SOME PROPERTIES OF σ -PRODUCTS**

JIANG JIGUANG*

Abstract

Three theorems concerning the almost θ -expandability, normality, and $[\theta, k]$ -compactness $(\theta > \omega)$ of σ -products are proved.

§1. Introduction and Preliminaries

The notion of σ -products was introduced by H.H.Corson^[4] and some interesting results was given in [1-4, 8, 9, 13, 14, 16]. This notion plays an important role in the study of a number of covering and separation properties. In this paper we give some other results concerning it.

All spaces in this paper are Hausdorff. The letter ω denotes the first infinite cardinal; k, λ , θ denote cardinal numbers and other Greek letters will denote ordinal numbers. For a set A, we denote the cardinality of A by |A|; $A^{<\omega} = \bigcup \{A^n : n < \omega\}$, where A^n is the set of functions from n to A. For $t \in A^n$ and $a \in A$, we define $t \oplus a$ is the function from n+1 into A such that $t \oplus a | n = t$ and t(n) = a. Let

$$[A]^{<\omega} = \cup \{ [A]^n : n < \omega \},$$

where

$$[A]^n = \{ B \subset A : |B| = n \}.$$

Let $\{X_{\alpha} : \alpha \in A\}$ be a family of spaces and s be a given point of the product space $P = \prod \{X_{\alpha} : \alpha \in A\}$. For each $x \in P$, let

$$Q(x) = \{ \alpha \in A : x_{\alpha} \neq s_{\alpha} \}.$$

The subspace $\{x \in P : |Q(x)| < \omega\}$ of P is called the σ -product of $\{X_{\alpha} : \alpha \in A\}$ with base point s and is denoted by $\sigma\{X_{\alpha} : \alpha \in A, s\}$.

Let $X = \sigma\{X_{\alpha} : \alpha \in A, s\}$. For each finite subset c of A, the product $\prod\{X_{\alpha} : \alpha \in c\}$ is called a finite subproduct of X. For each $B \subset A$, let

$$X|B = \sigma\{X_{\alpha} : \alpha \in B, s|B\} \times \{s|(A \setminus B)\}.$$

Define a map $p_B: X \to X|B$ by

$$(p_B(x))_{\alpha} = x_{\alpha}, \quad \text{if } \alpha \in B,$$

= $s_{\alpha}, \quad \text{if } \alpha \in A \setminus B$

Manuscript received October 15, 1990.

^{*}Institute of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China.

^{**}Project supported by the National Natural Science Foundation of China .

for each $x \in X$, where $(p_B(x))_{\alpha}$ denotes the α -coordinate of $p_B(x)$. For $n < \omega$, let

 $\widetilde{X}_n = \{ x \in X : |Q(x)| \le n \}.$

It is easy to verify the following facts.

Fact 1. $X = \bigcup \{ \widetilde{X}_n : n < \omega \}$, where each \widetilde{X}_n is closed in X;

$$\widetilde{X}_n = \bigcup \{ X | c : c \in [A]^n \}, \quad \widetilde{X}_0 = \{ s \}$$

Fact 2. For each $B \subset A$, X|B is closed in X and p_B is a continuous open map from X onto X|B such that $p_B|(X|B) = id_{(X|B)}$.

Fact 3. If $n < \omega$ and H is an open set in X such that $\widetilde{X}_n \subset H$, then

 $\{p_c^{-1}(X|c\backslash H): c \in [A]^{n+1}\}$

is a locally finite family of closed subsets of X.

Proof. See Remark 1 in [3] or the proof of Theorem 3 in [8].

Fact $4^{[14]}$. For each $n < \omega$,

$$[p_c^{-1}(X|c \setminus \widetilde{X}_n) : c \in [A]^{n+1}]$$

is a point finite collection of open sets in X.

Proof. Let $x \in X$ and $S = \{c \in [A]^{n+1} : c \subset Q(x)\}$, S is finite. For each $c \in [A]^{n+1} \setminus S$, there is $\alpha \in c \setminus Q(x)$. We have

$$|Q(p_c(x))| = |c \cap Q(x)| < |c| = n + 1$$

It follows that $p_c(x) \in \widetilde{X}_n$; therefore $x \notin p_c^{-1}(X|c \setminus \widetilde{X}_n)$.

