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AN INVARIANCE PRINCIPLE FOR STATIONARY 
p-MIXING SEQUENCES WITH INFINITE VARIANCE**

Shao Qiman* * * **

Abstract
This paper establishes an invariance principle for stationary /9-mixing sequences under the 

assumption ЕХ^д(Хо) =  oo for some continuous nondecreasing function g(x). In particular, 
under the infinite variance assumption, the result improves the theorems of Bradley (1988) and 
Shao (1989).

§1. Introduction
Suppose (Xk,k E Z) is a strictly stationary sequence of real-valued random variables on 

a probability space (fl,!F,p). For —o o < m < n < o o l e t  JF™ denote the cr-field of events 
generated by the random variables (X k,m  < к < n). For each natural n > 1 define the 
dependence coefficient

p{n) :=sup|Corr(/,p)|

real /  e  L2( ^ oo)> real 9 € L2(E^).
The stationary sequence (Xk, к e Z) is said to be p-mixing if p(n) —» 0 as n —> 00.

Ibragimov (1975) showed that for some stationary p-mixing sequence of random variables 
with finite variance, the partial sums are attracted to a normal law under the assumption 
X) p(2n) < 00. Peligrad (1987) considered the more general case and obtained the central
П

limit theorem under assumptions ЕХ$д(Хо) < 00 and
[log n]

p (n 5 )» e x p ((2  + e) p(2fe))
k= 1

for some increasing function g(x) and e > 0. Shao (1989) proved that the weak invariance 
principle also holds under the same hypothesis. Recently, Bradley(1988) established the 
central limit theorem for some strictly stationary p-mixing sequences under infinite variance 
assumption, which extended the classic result for i.i.d.r.v.’s. The purpose of this paper is to 
establish the invariance principle under infinite variance, even more general case.

In the statement of our main result we shall use the following notations: log denotes 
the logarithm with base 2. The notation an ~  bn will mean lim an/bn = 1, and the

71—> 0 0

notation an «  bn will mean an — 0(bn). The greatest integer < x will be denoted by [x]. 
(W(t),0 < t < 1) will denote the standard Wiener process. The partial sums of our given
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sequence (Xk) will be denoted by Sn := X \ H------VXn. Given a function /  : [0, oo) —> [0, oo)
such that f ( x ) > 0 for all x sufficiently large, we shall say that f(x) is slowly varying as 
x —> oo if Vt > 0, lim f( tx ) /f(x )  = 1. Throughout this paper we shall assume that 

g : (—00, 00) —> [0,oo) is an increasing continuous even function 
and for every 8 > 0, xs/g(x) is increasing for x sufficiently large. (1.0)

Let
[log ж]

e(x,e) := exp(e ^  p(2fc)) and x$ 
k—0

[log x]

exp( £  / - ' ( г 1))
fc=0

for every x > 0. Here, and in sequel, log® means log(max(a;,e)).
Our main result is as follows:
Theorem 1.1. Suppose (Xk, к € Z) is a strictly stationary sequence of non-degenerate 

real-valued random variables. Suppose that

H(x) := EX$I(\X0\ < x ) and G(x) := EX$g(X0)I(\X0\ < x) (1.1)

are slowly varying as x —>■ 00,

E X 0 = 0,

/> (!)<!,

H(x)g(x) »  G(x)e(x2, 2 +  e*) for some 0 < e* < 1, and

(1.2)

(1.3)

(1.4)

g(x) «  g(x/xs), or (1.5a)

G(x) «  G(x/xs), for some 0 < 8 < 1. (1.5b)

Then there exists a sequence (An,n 6 N ) of positive numbers with An —> 00 as n —>• 00, 
such that

Wn(t)=>W(t)

as n -> 00, where Wn(t) := 5[nt]/i4„(0 < t < 1).
Corollary 1.1. Suppose (Xk, к € Z) is a strictly stationary sequence of non-degenerate 

real-valued random variables. Suppose that (1.2) and (1.3) are satisfied and that
H(x) is slowly varying as x —>00. (1-1)*

OO
V. (1.4)*

n= 1
Then there exists a sequence (An, n € N ) of positive numbers with An —> 00 as n —> 00, 
such that Wn(t) W (t) as n —у 00. '

It is well-known that the mixing rate (1.4)* is essentially sharp, even in the case of finite 
second moments. However, the following result is very interesting: suppose X q in Theorem 
1.1 has density function

p(x) = c(l + |ж|3)-1

for x G R 1, where c-1 = / ^ ( 1  + \x\z)~xdx. Let g(x) = exp(log(l + |ж|3)а) for some 
0 < а < 1. It is easy to see that as x —► 00

H(x) ~  2clog(l + |ж|3)/3,
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G(x) ~  2c(log(l + l^l3))1 ад(х)/(3а).
Suppose that for some а < |о; and every n sufficiently large

p(n) < a/(2logn). (1.4)**
Then we can easily verify that the conditions in Theorem 1.1 are satisfied but the condition 
(1.4)* in Corollary 1.1 fails. Hence, we say that the condition (1.4)* may be not essentially 
sharp in some particular case of infinite variance, even of finite variance.

