp) A, % (m)
—plg=t
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as m — 0o in n > M* uniformly. : .
Case II. If ¢ is an irrational number, then for arbltrary 0<e< 2, but fixed, take a
rational number ¢; >0 such that

%e Lttty < %s. - - (3.28)
By the Minkowski inequality
‘ |An([mi]) ~ An([mits])| < An([mit] — [mi4]). (3.29)
Let p = [m/([mt] — [mt1])], then o '
m/(mt —mt; +1) —1 < p <m/(mt —mt; - 1).
By (3.28), for every m > 20/e ‘.
et <p<iet
Similar to the proof of (3.27), we can get that for every natural k
(0~ (p+1)2p(k)) A2 ([mt] ~[mt1]) < AZ(m)+(p+1)? A2 (fmt] - [mts]) A2 () + (p+ 12| X7,
Take k such that p(k) < €/24, then
A(Imt] - [mt]) A5 2(m) < 697 (1+3(p + (AL () + nX ™ 13)45%(m))
<126 +36-5* k%% .C71 om ™V e(m, 1+ &)
< 13¢ . (3.30)
for every m > 308 . k% . C2.¢710 |
By (3.29), (3.30) and the result of Case I, we can get that
|42 ([m4)) A (m) — ¢| < 16¢
for all sufficiently large m in n > M* uniformly. This completes the proof of (3.23). The
proof of (3.24) is similar. We omit it.

Next we prove (3.21).
Lemma 3.6. Forevery0 <t <1

lim sup A;?EIST) 21| > Ady) = 0. (3.31)
A—o00 n>1 :

Proof. The proof will be divided into two cases.
Case L. E p(2¥) < o0. _ | _
By Theorem 1 of Bradley (1988), i.e., Lemma 2.6, we have
St /Ajng) — N(0,1) in distribution as n — oco.
In terms of Lemme 3.4, (1.4), (3.5) and (3.18) we can get that

(Sing) — [nt]) [Apng — 0 in d1str1but10n as n — oo.

Thus we have

S[(:% /Ay — N(0,1) in distribution as n — co.
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- By Lemmas 2.1, 2.2 and 3.3, we have
[nt]

n nt -
B S{(ﬂg} sy 42 = [n';]Va,r(; Xil(t) < | Xi| < tn))

< DC'EXZI(tny < |Xo| < tn)/EXFI(|Xo| < ting))
= DC™ (H(tn) ~ H(tiny))/H (t[nt )
— 0, as n — oo.
It follows that |
An([nt])/Apng — 1 as n — oo.

Therefore, S[(:t)] /A (Int]) — N(0,1) in distribution as n — oco. By a well-known result
on uniformly integrablel (e.g. see [1], Theorem 5.4, p.32), (S[(:t)] /An([nt]))? is uniformly
integrable and so is (S [(:t)] /An)? by (3.25). ,

Case II. § p(2%) = 00

For ever),rc—_;zl fixed, let [ := 1, := t,(6) and p := p, := [nd].

Vi > 1, define the random variables:

X0 = X,I( X3 < tofl) — EXI(\Xi| < tafl),

X = Xl (ta/l < |Xil < ta) = EXl(ta/1 < |Xil < ta),

. |
(”) = ZX(”) and s("> =S x5, ' (3.32)

=1 g=1
Obviously, S = 8% + 5% and
BISSRI(SM| > A4y,) < 4BISSYRPI(SS)] 2 AA n) +4BIS 5 PI(SE| 2 AA n)-
| . (3.33)
By Lemmas 2.1, 2.2 and 3.1
| EISW? << pe(p, 1+ 1) EX3I(En/l < |Xo| < tn)
<< pe(p, 1+ €1)G(tn)g " (tn/tn(6))

1
<< A2e(p, —-Ze*) (3.34)

By Lemmas 3.5, 2.4, 3.2 and 3.1 and (3.3) -
| llogn] ,
E|SIP << pexp(560 Y p(2)Y FHNE|XoPHI(|Xo| < ta /1) + AZH (p)
=0
flogn)
<< pexp(560 Y p(2") PTG (b, /1)g™ (tn/1)(tn/1)° + A2 ()

=0

<< AZF. (3.35)
Hence, by (3.33)-(3.35)
L ]
AT2EISMPI(ISIM| > AAy) <<*‘e(p, Sviths A8, (3.36)
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(3.31) now follows from (3.36), the hypothesis § p(2") = co and the fact that
=0 '
lim sup AZ2E|STPRI(S™| > 44,) =0
=0 nlM

for every M fixed.
We finally prove (3.22).
Lemma 3.7. For every € > 0, there exists a constant A > 1 such that

P(max. 1S > 6AAL) < 8¢/A? (3.37)

for every n sufficiently large.
Proof. The proof of (3.37) is somehow similar to that of (2.5) from Shao (1989). For
every i > 1, X, XM 50 and S are defined as in (3.32). Obviously

