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CLASSIFYING INVOLUTIONS ON
PR( 2k) UP. TO EQUIVARIANT COBORDISM***

“YANG HUAJIAN* -~ WU ZHENDE** .= - LIU ZONGZE**

. Abstract

It is proved that there are exactly k + 1 involutions on RP(2k) up to equxvarlant cobordlsm

- §1. Introductlon

Let (M",7) be a smooth mvolutlon on the smooth closed manifold M™. Let A denote the
antipodal involution on the sphere $™. Then A x 7 is a free smooth 1nvolut10n on S™x M™.
By identifying (m y) with (Az,7y) in §™ x M™, we obtain a smooth closed manifold Rm('r)
of dimension m + n. In ([1], p.165), we have proved '

Theorem 1.1. (M7, 1) is equivariant cobordant to (M2",7'2) if and only if Rm(ﬁ) is
cobordant to R™(717) for a11 m>0.

In [2], we have determined the equlva.nant cobordlsm classes of smooth involutions on
RP(2k + 1) by applying Theorem 1.1. As a further application, we prove in this paper the
following theorem. :

Theorem 1.2. There are exactly k +1 smooth involutions on RP(2k) up to equivariant
cobordism, which are 1 3 T0s 1y "* 5 Th—1- Here 1= T_1 is the identical involution on RP(2k)
and 7; is such a smooth 'in_volutmn on RP(2k) that

Tz[wO,xla ‘ x2k] = [_xO,_mla * ’;$t1mi+l’ e am?-k]-

We assume k > 0 throughout this paper..

§2. Proof of Theorem 1;2

'Firstly, we need the following lemma.

Lemma 2.1. R™(r;) is diffeomorphic to the projective space bundle RP((i 4+ 1)y, &
(2k — i)R), where A, and R are, respect1ve1y, the canonical line bundle and the trivial line
bundle over RP(m). : : Do -

Proof. The vector bundle (¢ + I)Am ® (2k — 7)R over RP(m) may be formed from
8™ x R¥*+1 by 1dent1fy1ng (a: to,t, o+ tistigs, o+ to2n) With

(Aﬂb', =1y =t i, y bok).-
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Let f : S™x R%*+1 — (i+1) X, ®(k—i) R be the identification. Then f is a morphism between
vector bundles. Thus f induces a morphism F 2 8™ x RP(2k) = RP((i +1)Am @ (2k —%)R)
between projective space bundles But f is still an 1dent1ﬁcat10n identifying

(:1:, [to,t;[, . tz,tz+1, : tzk]) Wlth (Ail) [ tO’ftla . tz,.tz.*_l, T tgk])
in ™ x RP(2k). Thus RP((z + 1)Am @ (2k — 9)R) is the 1dentiﬁeation- spac"e R™(1;)) =
S™ x RP(2k)/A x 7;. Since we put such a differentiable structure on the identification space
which makes the identification map smooth, the lemma follows.

Next, we consider the cohomology ring H*(R™(7); Z2) for an arbitrary smooth involution
7 on RP(2k). Note that (R™(7),p, RP(m)) is a differentiable fibre bundle with fibre RP(2k)
and with the structure group Z,. From the Euler characteristic relation x(RP(2k)) = x(F)
(mod 2) (see [3]), we know that the fixed point set F' of 7 is nonempty.” Let y bé a fixed point.
Then we have a cross-section p, : RP(m) — RP(m) x y C S™ X RP(2k)/A x T = R™(7)
for the fibre projection p. Let i, : R™(7) — R™!(r) be the natural inclusion, m < my; and
let i : RP(2k) — R™(7) be the fibre inclusion; We have the following lemma.

Lemma 2.2. For every mteger m 2 1 there eXJSts Cm € H Y(BR™(7); Zz) such th_a_t

(l)z cm1 ——cm form<m1, ' .