Theorem 1.1 is an extension of Theorem from Shao (1989) except for (1.3) and will be 
proved in Section 3.

The following notations will be used: Terms like will be written as a(b) when that is 
needed for typographical convenience. Notations а Л b and aV b will mean min (a,b) and 
max(o,6), respectively. The norm in Lp will be denoted by || • ||p(p > 1). The capital letter 
К  will denote a constant that may be different even in the same equation.

§2. Preliminaries
In this section We shall give some lemmas that will be used in Section 3 in the proof of 

Theorem 1. Lemmas 2.1 and 2.2 below are the general cases of Peligrad [(1987), Lemma 1] 
and Bradley [(1988), Lemma 2.3].

Lemma 2.1. Suppose (r(n),n G N) is a non-increasing sequence of non-negative num­
bers such that lim r(n) — 0. Then, for every e > 0, there exists a positive constant

n-ю О
D = D(e, r(-)) such that the following holds:

For every sequence (Yk,k G Z) of square-integrable random variables such that the con­
dition

Vn > 1, p(n) < r(n)

holds, one has that

Vn > 1, Var(УН------ Ь У„) < Dne(n, 1 + e) max Var(Yfc). (2.1)
1 <k<n

Lemma 2.2. Suppose (r(n),n  € N) is a non-increasing sequence of non-negative num­
bers such that r(l) < 1 and lim r(n) =  0. Then, for every e > 0, there exists a positive

n—KX>
constant C = C(e,r(-)) such that the following holds:

For every strictly stationary sequence (Х^, к € Z) of square-integrable random variables 
such that the condition

Vn > 1, p(n) < r(n)

holds, one has that

Vn > 1, Var(5n) > Cne(n, -1  -  £)Var(Xo). (2.2)

Lemma 2.3. Suppose A  and В are two а-fields, V and W  are real-valued random 
variables such that V  € LP(A) and W  G Lq(B) for some l/p +  1/q = 1, p > 1 and q > 1. 
Then

\EVW -  EV E W | < Up{A,B)2/pA2/q\\V\\p\\W\\q. (2.3)

Proof. Without loss of generality, assume p < q. Let

Vi = V7(|y| < c) -  EVI(\V\ < c) and V2 = VI(\V\ > c) -  EVI{\V\ > c),
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where c = ||F ||pp 2/p and p p(A,B). Then

|EVW -  EV EW\ <\EViW - E V X EW\ + |EV2W -  EV2 EW\.

By the definition of p(A, B)

IEViW -  EVi EW\ < p\\Vi\\2W h  < 2pc{2- p)/2\\V\\l/2 • HW'II,,

\EV2W\ <(E|V2jp)1- 2/,J(E|y2|p/2 • \W\ql2f l q

<(E|Vr2|p)1- 2/9(E|Vr2|p/2£;|PF|9/2 + p • (E\V2\pE\W\q)l/2f / q 

< 8 c ^ t l ^ :HpW l9 +  ^ /qW M \w \\q
<10^«||V ||p||W ||e.

And

Im  EW\ < 2c1-»!!v \ \ i m \ ,  = V 'lV IU W ||, .
This proves that (2.3) holds.

Lemma 2.4. Suppose {Xk, к G Z) is a strictly stationary p-mixing sequence of random 
variables with E X о — 0 and £ l|Xo|2+(5 < oo for some 0 < 6 < 1. If there exists a constant в 
with 0 < 9 < 2 — 22/(2+5) such that for every п > щ

max(crnl )°rn2) < (2 -0 )_1<x2, (2-4)
where щ  =  [ |n], n2 = n — n\, <т2 := E S 2, then there exists a constant К  = К(щ , V, p(-J) 
such that for every n > 1

[log n]

E\Sn\2+s <tf(nexp(560 p(2k)2/i2+6))E\Xo\2+s + o2n+S). (2.5)
k= 0

Proof. Let c = |  + (2 — 0)~(2+5)/2. Fix a natural mo such that

2(1 + 252p(mo)2/{2+6) + 488 log-2 m0)(2 -  6)~{2+6)l2 < c.