A space X is almost θ -expandable if for every locally finite family $\{F_{\alpha} : \alpha \in A\}$ of closed subsets of X there exists a sequence

$$\langle \mathcal{G}_n = \{G_{n\alpha} : \alpha \in A\} \rangle_{n < \omega}$$

of collections of open subsets of X satisfying the following:

(1) $F_{\alpha} \subset G_{n\alpha}$ for each $\alpha \in A$ and $n < \omega$.

(2) For each $x \in X$ there is some $n < \omega$ such that \mathcal{G}_n is point finite at x. These spaces were introduced in [6] under the name of " θ -expandable". The name "almost θ -expandable" was suggested by J.C.Smith in [11]. J.Chaber proved that a space is submetacompact if and only if it is almost θ -expandable and has property b_1 (see [12]). An open cover of a space is an A-cover if it has a locally finite refinement. A cover \mathcal{U} of a space X is semi-open if $x \in \text{IntSt}(x,\mathcal{U})$ for each $x \in X$. Let $\mathcal{U}, \mathcal{V}_n, n < \omega$, be covers of X. The sequence $\langle \mathcal{V}_n \rangle$ is open (semi-open) if \mathcal{V}_n is open (semi-open) for each $n < \omega$; $\langle \mathcal{V}_n \rangle$ is a pointwise W-refining sequence of \mathcal{U} if for each $x \in X$ there is $n < \omega$ and finite $\mathcal{U}' \subset \mathcal{U}$ such that $\{v \in \mathcal{V}_n : x \in V\}$ is a partial refinement of \mathcal{U}' ([15]); $\langle \mathcal{V}_n \rangle$ is a point-star F-refining sequence of \mathcal{U} if for each $x \in X$ there is some $n < \omega$ and finite $\mathcal{U}' \subset \mathcal{U}$ such that $x \in \cap \mathcal{U}'$ and $\operatorname{St}(x, \mathcal{V}_n) \subset \cup \mathcal{U}'$ (see [5]); $\langle \mathcal{V}_n \rangle$ is a point-star refining sequence of \mathcal{U} if for each $x \in \omega$ and $U \in \mathcal{U}$ such that $\operatorname{St}(x, \mathcal{V}_n) \subset U$.

Fact $5^{[7]}$. The following are equivalent for a space X:

(1) X is almost θ -expandable.

(2) For every A-cover \mathcal{U} of X there exists a sequence $\langle \mathcal{V}_n \rangle$ of open refinements of \mathcal{U} such that for each $x \in X$ there is $n < \omega$ such that \mathcal{V}_n is point finite at x.

48

(3) For every directed A-cover \mathcal{U} of X there exists a sequence $\langle \mathcal{V}_n \rangle$ of open refinements of \mathcal{U} such that for each $x \in X$ there is some $n < \omega$ and $U \in \mathcal{U}$ such that $\operatorname{St}(x, \mathcal{V}_n) \subset U$.

(4) Every directed A-cover of X has a σ -cushioned refinement.

Let $\theta, k \geq \omega$. A space X is called $[\theta, k]$ -compact if every open cover of X of cardinality $\leq k$ has a subcover of cardinality $< \theta$. It is easy to verify the following

Fact 6. Suppose that $cf(\theta) > \gamma$ and $\{F_{\alpha} : \alpha < \gamma\}$ is a closed cover of a space Y such that F_{α} is $[\theta, k]$ -compact for each $\alpha < \gamma$. Then Y is $[\theta, k]$ -compact.

Fact $7^{[10]}$. Let \mathcal{B} be a base of a compact space C closed with respect to finite unions and finite intersections. The product space $X \times C$ is normal if and only if X is normal and every \mathcal{B} -cover of X has a locally finite open refinement. 1. 1. 1. 1. 1. 1. 1. A. 1. 1. A. 1. A.