P(max |S{™| > 6)A4,) < P(max|S™| > 5A4,) + P(max [ST| > AA,).
i<n i<n i<n

By (3.24) and Lemma, 2.4
[log ]
E|S{M 2+ << i exp(560 > @) CTONVE XM I(1Xo| < ta/l) + ARTE(3),
’ =0 ) '
where the constant implied by “<<” does not depend on ¢ and n. By Corollary 3 from
Moricz (1982), Lemmas 3.2 and 3.5, analogy to (3.35)

[log n] ,
Emax|S{P P << nlog® nexp(560 »_ p(2°)*/*+)EIXo|*HI(|1Xol < ta/l) + A7
kA 1 ’
T ) =0
{log n]
<< nexp(600 Y p(2)Ct)G(tn/1)g™ (ta /1) (tn/1)* + ARTE .
=0

<< A%S, |
here, and in sequel, we can assume, w.l.o.g., that p(2¢) >> 1/(s log? ). Whence there exists
a constant A > 1 such that for every n sufficiently large

P(max 15| > AA,) < e/X%. (3.38)
i< .
We now estimate P(m<ax |Sz(;“ )| > 5AAp). Let

i<n

r1 = [n/l], re = [n/P%], b =[(n ~11)/(r1 +12)], la = [0/ (ry +72)],

i(ry+re) -+
Y;= Z X;Z)’ i=0’1"".>l17
j=1+i(7‘1+7‘2)
(i4+1)(r1+72)
Zi= ), Xp, i=01. b,

j=14riti(ri+rs)

T;(1) = in and T;(2) = izj,
§=0 |

3=0
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Y= Y X/ <X < tn) — BIXG|I(ta/1 < 1X5] < tn),
Jj= 1+z(r1+rz) .

ZY* i=0,1,-+,l.

It is easy to see that
P(max |ST| > 5AA,,) < P(max|Ti(1)] > 2)\A4,) + P(max |Ty(2)] > 2)\4,)
i<n : o i<ly 1<la

i(ri+r2)+r A
“+P(max Y xR )\A )+2lP(max|S(")| > 54n)
ish k= 1+z(r1+1'2) . .

=L+L+IL+1 ('say) . (3.39)
By (3.3), (1.4), (3.5) and (2.2) - S
rE| XolI{t )l < |Xo| <'tn) <rlt H(ty) L
= H () (0G () 9(tn)) Y% < Ao An,
here ) is a finite constant. Hence for X > 8¢ ' - ) SRR .
I < Plmax|YP| > 20 4n) (3.40)
'1Sll 4 )
and

T2 [ . [

I < 2APO Xl I(ta/l < |Xil < tn) = BIXlI(ta/1 < |Xi| < ta) > 4AA ). (3.41)
i=1

In order to establish the estimation of I3, let '

G_1=(2,9), Ge=0(Xi,1 i< iy +h(ri+1a)),
'U/k = E(Ylek-—-l), k= 0, 1, - )ll,

Uo(0) = 0, U, Zu,+1 and T* (k) = Tw(1) - U(k).
1
Obviously . "
L < P(max IT*(3)] > Mn) + P(Iz.nsagon('i)l > An)

= I§1)__+ 1(2) (say). o | . L (3.42)
Noting that {7%(i),Gi,% = 0,1,-+- ,l1} is a martlngale sequence a,nd usmg a maximal in-

equality due to Brown (1971), we have ' '
IV < 4A7A2ET ()2 I(IT* ()] € My). (3.43)
We below prove that for every 4, k and n, by induction on k ’.
EU} (k) < Dkryp(r2)? log? (2k) EXEI(tn/l < | Xo| < tn)e(n, 1+ %_e*), o (3.44)

If £ = 1, by the defintion of p-mixing : S
EU}(1) = EYi11E(Yi41|Gi)) < p(r2)l[Yitrll2ll E(Yia| Gi)lla:
Thus (3.44) is true for k = 1 by (2.1). '
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If k > 2, assume (3. 44) holds for every integer less than k Put ki = [k/2], k2 =k — k1.
Then

EU{(k) = EU}(ky) + EUf i, (s) + 2EU;(ky) z+k1(k2)

= EU}(k1) + EUZ,, (k2) +2EU (k1) Z Yjt1
j=1+k ’

- < BU}(k1) + EUZ i, (k2) + 20(r2) | Ui (Ka) 2 Z Yitalle
J=1+k;

< D(ky log?(2ky) + ks log? (2k2) + 2632 k2% log(2k1))-
1
r1p(r2)%e(n, 1 + Zs )EXgI(tn/l < | Xo| < tn)