For every n < 2щ Vro^V 217, (2.5) obviously holds for К  — K0 := (2щ V V 217)2+<5. 
For n > 2no V m l V 217, let щ  = [|n], n2 =  n -  щ , щ  = [пг] and Sk{n) =  Xi+k■ By a

г=1
trivial inequality

(1 + ж)2+г < 1 + 9ж + 9z1+* + x2+s 

for every x  > 0 and 0 < 5 < 1, we have that

•E'|<Sn|2+5 <.Е|5П1 \2+6 + E\Sni(n2)|2+fi+
+ 9E|(Sni||5ni(n2)|1+5 + 9^|5ni(n2)||5„1|1+5.

By (2.3) and (2.4)

£ |5 ,п1||5П1(п2)|1+й < i?|S„1̂ n3||5„1(n2)|1+6 + E|Sm_n3(w3)||S„j(n2)|1+i

< +  14р(Из)2/<2+й)||5„.-„,||2+!||5„а|1Й  

+ 1|5п»1|2+«||адй«
< cl+* + 1М»>)!/(1+1)(|«., lilt? + l|S„2||2$)

+ 161og"2n||Sn:1|||+^ + 161og4n||S„,gJ*.
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The above similar inequality also holds for Е |5П1(та2)||/5П1|1+5. Hence

E\Sn\2+s < (£ |Sni|2+5 + £ |S n2|2+5)(l + 288log-2 n + 252p(n3)2/(2+5))
+  18<72+6 + 288E\Sns |2+б log4 n. (2.6)

Let (Kn,n e N ) and (Jn,n  € N) be two increasing sequences of positive numbers with 
Jn Л Kn > K0 such that for every n > 1

E\Sn\2+s < KnnE\XQ\2+s + Jncr2n+S. (2.7)
For n > 2no V m l V 217, by (2.6), (2.7) and (2.4)

E\Sn\2+6 < К П2{ 1 + 252p(n1/2)2̂ 2+s'> + 288(log—2n +n~1̂ 2log4n))nE\Xo\2 

+ Jn2(l + 2Ъ2р{п1/2)2/ ^  -b 288(log-2 п){а2+6 + a2*6)
+ 288J„2 log4 пст2+5 + 18<т2+б.

By (2.4), Vn > no
. o l m  < ( 2 - 9 ) - 1a2 < 2 -2/5t i r 

Hence, by recurrence, we can get that

Vn3 < n~1/7crn.
Taking into account that n > 217 we finally obtain that

E\Sn\2+s <Km (1 +  252p(n1/2)2̂ 2+s'> +  488log"2n)nE\X0\2+6
+ (18 +  2Jn2(l + 252p{n1/2)2/(2+s'> + 4881og"2 n)(2 -  0)"(2+б)/2)сг2+6. 

Hence, we can define

K n = К П2 (1 + 252pin1/2)2̂ 2̂  + 488 log"2 n) (2.8)

and

Jn = 2 Jn2 (1 + 252p(n1/2)2/(2+6) + 488 log"2 n)(2 -  0)~(2+5)/2 +. 18. , (2,9)

Noting that

2(1 + 252p(n1/2)2/(2+5) + 488log"2 n)(2 -  в)~{2+6)/2 < c < 1, 

we get that for every n, by (2.9)

Jn < max(jFsfo, 18/(1 — c)). (2.10)

By (2.8), it is easy to see that
[log n]

K n < Xoexp(560 p(2fc)2/(2+6))exp(488), (2.11)
■ ' k—0

(2.5) now follows from (2.10) and (2.11), as desired.
Lemma 2.5. Suppose that H(x) is slowly varying as x —> oo and that Cn and Dn are 

two sequences of positive numbers with Cn —> oo and Dn —> oo as n —> oo. Then

lim CnH(Dn)/H(CnDn) = oo. (2.12)n—* OO
Proof. By the well-known property on slowly varying function (e.g., see [5]), VO < e < 

there is a positive xq such that for every x > xo
sup H(y)/H(x) < 1 + £.



32 CHIN. ANN. OF MATH. Vol.14 Ser.B

So there is an integer no such that for every n > no and every к > 1

Note that

sup H(xDn)/H(2k~1Dn) < l  + £.
2fc-!<a:<2fc

[log On]
H(CnDn)/H(Dn) = H(CnDn) H ( 2 ^ c^D n)~1 J ]  Я ^ Д ^ / Я ^ Д » ) ,  ■

. ' i— i
It follows that for n > no

H(CnDn)/H(Dn) < (1 + e)1+tlos ^ l  < 4 C f .