(2) i"cm is a genera.tor of HY (RP(2k); Z3); thus H*(Rm ('r) Zz) isa free H* (RP(m) Zz)
module with basis {1 Cm, cﬁl, . ,cz’“}, the module act1on is g1ven by be = (b) U e, Where
b€ H*(RP( )Zz)a.ndeeH*(Rm()Zz) o | A

Proof. Firstly, we prove H 1(R’"(T) Z,) = = Zo ® Zo. In fact, by the homotopy exact
sequence assoc1ated W1th a ﬁbratlon, we have the followmg short exact sequence

. .0— I (RP(2k), y) > Hl(Rm(T), y) B 10, (RP(m), z) — 0,.
where z € RP(m) and y € p~(z) = RP(2k). Thus '
| Hl(Rm(’f y)) = H1(Rm(T),y)/CommH:L(Rm(T),y) A1 ® Az, |
where A= ZZ orZ,i=1,2. By Hurewicz theorem, we get Hy (Rm('r) ) A, @Az Thus
the universal coefficient theorem implies H'(R™(7); Z2) Z2 & Z.
Secondly, H* (R™(7), R™~1(r); Z,) ~ H*(RP(2k); Z2)®H*(Dm Sm 1 Zz),where Dm
{z| ||z| <1,z € R™} and S™! is the boundary of D™. =~ =
The normal bundle of the natural embeddlng o_f}_RP(m — 1) in RP(m) is precisely the
canonical bundle A over RP(m - 1). Let :D()\) denoté disk bundle associated with A over
RP(m~1). By the tubular neighborhood theorem ([4], p.115),-we may regard D(]) as a tube
neighborhood around RP(m - 1) in RP(m) such that RP(m) - f?(A)':"Dm. Since D()) is
homotopic to RP(m —1) and:since" D™ is contractible, the inclusion R™~ (1) — R™(r) is
a homotopy equivalence and p~!(D™) may be regarded as RP(2k) x D™. Thus
HY(R™(r), R™(r); Z2) ~ HY(R™(r),p™ (D(V)); Z2) o
zH*(p‘l(Dm),p_l(Sm;'l); Zg)i (excision) '
~ H*(RP(2k) x D™, RP(2k) x §™; Z,)
~ H *(RP(2k) Zz) ® H*(D™, 8™~ L. Z,) (Kunneth Theorem)
Finally,  H 1(Rm(r) Zz) — HY(R™7\(1); 2,) is an 1somorph1sm for m > 2 and a
surjection for m = 1. Thus we may choose c;; € H(R™(7);Z,) for every m > 1 such
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that i%,cm, = cm and i*c,, is a generator of HY(RP(2k);Zs). - By Leray-Hirsch theo-:
rem ([5], p.365), we see that H*(R™(7); Z3) is, a free H*(RP(m);Z;) module with basis
{1,cm, cfn, ,c2k}, and the module action is just as the form in the lemma. . V

Now we turn to the Stlefel-Wh1tney total classes W(Rm( 7)) of R™(r). We need the
following lemma.

Lemma 2.3([6], p. 442] Propos1t10n 8.4 and its proof). Let c € H*(R™(7);Z2) be such
an element that {1,¢,c%,--,c**} is a basis of H*(Rm( ); Z3) as a free H*(RP(m); Z,)
module. Then there is a unique element 1 +ay+az+ o+ € H *(RP(m) Zy) such
that a; € H z(RP(m) Zs), the elements 1,a;, - s A2k+1 fo]low the Wu formula ([4], p- 94) '
a,nd . . L .

R = p*(ay)c?* + p*(az ) 2% 1+ +p (a%)c+p (azk+1),

W(R™(r)) = *(W(RP(m)))((1+C)2’°+1+p (al)(1+0)2’“+ +P (azk)(l+0)+P (azk+1)):

+Lemma 2.3 allows us to prove the following proposition:
Proposnuon 2.1. Let {c1,-++ ,Cm,++ } be an element sequence as'in’ Lemma 2.2. Then
there isa umque integer d 0 <d <2k + 1, such that ‘

W(R™(r)) = p*(W(RP(m)))(1 + p*(a) + cm) (1 + om)*+17¢,

. d
. - d . S, . R o
c?rlc_l-l = § : (i>p*(az)c%c+l i

=1
for allm > 1, where a € H 1(RP(m) Z5) is the generator.
Proof. Choose a sufficient large integer mo > 2k + 1. Then there i is a unique 1nteger d,
0 < d < 2k + 1, such that for this mg the formula 1+a; + ctagggr =(1+ a)d holds
Let j = 291 4202 ... £ 20t 41 > Go > . > Jy > 0. Suppose 2i < 29t for some 4 > 0.
_ Then the Wu formula and the fact that (”1) = 1 (mod 2) if and only if the powers wh1ch
oecur in the bmary expression of ny occur in the binary express1on of ny imply '