§2. Main Results

Theorem 2.1. Let $X = \sigma\{X_{\alpha} : \alpha \in A, s\}$. If every finite subproduct of X is almost θ -expandable, then X is almost θ -expandable.

Proof. Let $\mathcal{U} = \{U_{\xi} : \xi \in D\}$ be a directed A-cover of X.

Claim. For each $n < \omega$ and $t \in \omega^n$ there exists a family $\mathcal{W}(t)$ of open subsets of X satisfying the following

- (1) $\mathcal{W}(t)$ is a partial refinement of \mathcal{U} ,
- (2) $\widetilde{X}_n \subset \bigcup_{j=0}^n (\cup \mathcal{W}(t|j)), \text{ and }$

n a shi na she la sa s

(3) If n > 0, then for each $x \in X$ there is some $i(x) < \omega$ and $\xi \in D$ such that

$$St(x, \mathcal{W}(t(n-1)\oplus i(x))) \subset U_{\boldsymbol{\xi}}.$$

Proof of Claim. For $t = \phi \in \omega^0$, pick $\xi_0 \in D$ such that $s \in U_{\xi_0}$. Let $\mathcal{W}(\phi) = \{U_{\xi_0}\}$. Assume that $\mathcal{W}(t)$ has been constructed for each $t \in \bigcup_{i=0}^{n} \omega^{i}$. For each $t \in \omega^{n+1}$ there is some

 $r \in \omega^n$ with $t = r \oplus t(n)$. Let $W = \bigcup_{j=0}^n (\cup \mathcal{W}(r|j))$. By (2), $\widetilde{X}_n \subset W$. For each $c \in [A]^{n+1}$, $\mathcal{U}_c = \{U_{\xi} \cap (X|c) \setminus \widetilde{X}_n : \xi \in D\} \cup \{W \cap (X|c)\}$

is an A-cover of X|c. Since X|c is almost θ -expandable, by Fact 5 there exists a sequence $<\mathcal{H}_{ci}>$ of open covers of X|c such that each \mathcal{H}_{ci} is a refinement of \mathcal{U}_c and for each $x\in X|c$ there is some $i < \omega$ such that \mathcal{H}_{ci} is point finite at x. We may assume that for each $i < \omega$

$$\mathcal{H}_{ci} = \{H(c,i,\xi) : \xi \in D\} \cup \{W_{ci}\},\$$

 $W_{ci} \subset W \cap X | c$ and

 $H(c,i,\xi) \subset U_{\xi} \cap X | c \setminus \widetilde{X}_n ext{ for each } \xi \in D.$ in provide the second second

All and a subset of the

For each $k < \omega$, let

$$\mathcal{V}_{ck}=\{p_c^{-1}(igcap_{j=0}^{\kappa}H(c,j,\xi_j))\cap U_{\xi_k}:\xi_0,\cdots,\xi_k\in D\}.$$

Then \mathcal{V}_{ck} are collections of open sets of X such that \mathcal{V}_{ci} is a partial refinement of \mathcal{V}_{cj} for each $j \leq i$. Since \mathcal{U} is directed, we have

(4) For each $c \in [A]^{n+1}$ and $x \in X$ there is some $i < \omega$ and $\xi \in D$ such that $\operatorname{St}(x, \mathcal{V}_{ci}) \subset U_{\varepsilon}$. Define

$$\mathcal{W}(t) = \mathcal{W}(r \oplus t(n)) = \bigcup \{\mathcal{V}_{ct(n)} : c \in [A]^{n+1}\}.$$

Then $\mathcal{W}(t)$ is an open partial refinement of \mathcal{U} . To see (2), let $x \in \widetilde{X}_{n+1} \setminus W$. There is some $c \in [A]^{n+1}$ such that $x \in X | c \setminus W$. Let k = t(n) and pick $\xi_j \in D$ such that $x \in H(c, j, \xi_j)$ for each $j = 0, \dots, k$. Since, by Fact 2, $p_c(x) = \mathrm{id}_{X|c}(x) = x$,

$$x \in p_c^{-1}(\bigcap_{j=0}^n H(c,j,\xi_j)) \cap U_{\xi_k} \in \mathcal{W}(t).$$