Now the lemma follows from the fact that Cn —> oo as n —► oo.
In the proof of Theorem 1.1 the following result proved by Bradley ((1988), Theorem 1) 

plays an important role.
Lemma 2.6. Suppose (X^, к e Z) is a strictly stationary sequence of non-degenerate 

real-valued random variables satisfying the conditions of Corollary 1. Then Sn/an —> N(0,1)
П

in distribution as n —> oo, where c?n = Var(£) XiI(\Xi\ < sn)) and = nH{sn).
i = l

§3. Proof of Theorem 1.1
Throughout this section suppose (Xk) is a strictly stationary sequence satisfying the 

hypotheses of Theorem 1.1.
It follows from (1.1) that lim x~2g~1(x)G(x) = 0. Let M* be a positive integer such

x —►OO

that

sup:r“2<7-1(a:)Cr(:E) > 1 /М*.
я > 0

For each n > M* define the positive number

tn sup(a; > 0 : x~2g~1(x)G(x) > 1/n).

It is clear that

tn —» oo monotonically as n —> oo. 

Note by a trivial argument that

Vn > M*. t\g (tn) = nG(t„).

(3.1)

(3.2)

(3.3)

Remark. If ^  p(21) < oo, then, w.l.o.g., g(x) in (3.1) is assumed to be equal to 1. By
г=1

(1.0), (3.3) and the fact that G(x) is slowly varying

VO < e < - ,  n1 e « t 2 « n 1+£. 2
Hence, we have

Ve > 0, e(n, 1) << e{t2n, 1 + e).

(3.4)

(3.5)

Lemma 3.1. As n —> oo

«  e(n, -2  -  J e*). (3.6)
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Proof, If (1.5a) is satisfied, then (3.6) follows from (1.5a), (1.4) and (3.5), If (1.5b) is 
satisfied, then by (1.4)

G(tn)/{H (tn)g(tn/ tn(6))) «  G(tn/ tn(S))/(H(tn/ tn(6))g(tn/ tn(6)))

«  e((tn/ tn(6))2, -2  -  e*).
It is easy to see that

Ve > 0, tn{6) << ne.
Hence

Ve > 0, nl~e «  (tn/ tn(6))2 << n1+e 
and

Ve > 0 , e(n, 1) << e((tn/ t n(8))2, l  + e).
It follows that

G(tn)/(H (tn)g(tn/tn(6))) «  e (n ,- 2 - |e * )

as desired.
Lemma 3.2. As n —> oo

[log n]

exp(6005-1 p(2*)2/(2+5)) << tn(8).
i = 0

Proof. It suffices to prove that if tn(8) ^> oo, then
[log n] ■ [logt„]

£  Р(2‘)2/<2+‘> =  o( £  /.(21)1"')-
j= 0  i= 0

Note that for every natural к
[log n] [log t(n)]
2  p(2*)2/(2+6) <  +p(tn)2H2+6y\ogn
i= 0  i=0

[logt(n)]

< к + p{2k)6/2 p(2*)1-5 + 3p(t„)2/(2+6) logtn
i = 0

[log't„]

<  * +  W2*)Va +  3K«„)e/2)( £  K2')1"')-
i=0

(3.8) now follows from the fact that tn(8) —> oo and p(2n) —> 0 as n —> oo.
o°

Lemma 3.3. I f  ]T) p(2*) < oo, then for every 0 < t < l  
i— 1

*fnt]/*n ^  *» as n  ° ° -

Proof. In this case, we have for every n > M* that by (3.3)
t l  = nH(tn).

It follows that

t2nH(t[nt])/(t[nt]H(tn)) -> 1/i, as n —> oo.
We now show that

Hill S lip  t'~ <  OO.

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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In fact, if limsuptj*./#^] — oo, i.e., there is a subsequence nk such that lim t2n k —oo,
n—>oo k~>oo

then by Lemma 2.5

which is contrary to (3.11). By (3.12), there is a positive constant M such that

tn/t[nt] < M, for every n > 1.

By (3.10), it follows that

n/[nt] < t2n/ t2[nt] < nH (M t[nt])/{[nt}H(t[nt])), 

which implies (3.9) by the fact lim H(Mt[nt])/H(t[nt]) = 1 and lim n/[nt] = 1/t.
The following lemma is similar to that of Bradley (1988).
Lemma 3.4.

lim nP(\X0\ > tn) = 0, and (a)
n—>00

lim (n^(tn)G -1(tn))iE|Xo|/(|Xo| > tn) = 0. (b)
71—► OO

Next by the trivial fact that E\X0\ < oo and EX0 = 0, we have

VarX0/(|X 0| < tn) ~  H{tn) as n —> oo. (3.13)

Define the positive constants
C := C(r(-),ei = e*/6) and D := D(r(-),et) 

from Lemmas 2.1 and 2.2 with r(n) := p(n), Vn E N. (3.14)
Define the following random variables: .