0 Sz (GJ) = a,zzaJ + a]_}_zl

(Smce a; = esaj =0 or 1) and a;qi = a,z.atJ Thus a; = az,lam RNy PYIR y

Let z1 > ipg > - > ir __>_ 0 be all the numbers such that Qgiy s Ogiz; " ,az.r are nonzero.
Define d 2’1 + 22 4o 2. We claim that for this ﬁxed ™y, there must hold (1 + a)é =
14+ay + -+ a2k+1 In fact, let 0 < j=< Mo and a; # 0. " From a;j = azglam "+ Qo where
j=2n +202 442 and i > ja > o > jp > 0 we have {d1rdas- -+ 1 Je} C {zl,zz, e ,zr}
Thus ( j) = 1 (mod 2) and the jth homogeneous element in (1 + a)? is exactly the a;.
If a; = 0, then there must exist some jg such that ay, = 0. Thus {ji,52, - ,jt} &
{41,42,-++ ,4,} and the jth homogeneous element. in (1 + a)? is zero. In the case j > my,
both the jth elements ( )aJ and a; are zefo. Put the dlscussmns above together, we see
1+ai+as+ -+ agmsr = (1+a)? for thismg.

To complete the proof of this proposition, we note that

TR™(r) ~ TRP(m) @ T RP(2K)

holds for all m > 1 ([, p.482), where TR™(T) and TRP(m) are the tangent bundles of
R™(r) and RP(m) respectively, and T,,,RP(2k) is the tangent bundle along the fibres of
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the differentiable fibre bundle R™(7) over RP(m). Thus

W (T RP(2K)) = (1+em)® ™+ + p*(@1)(1 + €)™ + -+ + p*(a26) (1 + €) + P "(azk+1)
for all m > 1. Since 4, Tn, RP(2k) = T, RP(2k) imCmy = Cm for m < my, we have

(1+0:) =1+a1+---+a2k+1
for all m > 1. This leads to

W(R™(r)) = p*(W(RP(m)))(1 + ) *1~%(1 4 p*(a) + cm)* ,
for all m > 1. Consequently, the dimension 2k of the vector bundle T,»RP(2k) implies

d

w31 (Dreras
. Cog=1 : .

for all m > 1. The uniqueness of the integer d is obvious.

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. Suppose d is the unique integer in Proposition 2.1 for the
smooth involution 7 on RP(2k). By.([3], p.75), for every m > 1, thereis ¢}, € H*(RP(d)\,®
(2k + 1 — d)R); Z5) such that iy, c;, = c;, and H*(RP(dAm @ (2k + 1 — d)R); Z3) is.a free
H*(RP(m); Z2) module with basis {1,¢ch,(ch.)?, - ,(c;n)Zk}, the module action is just as
in Lemma, 2.2, and ' o

W(RP(dAm @ (2k+1 - d)R)) =p (W(RP(m)))(l + cm)2k+1 Y1 +9*(a) + )%,

d
1 \2k+1 _ d *(af) (! \2k+1=i .
=3 () e

where i,, is the natural inclusion for m <mj,and p: RP(d)\m ® (2k +1- d)R) — RP(m)
is the ﬁbre progectlon Thus the homomorphlsm
f 1+ H*(RP(dAm® (2k + 1 — d)R); Z5) — H*(R™(7); Z2)

such that f(c},) = cm and f(p*(a)) = p*(a) is a ring isomorphism. Let W denote the total:
Stiefel-Whitney classes of RP(dAm @ (2k + 1 — d)R). By Proposition 2.1, the total Stiefel-
Whitney classes of R™(7) is f(W). Therefore both R™(7) and RP(dAm ®(2k+1~d)R) have
the Stiefel-Whitney numbers and R™ (7') is cobordant to RP(d\n®(2k+1-d)R) = R™(14-1)
for all m > 1 (Lemma 2.1). Since RO(T) RP(2k) = RO(’Td_. ), by Theorem 1.1, 7 is
equivariant cobordant to 74_;. Sinice both 74_; and Ta,_q4—1 have the same fixed point sets
and the same normal bundles 6f the fixed point sets in RP(2k), 74_1 is equivariant cobordant
Tok—d—1 ([3], 25.2, p.88). The proof is complete.
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