It follows that $\widetilde{X}_{n+1} \setminus W \subset \bigcup W(t)$, so $\widetilde{X}_{n+1} \subset \bigcup_{j=0}^{n+1} (\bigcup W(t|j))$. Thus (2) is satisfied. To see (3), let $x \in X$. By Fact 4, we may assume that

$$\{c \in [A]^{n+1} : x \in p_c^{-1}(X|c \setminus \widetilde{X}_n)\} \subset \{c_0, \cdots, c_m\}$$

For each $j = 0, \dots, m$, by (4) there is some $i_j < \omega$ and $\xi_j \in D$ such that $\operatorname{St}(x, \mathcal{V}_{c_j i_j}) \subset U_{\xi_j}$. Let $\xi \in D$ such that $\bigcup_{j=0}^m U_{\xi_j} \subset U_{\xi}$ and let $i(x) = \max\{i_0, \dots, i_m\}$. We have

$$\operatorname{St}(x, \mathcal{W}(r \oplus i(x))) = \bigcup_{j=0}^m \operatorname{St}(x, \mathcal{V}_{c_j i(x)}) \subset \bigcup_{j=0}^m \operatorname{St}(x, \mathcal{V}_{c_j i_j}) \subset U_{\xi}.$$

The condition (3) is satisfied and the proof of Claim is thus complete.

For each $n < \omega$ and $t \in \omega^n$, let

$$\mathcal{G}(t) = igcup_{j=0}^n \mathcal{W}(t|j) \cup \mathcal{U}|(X igcap \widetilde{X}_n).$$

Then $\langle \mathcal{G}(t) : t \in \omega^{<\omega} \rangle$ is a sequence of open refinements of \mathcal{U} . For each $x \in X$, there is some $n < \omega$ such that $x \in \widetilde{X}_n$. If n = 0, then $x = s \in U_{\xi_0} \in \mathcal{W}(\phi)$, so $\operatorname{St}(x, \mathcal{G}(\phi)) \subset U_{\xi_0}$. Now assume n > 0. By (3), there is some sequence $\langle i_0(x), \cdots, i_{n-1}(x) \rangle$ of natural numbers and sequence $\langle \eta_1, \cdots, \eta_n \rangle$ such that $\operatorname{St}(x, \mathcal{W}(t_j)) \subset U_{\eta_j}$ for each $j = 1, \cdots, n$, where $t_j = t_{j-1} \oplus i_{j-1}(x), t_0 = \phi$. Define $t(x) = t_n$, then $t(x) \in \omega^n$ and $t(x) | j = t_j$ for each $j = 0, \cdots, n$. Let $\xi \in D$ such that

$$U_{\xi_0} \cup U_{\eta_1} \cup \cdots \cup U_{\eta_n} \subset U_{\xi}.$$

Then

$$\operatorname{St}(x, \mathcal{G}(t(x))) = \bigcup_{j=0}^n \operatorname{St}(x, \mathcal{W}(t(x)|j)) \subset U_{\xi}.$$

By Fact 5, X is almost θ -expandable.

Theorem 2.2. For any space X the following are equivalent.

(1) X is almost θ -expandable.

(2) Every A-cover of X has an open pointwise W-refining sequence.

(3) Every A-cover of X has a semi-open point-star F-refining sequence.

(4) Every directed A-cover of X has a semi-open point-star refining sequence.

(5) Every directed A-cover of X has a σ -closure-preserving closed refinement.

Proof. (1) \xrightarrow{j} (2) By Fact 5, every A-cover \mathcal{U} of an almost θ -expandable space has a sequence $\langle \mathcal{V}_n \rangle$ of open refinements such that for each $x \in X$ there is some $n < \omega$ such that

 \mathcal{V}_n is point finite at x. Then $\langle \mathcal{V}_n \rangle$ is a pointwise W-refining sequence of \mathcal{U} .