Vn > M * , k e  Z, X (kn) := X kI(\Xk\ < tn) -  EXkI(\Xk\ < tn); and

Vn > M*, m € N, S£> := + • • • + X % \

Note that by the definition of C and D in (3.14)

Vn > M*, Vm G N, C 'm e(m ,-l-£ i) ||x Jn)||l < \\S ^ \\l  < Dme(m, 1 + ег) | | Щ (3.15) 

and
Vn > M*, finite non-empty sets S C  N

| | £ x < ”)| | |< B Se(S,U - e 1)||xJ“)|||, (3.16)
fees

where s = Card S  and e% := e*/6.
For each n > M* define the numbers .

Al(m ) := ||SS)|H and 4  := 4 (« )-  (3.17)

By (3.15) and (3.13) . ,

ne(n,- 1 - £ i ) # ( t n) << 4  «  ne(n, l+ £ i)# (tn )- (3.18)
In order to prove Theorem 1.1 it suffices to show that

Wn(t) =► W(t),

where Wn(t) := S[nt]/An. By Lemma 3.4, (1.4) and (3.18) we can easily verify that 

V£ > 0, lim P( sup |5[п*] .т- S ^ l  \ > eAn) =  0.
n—>00 t \s±s  1 1 J V* *
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Hence, by [Billingsley (1968), Theorem 4.1, p.25], to prove Theorem 1 it suffices to prove 
that

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
( i+i )q  m  , .

Let q := [ra/p], Yi := J2 Xj for i = 0,1, • • • ,p — 1 and Yp := ^  X j Note that
j = l + i q  jr=l+pq

A2n(m) =  pA2„(q) +  £  EYiYj + EY*-

For г ф j  and every natural k, by the definition of p-mixing and Minkowski inequality

\m V i\ < 2||Г(|Ы |4”,11г +
Hence, by (3.15)

\A - \q )A l{ m )-p \  < (p+  l ) W ( ? ) l l 4 n)ll2 + p(k) + А -2Ш У Р\\1)
< (p + l )2(C~l (k2 + p2)q~1/2e(q, 1 + £i) + p(k))
< (p + 1)2((&2 +  p2)m-1/3 + p(k)) (3,27)

for every m  sufficiently large. For arbitrary e > 0, but fixed, by p(k) —> 0 as к —> oo, choose 
an integer к such that (p + l)3p(fc) < e/2. Hence for every m  sufficiently large in n > M* 
uniformly

\Л2п(т )А-2([т/р])-р\ <e

as desired.
Case I. If t is a rational number, that is, t = p/q for some integers p and q with p < q, by

(3.26)

A2n{[mp/q\)A-2{m) = A2n ([mp/q\)A~2{mp)A2n {mp)A~2{m)

-» p/q = t

W*(t) W(t) as n -> oo, where W*{t) := S ^ / A n.
By [Billingsley (1968, Theorem 19.2, p.157], it is enough to show that

VO < t < 1, An([nt])/A2 —> t as n —> oo,

VO < t < 1, {W*(t)2 : n > 1} is uniformly integrable, 
and Ve > 0, there exists a constant Л > 1 such that

^ ( m a x  l ^ l  > AAn) < e/A20<m <n

for all sufficiently large n.
We first prove (3.20).
Lemma 3.5. For every 0 < t < 1, as m —» oo in n > M* uniformly

А„([т*])А~2(т )  t, and

Лп2(т )тах (Л 2([^т]), Л2( т - [ ^ т ] ) ) 1

2 '
In particular,

An([nt])A~2(n) -> t, a s n —>oo.

Proof. We first prove that for every integer p > 2
An([m/p])A~2(m) —> 1/p as m  —> oo in n > M* uniformly.
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as m —> oo in n > M* uniformly.
Case II. If t is an irrational number, then for arbitrary 0 < e < | ,  but fixed, take a 

rational number tx > 0 such that •

|e <  t— < i®. (3.28)

By the Minkowski inequality

\An([m t})-A n([mti})\<An([mt\-[mtx]). (3.29)

Let p = [m/([mt] -  [rati])], then

ra/(rat — mt\ + 1) — 1 < p < m /(m t — mti -  1).

By (3.28), for every ra > 20/e

< p < 5e-1.

Similar to the proof of (3.27), we can get that for every natural к

(р-(р+1)2р(к))А2п([тЬ]-[тЬ]) < ^ (m )+ (p + l) 2̂ ([m t]-[m tx])^(fc) + (p+l)2| | ^ n)|| .̂ 

Take к such that p{k) < e /24, then

A2n{[mt\ -  \mt\])A~2{m) < 6p-1(l + 3{p + 1)4(A2 (fc) + \\X^n)\\l)A-2(m))
< 12e + 36 • 54 • fc2e-4 • C~l • m-1 • e(m, 1 + £i)
< 13e (3.30)

for every m > 308 • kA ■ C~2 • e-10.
By (3.29), (3.30) and the result of Case I, we can get that

IAl([mt))A-2(m) -  *| < 16г

Thus we have

(<Vi — ) /yl[nt] -» 0 in distribution as

S ^ /A [ nt] —> N (0,1) in distribution as

(3.31)

for all sufficiently large ra in n > M* uniformly. This completes the proof of (3.23). The 
proof of (3.24) is similar. We omit it.