< Dk:rlp(rz)2 log®(2k)e(n,1 + e*)EX I(tn/l < | Xo| L tn),
by induction hypotheses and (2.1). This -proves (-3‘.44). : ,
From (3.44) and Corollary 4 of Moricz (1982) we obtain that

L eV EX2I(t0 /1 <|Xo| < ta)

E'max UZ(3) < 3Dlyrip(r2)? log* (211 )e(n, 1 + i
(a3

| << A2p(r2)?og* (2)e(n, *’%’é*)
1 [tog n]
<< Anp(r2)e(n, —7e*)( 3 p(2)'")*

. i=1
by (3.6) and (2.2). On the other hand
[log n] [log 2]

Y p@)< Y p2h)T 6+P(T2)1 °(2+log(n/r2)
=1 t=1 . }
' [log r2) [log n)

<pra)™® Y p(@) +p(r2)' ™0 Y p(21)17,

i=1 b i i=1
from which follows .
[log n} flog n]

pra) 3 p2)0 << Y o(2)
=1 =1

by the fact that p(r;) — 0 as n — 00. Therefore we obtain that

[log n] g C o
. 1 1
E'max U2(3) << p(r2)( Z p(2%))%e(n, —-Ze-*)A;?l << p(n2)A2  (3.45)
t=1 :
and o
1P <e/X? - (3.46)

for évery A > 1 and every n sufficiently large.
For I, having analogy to (3 43) and (3 46), we can get that for every A > 1 and every n
sufficiently large ' ' :

I < e/)\2+4A;2)\‘2ET,22(2). o , - (3.47)
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By (2.1), (3.6), (1.4) and (2.2) .
ET((2) < Dlarae(n, 1 + 1) EXZI(ta /1 < | Xo| < ty)
- < Dnl™t e(n 1+ 81)G(tn)/g(tn/l)
| &< A2 te(n, —-}Ia ) (3.48)
Noting that 1 /l = 1/l, — 0 as n — oo, we finally obtain that
Iy < 2¢/)2 (3.49)
| for ;eire.'ry A > 1 and evéry n sufﬁciently large.
By (3.40), (2.2), (3.6), (2.1) and (3.5), we have
| : I << A2A72 -1 rae(n, 1+ 1) EXZI(ta/I < | Xo| < ta)
| << A2AZ2 7 e(m, L+ £1)Cltn)/9(tn /1) << AZe(n, —--}l-e*_) a-t,
Hence
| . I <e/X® (3.50)
for every A > 1 and every n sufﬁc1ently large.
We now est1mate I () and consider two cases.
Case L Z p(29) = C (3.51)
From (3.43), (2.2), (3 6), (2.1) and (3.5)
I(l) << AT2AR% 1 rie(n, 1+ ) EXSI(ta/1 < |X0|- <tp) <<:A"2e(n,—%a*).
Hence, by (3.51) and (3 46)
I <2/X. (3.52)
Case II. Z p(2)) < (3.53)

We have
1
ET* ()I(|T* ()| > Ma) < 4BT? (O)I(|T3, (1)] > 5/\An) +4EUg (1)

n

n An n .
<36(BSHIISK| 2 A\ +E( Y, X§Y+BU (W)

i=lg (7‘1 +1"2)

< 144(ES™1(1S™)| > A )+ ES™21(18()| > ,\——)
n

+ ET2(2) + EUR(ly) + E( > x2).
Co : i=la(ri+re)
By (3.53), (2.1), (2.2) and (3.45) '

ADAETE@+E( Y, XP)+EUR(lh) << n'(lors +72) + p(nd)
i=la(r1+r2) :
<< 171 4 p(n3).
It follows that

n
(BTE@+E( Y. X3+ EU3(h))A;? < C/3000
i=la(r1+72)

(3.54)

(3.55)
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for every n sufficiently large. : :
From (3.31) we find that there is a constant A; such that for every A > X\ and every
n>1

AZ2ESI(SS] > Mn/12) < £/3000. (3.56)
By (3.35) )
EST2I(18| > Mn/12) 472 < 12070242 BISMPPH6 < 20/2

where the constant implied by “<<” does not depend on n. It follows that there is a constant
A2 > 0 such that for every A > X3 and every n >1 ,

AZ2ES™21(18M) > A4,/12) < a/3000 o (3.57)
Whence, we find by (3.43) and (3.44)—(3.57) that for every A > max(A1,A2) and every n
sufficiently large ’

M <en?, (3.58)
which together with (3.46) yields | -

n<ow/ @5
Proceeding exactly as the proof of (3.59), we hé,ve a.lso. | .

Iy < 2¢/X2 o (360)

for every sufficiently large A and n.
It follows from (3.38), (3.39), (3.49), (3.50), (3.59) and (3.60) that (3.37) holds, as desired.
Now (3.20)-(3.22) follow from Lemmas 3.5-3.7. This completes the proof of Theorem 1.1.
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