 $(2) \rightarrow (3)$ Clear.

 $(3) \to (4)$ Let \mathcal{U} be a directed A-cover of X. By (3), \mathcal{U} has a semi-open point-star \dot{F} -refining sequence $\langle \mathcal{V}_n \rangle$. Since \mathcal{U} is directed, $\langle \mathcal{V}_n \rangle$ is a point-star refining sequence of \mathcal{U} .

(4) \rightarrow (1) Let \mathcal{U} be a directed A-cover of X. By (4), \mathcal{U} has a semi-open point-star refining sequence $\langle \mathcal{V}_n \rangle$. For each $A \subset X$ and $n < \omega$, let

$$W(n,A) = \{ x \in X : \operatorname{St}(x, \mathcal{V}_n) \subset A \}.$$

Then $\operatorname{Cl}(W(n, A)) \subset A$. For each $n < \omega$, let

$$\mathcal{W}_n = \{ W(n, U) : U \in \mathcal{U} \}.$$

It is easy to prove that $\bigcup_{n=0}^{\infty} \mathcal{W}_n$ is a σ -cushioned refinement of \mathcal{U} . By Fact 5, X is almost θ -expandable.

 $(1) \to (5)$ Let $\mathcal{U} = \{U(t) : t \in T\}$ be a directed A-cover of an almost θ -expandable space X. By Fact 5, there exists a sequence $\langle \mathcal{V}_n \rangle$ of open refinements of \mathcal{U} such that for each $x \in X$ there is $n < \omega$ such that \mathcal{V}_n is point-finite at x. We may assume that $\mathcal{V}_n = \{V(n,t) : t \in T\}$ and $V(n,t) \subset U(t)$ for each $n < \omega, t \in T$. Let $S = \{s \subset T : |s| < \omega\}$. For any $n, m < \omega$ and $s \in S$, let

$$H(n,m) = \{x \in X : |\{V \in \mathcal{V}_n : x \in V\}| \le m+1\},\$$
$$F(n,m,s) = \{H(n,m) \setminus \bigcup \{V(n,t) : t \in T \setminus s\}.$$

Since H(n,m) is closed in X and $\{H(n,m) \cap V(n,t) : t \in T\}$ is a point-finite family of open subsets of H(n,m), the family

$$\mathcal{F}_{nm} = \{F(n,m,s) : s \in S\}$$

is a closure-preserving family of closed subsets of X. For each $x \in X$, there is some $n(x) < \omega$ and $m(x) \ge 1$ such that

$$\{V \in \mathcal{V}_{n(x)} : x \in V\} = \{V(n(x), t_1), \cdots, V(n(x), t_{m(x)})\}.$$

Then $x \in H(n(x), m(x))$. Let $s(x) = \{t_1, \dots, t_{m(x)}\}$. Take a $t(x) \in T$ such that

$$U(t_1) \cup \cdots \cup U(t_{m(x)}) \subset U(t(x))$$

Then

$$x \in F(n(x), m(x), s(x)) \subset U(t(x)).$$

It follows that $\{F(n(x), m(x), s(x)) : x \in X\}$ is a σ -closure-preserving closed refinement of \mathcal{U} .

(5) \rightarrow (1) Any σ -closure-preserving closed refinement of a cover of X is clearly a σ cushioned refinement. By Fact 5, X is almost θ -expandable.

Corollary 2.1. A continuous image of an almost θ -expandable space under a closed mapping is almost θ -expandable.

Proof. Let f be a closed and continuous mapping from an almost θ -expandable space X onto a space Y and \mathcal{U} be a directed A-cover of Y. Then

$$\mathcal{V} = \{ f^{-1}(U) : U \in \mathcal{U} \}$$

is a directed A-cover of X. By Theorem 2.2, the cover \mathcal{V} has a refinement $\bigcup_{n=0}^{\infty} \mathcal{F}_n$, where each \mathcal{F}_n is a closure-preserving family of closed subsets of X. For each $n < \omega$, let

$$\mathcal{K}_n = \{ f(F) : F \in \mathcal{F}_n \}.$$

Then $\bigcup_{n=0}^{\infty} \mathcal{K}_n$ is a σ -closure-preserving closed refinement of \mathcal{U} . By Theorem 2.2, Y is almost θ -expandable.