Next we prove (3.21).
Lemma 3.6. For every 0 < t < 1

j i f ^ u p  A -2E \ S ^ |-2/ ( |5 Ц I > AAn) = 0.

Proof. The proof will be divided into two cases.
OO

Case I. P(2&) < oo..
к- 1

By Theorem 1 of Bradley (1988), i.e., Lemma 2.6, we have

S[nt]/A[nt] -> N (0,1) in distribution as n oo.

In terms of Lemma 3.4, (1.4), (3.5) and (3.18) we can get that

n —>oo.

n oo.
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By Lemmas 2.1, 2.2 and 3.3, we have

E(S (n)
M - s nt])\2 

[n<] )
-2
[nt]

[nt]

^ H Var( E ^ 7( V ] < № i < ^ ) )

< DC~xE X ll{ t[nt] < \X0\ < tn)/E X 2I(\X0\ < t[nt])
= D C -1(H(tn) - H { t [nt]))/H (t[nt])
—> 0, as n —> oo.

It follows that

j4n([nt])/A[nt] -►1 as n -> oo.

Therefore, S ^ / A n([nt]) —> N (0,1) in distribution as n —> oo. By a well-known result 
on uniformly integrablel (e.g. see [1], Theorem 5.4, p.32), ( S ^ / A n([nt}))2 is uniformly 
integrable and so is ( S ^ / A n)2 by (3.25).

OO

Case II. p(2k) = oo.
fc=i

For every n fixed, let l := ln := tn(S) and p pn := [nt].
V« > 1, define the random variables:

X \ f  :=  XiI(\Xi\ <  t n / l ) -  EXiI(\Xi\ <  t n/ l ) , 

x£> := X i l ( t n / l  < \Xi\ < t n ) -  E X i l i t n / l  < \Xi\ <  t n ),

:= Е - 4 П) ^ d  s f f  := ]ГХ<?>. (3.32)
i= l  i= 1

Obviously, Sp1̂ = S^i + S 2̂ and

fi|S<”>|27(|S<">| > AAn) < 4B|S<?|2/( |S ‘? | > i A A J  + 4E|S<S>|V(|S<S>| > 1 /U„).
(3.33)

By Lemmas 2.1, 2.2 and 3.1

E \S $ \2 «  pe(p, 1 + е^ЕХЦЦпЦ < \X0\ < tn)
«  pe(p, 1 + £i)G(tn)g~1(tn/ tn(6))

< < A 2ne(p,-^e*). (3.34)

By Lemmas 3.5, 2.4, 3.2 and 3.1 and (3.3)
[log n]

E \S $ \2+s «  p exp(560 E  р(Т)2/{2+6))Е\Х0\2+61(\Х0\ < tn/ l ) + A2n+S(p)
i = 0 

[log n]

<< pexp(560 ]T  (>(2,)2/<2+S))G(‘»/09“ 1(i»/0(‘»/i)S + 4 +eW
i= 0

« A2+8. (3.35)

Hence, by (3.33)-(3.35)

> AAn) «  e ( p , - \ e ’ ) + A - 1. (3.36)
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(3.31) now follows from (3.36), the hypothesis £  p(2l) = oo and the fact that
i= 0

lim sup A~2E \S ^ \2I ( \S ^ \  > AAn) = 0

for every M  fixed.
We finally prove (3.22).
Lemma 3.7. For every e > 0, there exists a constant Л > 1 such that

P{ max |5-n)| > 6AAn) < 8e/A2 (3.37)1<г<п
for every n sufficiently large.

Proof. The proof of (3.37) is somehow similar to that of (2.5) from Shao (1989). For 
every i > 1, X ^ \  X ^ \  and are defined as in (3.32). Obviously

P(max15 ^ | > 6AAn) < P (m a x |5 ^ | > 5АЛП) + P (m ax |5^ | > AAn).
i< n  i<n  i<n

By (3.24) and Lemma 2.4
[log n]

E \S ^ \2+s «  i exp(560 £  р(2{)2̂ 2+6Щ х 0\2+61(\Х0\ < tn/l) + A2+6{i),
i= 0

where the constant implied by “< < ” does not depend on г and n. By Corollary 3 from 
Moricz (1982), Lemmas 3.2 and 3.5, analogy to (3.35)

[log n]

P  max 15 }^ 12+5 << nlog3nexp(560 р(2г)2̂ 2+6̂ )Е\Х0\2+61(\Хо\ < tn/ l ) + A2+s
i< n i=0