Theorem 2.3. Let $X = \sigma\{X_{\alpha} : \alpha \in A, s\}$ and C be a compact space. Suppose that X is normal and the product $\prod\{X_{\alpha} : \alpha \in c\} \times C$ is normal for each finite subset c of A. Then $X \times C$ is normal.

Proof. Let \mathcal{B} be a base of C closed with respect to finite unions and finite intersections and

$$\mathcal{G} = \{G(B,D): (B,D) \in \mathcal{E}\}$$

be a \mathcal{B} -cover of X, where

 $\mathcal{E} = \{(B, D) : B, D \in \mathcal{B} \text{ and } \operatorname{Cl}(B) \cap \operatorname{Cl}(D) = \emptyset\}.$

Claim. For each $n < \omega$, there is an open subset H_n of X and a collection \mathcal{V}_n of open subsets of X satisfying the following

(1) \mathcal{V}_n is locally finite and is a partial refinement of \mathcal{G} .

- (2) $\widetilde{X}_n \subset H_n \subset H_{n+1}$ and $\operatorname{Cl}(H_n) \subset \bigcup_{i=0}^n (\cup \mathcal{V}_i).$
- $(3) \operatorname{Cl}(H_n) \cap (\cup \mathcal{V}_{n+1}) = \emptyset.$

Proof of Claim. For n = 0, let H_0 be an open subset of X and $(B_0, D_0) \in \mathcal{E}$ such that

$$s \in H_0 \subset \operatorname{Cl}(H_0) \subset G(B_0, D_0).$$

Let $\mathcal{V}_0 = \{G(B_0, D_0)\}$. Let us assume that H_i and \mathcal{V}_i has been constructed for each $i \leq n$. Let $V = \bigcup_{i=0}^{n} (\cup \mathcal{V}_i)$. By (2),

$$\widetilde{X}_n \subset H_n \subset \operatorname{Cl}(H_n) \subset V.$$

For each $c \in [A]^{n+1}$,

$$\{G(B,D) \cap X | c : (B,D) \in \mathcal{E}\}$$

is a \mathcal{B} -cover of X|c. Since $(X|c) \times C$ is normal, there is a locally finite open cover $\{V(c, B, D) : (B, D) \in \mathcal{E}\}$ of X|c such that

. We also can be a subscription of $V(c,B,D) \subset G(B,D) \cap X|c$ by the subscription of the second statement of the second statem

for each $(B, D) \in \mathcal{E}$. Let

$$\mathcal{V}_{n+1} = \cup \{\mathcal{V}_c : c \in [A]^{n+1}\},$$

 $ightarrow \mathbf{here}_{\mathcal{O}}$, where $\mathcal{O}_{\mathcal{O}}$ is the spectrum preserves of the relation of the second structure of the second structure $\mathcal{O}_{\mathcal{O}}$.

 $\mathcal{V}_{c} = \{p_{c}^{-1}(V(c,B,D) \setminus \operatorname{Cl}(H_{n})) \cap G(B,D) \setminus \operatorname{Cl}(H_{n}) : (B,D) \in \mathcal{E}\}$

Since $\cup \mathcal{V}_c \subset p_c^{-1}(X|c \setminus H_n)$ and, by Fact 3,

$$\{p_c^{-1}(X|c\backslash H_n): c\in [A]^{n+1}\}$$

is locally finite, \mathcal{V}_{n+1} is a locally finite collection of open subsets of X. It is also a partial refinement of \mathcal{G} . For each $x \in \widetilde{X}_{n+1} \setminus V$, there is some $c \in [A]^{n+1}$ such that $x \in X | c \setminus V$. Let $(B, D) \in \mathcal{E}$ such that $x \in V(c, B, D)$. Since $p_c(x) = \mathrm{id}_{(X|c)}(x) = x$,

$$x \in p_c^{-1}(V(c, B, D) \setminus \operatorname{Cl}(H_n)) \cap G(B, D) \setminus \operatorname{Cl}(H_n) \in \mathcal{V}_{n+1}.$$

Then $\widetilde{X}_{n+1} \setminus V \subset \cup \mathcal{V}_{n+1}$, so $\widetilde{X}_{n+1} \subset \bigcup_{i=0}^{n+1} (\cup \mathcal{V}_i)$. Since X is normal and

$$\widetilde{X}_{n+1} \cup \operatorname{Cl}(H_n) \subset \widetilde{X}_{n+1} \cup V \subset \bigcup_{i=0}^{n+1} (\cup \mathcal{V}_i).$$

there is an open subset H_{n+1} of X such that

$$\widetilde{X}_{n+1} \cup \operatorname{Cl}(H_n) \subset H_{n+1} \subset \operatorname{Cl}(H_{n+1}) \subset \bigcup_{i=0}^{n+1} (\cup \mathcal{V}_i).$$

It follows that \mathcal{V}_{n+1} and H_{n+1} satisfy the conditions (1)-(3); the proof of Claim is complete.

Let $\mathcal{V} = \bigcup_{n=0}^{\infty} \mathcal{V}_n$. By (1) and (2), \mathcal{V} is an open refinement of \mathcal{G} . Let $x \in X$. There exists $m < \omega$ such that $x \in \widetilde{X}_m \subset H_m$. For each $i \ge m$, by (3),

$$H_m \cap (\cup \mathcal{V}_{i+1}) \subset \operatorname{Cl}(H_i) \cap (\cup \mathcal{V}_{i+1}) = \phi$$

For each $i \leq m$, there is a neighbourhood S_i of x which intersects only finitely many members of \mathcal{V}_i . Then $H_m \cap S_0 \cap \cdots \cap S_m$ is a neighbourhood of x which intersects only finitely many members of \mathcal{V} . \mathcal{V} is a locally finite open refinement of \mathcal{G} . By Fact 7, $X \times C$ is normal.

Theorem 2.4. Let $X = \sigma\{X_{\alpha} : \alpha \in A, s\}$ and θ be a regular cardinal strictly greater than ω . Suppose every finite subproduct of X is $[\theta, k]$ -compact. Then X is $[\theta, k]$ -compact.

Proof. Since $X = \bigcup \{\widetilde{X}_n : n < \omega\}$, by Fact 6 it suffices to show that each \widetilde{X}_n is $[\theta, k]$ -compact. Clearly $\widetilde{X}_0 = \{s\}$ is $[\theta, k]$ -compact. Let us assume \widetilde{X}_n is $[\theta, k]$ -compact. Suppose $\mathcal{U} = \{U_{\gamma} : \gamma < k\}$ is a collection of basic open sets in X such that $\bigcup \mathcal{U} \supset \widetilde{X}_{n+1} \supset \widetilde{X}_n$. There is a subfamily $\mathcal{U}_0 = \{U_{\gamma} : \gamma \in S\}$ of \mathcal{U} with $S \subset k$, $|S| < \theta$ and $\bigcup \mathcal{U}_0 \supset \widetilde{X}_n$. For each $\gamma \in S$, there is a finite subset $b(\gamma) \subset A$ and an open set $V_{\gamma\beta}$ of X for each $\beta \in b(\gamma)$ such that

$$U_{\gamma} = X \cap (\prod \{ V_{\gamma\beta} : \beta \in b(\gamma) \} \times \prod \{ X_{\beta} : \beta \in A \setminus b(\gamma) \}).$$

Let $B = \bigcup \{ b(\gamma) : \gamma \in S \}$. It is easy to see that

$$|B| < \theta$$
 and $p_B^{-1}(p_B(U_\gamma)) = U_\gamma$ for each $\gamma \in S$.