[log n]

<<nexp(600 £  p(2i)2/(2+5))G (tn /0 ^ 1( ^ /0 ( ^ /0 6 + ^n+6 
*=0

« Л 2Л

here, and in sequel, we can assume, w.l.o.g., that р(2г) >> l/(ilog2 г). Whence there exists 
a constant A > 1 such that for every n sufficiently large

P(max \ s t ]\ > \A n) < e/A2. (3.38)
i<n

We now estimate Р ( т а х |5 ^ | ^  5AAn). Let
i<n

n  =  [n/l], r2 =  [n / l 2], h  =  [ (n -? r ) /(r i  + r 2)], h =  [n/(rx + r 2)],

г(п+Г2)+п
*} = E  i = 0,1, •••■,*!,

j'= l+ i(r i+ r2)

(г+1)(г1+Г2)
Z i =  x $ ,  * =  0 , 1 , •■ •,г2,

j = l+ n + i( r i+ r 2)

i i
Ji(l) = E 1ia n d T i(2) = ^ Z J-,

3 = 0  3 = 0
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г(Г1+Г2)+Г! , ; . • : .
1 7 =  E \x M t n / i  < \х5\ < tn) ~  E\Xj\i(tn/i < iXji < tn),

j=H-i(n+r2)
i

i=o
It is easy to see that

Р (тах |5 г̂ }| >  5AAn) < Р(тах|Т*(1)| > 2AAn) + P(max|T;(2)| > 2AAn)
i<n  t<Ij i< i2

i ( r i+ r 2) + n  .

+P(max E  lXj? l  > хАЛп) + 2 /Р (т а х |5 ^ | > - A n)г<11 “ 7̂  J L 1<Г2 L

= /i  + 1% + 13 + 14 (say). (3.39)
By (3.3), (1.4), (3.5) and (2.2) • ;i

riE \X 0\I(tn/l  < |X0| < tn) < rilt~^H(tn)
= r1lH(in)(nG(tn)/g(tn))~1/2 < XoAn, 

here Ao is a finite constant. Hence for A > 8A0 -.

/ з < Р ( т а х | У / | > Ь ^ п) .. . .. (3.40)
i < h  4

and

h  < 2 /P ( E  \Xi\I{tn/l < \Xi\ < tn) -E \X i\I ( tn/ l<  |Xi| < tn) > ^A An). (3.41)
i—1

In order to establish the estimation of Ji, let

G -1 ~  (fi, Ф), Gk = <r(Xi, 1 < i<  ri + к(п  + r2)).

Щ = E(Yk\Gk-i), к = 0,1, • • • , h,
к .

P o (0 )  =  0 , U i ( k )  =  E % + i  a n d  T * ( k )  =  T k { 1) -  C/0 (fc).

j'=1
Obviously

Ji < Р(тах|Т*(г)| > AAn) +  P(max |Z7o(*)l -  АЛП)
i< L  i < h

= l[1)+ l[2) (say). . ,  (3.42)

Noting that {Т*(г),Сч,г = 0, 1,• • • ,Zi} is a martingale sequence and using a maximal in­
equality due to Brown (1971), we have

/{1} < 4A;2A-2PT*(Z1)2/(|T*(Z1)| < XAn). (3.43)

We below prove that for every г, к and n, by induction on к

EU2(k) < DkrlP(r2)2 log2(2k)EX2I{tn/l < |X0| < t„)e(n,l + \e*), (3.44)

If к = 1, by the defintion of p-mixing

£!o?(i) = Byi+1B(r(+,|G i))<K ni)IIU+ilkl|£W +1|G()lls.
Thus (3.44) is true for к = 1 by (2.1).
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If к > 2, assume (3.44) holds for every integer less than k. Put k\ = [k/2], k2 = k  — k\. 
Then

EUf(k) = EU K h) + EUf+kl( h ) + 2EUi(k1)Ui+h(k2)
к

= EU?(k1) + EU?+kl(k2) + 2EUi(k1) Y ,  Yi+i
j=i+fci

h
z E u t i k j + E u b b M + M r d m b M  E

j=i+fei
< D(ki log2(2fci) +  k2 log2(2A;2) + 2fcĴ 2fc^2 ,log(2fci))*

• n p(r2)2e(n, 1 + ±e*)EX2I(tn/l < \X0\ < tn)

< DkrlP(r2)2 log2(2k)e(n,l +  i е*)ЕХ%1Цп/1 < \X0\ < tn),

by induction hypotheses and (2.1). This proves (3.44).‘
From (3.44) and Corollary 4 of Moricz (1982) we obtain that

Emaxl7o(i) < ZDl\rip(r2)2 log4(2Zi)e(n, 1 4- \e* )E X ll(tn/i < |ATo| < tn) 
i< l  i 4