Let

$$Y = \bigcup \{ X | c : c \in [A]^{n+1} \cap p(B) \},\$$

where p(B) denotes the power set of B. For each $c \in [A]^{n+1} \setminus p(B)$ and $x \in X \mid c, c \notin B$, so

$$|Q(p_B(x))| \le |B \cap c| < |c| = n + 1.$$

Then $p_B(x) \in \widetilde{X}_n$. There is $\gamma \in S$ such that $p_B(x) \in U_{\gamma}$. Since, by Fact 2,

$$p_B(x) = \mathrm{id}_{(X|B)}(p_B(x)) = p_B(p_B(x)), \ x \in p_B^{-1}(p_B(U_\gamma)) = U_\gamma.$$

It follows that

$$\cup \{X | c : c \in [A]^{n+1} \setminus p(B)\} \subset \cup \mathcal{U}_0.$$

Thus

$$\widetilde{X}_{n+1} \setminus \cup \mathcal{U}_0 \subset Y \subset \widetilde{X}_{n+1}.$$

Since $|[A]^{n+1} \cap p(B)| < \theta$, by Fact 6, Y is $[\theta, k]$ -compact. There is a subfamily \mathcal{U}_1 of \mathcal{U} such that $|\mathcal{U}_1| < \theta$ and $Y \subset \cup \mathcal{U}_1$. Then $\widetilde{X}_{n+1} \subset \cup (\mathcal{U}_0 \cup \mathcal{U}_1)$. Therefore, \widetilde{X}_{n+1} is $[\theta, k]$ -compact.

The following example shows that Theorem 2.4 is false when $\theta = \omega$.

Example 6. For each $n < \omega$, let X_n denotes the two-point discrete space D(2) and

$$X = \sigma\{X_n : n < \omega, 0\},\$$

where $0 = (0, 0, \dots)$. Every finite product of $\{X_n : n < \omega\}$ is compact. Because X is a dense proper subspace of the compact space $D(2)^{\omega}$, X is not compact. On the other hand, it follows from Theorem 5 that X is Lindelöf.

References

- [1] Arhangel'skii, A.V. & Rančin. D.V., Everywhere dense subspaces of topological products and properties associated with final compactness, Vestnik Moscow Univ., Ser. I. Mat. Meh., 6 (1982), 21-28 (in Russian).
- [2] Chiba, K., On the \mathcal{D} -property of σ -products, Math. Japonica, 32 (1987), 5-10.
- [3] Chiba, K., On σ-products, Math. Japonica, **32** (1987), 373-378.
- [4] Corson, H.H., Normality in subsets of product spaces, Amer. J. Math., 81 (1959), 785-796.
- [5] Junnila, H.J.K., On submetacompactness, Topology Proc., 3 (1978), 375-405.
- [6] Katuta, Y., On expandability, Proc. Japan Acad., 49 (1973), 452-455.
- [7] Katuta, Y., Expandability and its generalizations, Fund. Math., 87 (1975), 231-250.
- [8] Kombarov, A.P., On the normality of Σ_m -products, Soviet Math. Dokl., 14:4 (1973), 1050-1053.
- [9] Nahmanson, L.V. & Yakovlev, N.N., On bicompacta lying in σ-products, Comment. Math. Univ. Carolin., 22 (1981), 705-719 (in Russian).
- [10] Przymusinski, T.C., Products of normal spaces, in K.Kunen and J.Vaughan, Eds., Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984.
- [11] Smith, J.C., On θ -expandable spaces, Glasnik Math., 11 (1976), 335-346.
- [12] Smith, J.C., Irreducible spaces and property b₁, Topology Proc., 5 (1980), 187-200.
- [13] Smith, J.C. & Telgarsky, R., Closure-preserving covers and σ -products, Proc. Japan Acad., Ser. A, 63 (1987), 118-120.
- [14] Teng Hui, Normality of product spaces and related properties, Doctoral dissertation, 1990.
- [15] Worrell, J.M, Jr., Some properties of full normalcy and their relations to Cech completeness, Notices Amer. Math. Soc., 14 (1967), 555.
- [16] Yakovlev, N.N., On bicompacta in Σ -products and related spaces, Comment. Math. Univ. Carolin, 21 (1980), 263-283.