«  A2np(r2)2 log4(2l)e(n,-^£*)
[log n]

; «  A2np(r2)2e(n,--e*)(  Y  p(2i)1-5)4

by (3.6) and (2.2). On the other hand ,
[logn] [log Гг]
2  /э(2 )̂1_б< Y  p(2*)1-5 + p(r2)1~6(2 + log(n/r2) 
i= 1 i—1

< рЫ  6
[log гг] [log n]

E />(2 E p m 1- 1.

from which follows
[log n] [log n]

p tn )  e  p m 1- 1 «  E  p m
г= 1 i= l

by the fact that p(r2) —► 0 as n —> oo. Therefore we obtain that
[logn]

£  maxi/2 (г) «  p{r2){ Y  />(2*))4е(™> ~ J e*)Al  «  P(n ^)Alt<h ^
(3,45)

and

4 2) < e / \ 2 (3.46)

for every Л > 1 and every n sufficiently large.
For J2, having analogy to (3.43) and (3.46), we can get that for every A > 1 and every n 

sufficiently large

I2 <s / X2 + iA -2\ - 2ET^(2). (3.47)
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By (2.1), (3.6), (1.4) and (2.2)
ET?2{2) < Dl2r2e(n, 1 + £l)E X p ( tn/l < \X0\ < tn)

< Ш _1е(п, 1 +  £i)G(tn)/g(tn/l)

« A l r ' e i n , - ^ ) .  (3.48)

Noting that l / l  — l / ln —» 0 as n —» oo, we finally obtain that

h  < 2e/A2 (3.49)
for every A > 1 and every n sufficiently large.

By (3.40), (2.2), (3.6), (2.1) and (3.5), we have

h  «  A-2^ 2 • l • r2e(n, 1 -f £ i)E X ll(tn/l  < |X0| < tn)

<<  A~2A~2 • n • 1 + ei)G(tn)/g(tn/ l ) << A~2e(n, -^e*) • Г 1.

Hence

h  < e/A2 (3.50)
for every A > 1 and every n sufficiently large.

We now estimate i f )  and consider two cases.
OO .

Case I. Y  p{2г) = oo. (3.51)

Prom (3.43), (2.2), (3.6), (2.1) and (3.5)

«  А-2Л~2 • l • ne(n, 1 + ei)EX$I(tn/l < \XQ\ < tn) «  \ - 2e(n, ~ e * ) .  

Hence, by (3.51) and (3.46)
i i  < 2e/A2. (3.52)

OO

Case II. Y  p№) < oo. (3.53)
i—1

We have

E r \h ) I ( \T * (h ) \  > \A n) < 4SIg(l)J(|2}1(l)| > \ \A „ )  +№ Ul(li)

<36(B5<?2/ ( |S W |> A ^ ) + B (  £  X « ) 2 + EU$(k))
i= l2(r 1+Г2)

< 1 4 4 (B S « /( |S « | > A™) + > A ~ )

+ E T lp )  + EU02(h) 4- Ei Y .  (3.54)
i= l2(ri+r2)

By (3.53), (2.1), (2.2) and (3.45) ! '

Л -2(Я7)2(2) + В( £  X%)f  + EUS(l1) « n - 1(l2n + r 2)+ p (n i)
i= h ( r i+ r 2)

«  l~x +  p(n%).

It follows that

(ETfa(2) + E( J 2  X ^ ) 2 +EU 2(h))A~2 < C / 3000 (3.55)
i= l2 (n + r2)
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for every n sufficiently large.
Prom (3.31) we find that there is a constant Ai such that for every A > Ai and every 

n > 1 ,

A~2E S ^ 2I ( \S ^ \  > XAn/12) < e/3000. (3.56)

By (3.35)

E S ^ I i l S ^ l  > XAn/12)A~2 < 12\~s/2A~2~sE\S%i \2+s «  A5/2,

where the constant implied by “< < ” does not depend on n. It follows that there is a constant 
A2 > 0 such that for every A > A2 and every n > 1

A - 2E S {̂ 2I ( \ s S \ >  XAn/12) < e/3000. (3.57)

Whence, we find by (3.43) and (3.44)-(3.57) that for every A > max(Ai,A2) and every n 
sufficiently large

l[1] < e/X2, (3.58)
which together with (3.46) yields

h  < 2s/A2. (3.59)
Proceeding exactly as the proof of (3.59), we have also

h  < 2e/X2 (3.60)

for every sufficiently large A and n.
It follows from (3.38), (3.39), (3.49), (3.50), (3.59) and (3.60) that (3.37) holds, as desired. 
Now (3.20)-(3.22) follow from Lemmas 3.5-3.7. This completes the proof of Theorem 1.1. 
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