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ON THE ESSENTIAL SPECTRUM OF A COMPLETE 
RIEMANNIAN MANIFOLD WITH A POLE**

Lu Zhiqin* * * Chen Zhihua*

Abstract
It is shown that the essential spectrum of a complete Riemannian manifold with a pole and 

infinite volume can be computed via the growth rate of the volume of the geodesic ball under 
some technical condition. The growth-rate assumption is somewhat weaker than the curvature 
assumption used by many authors.

§1. Introduction
Let M n be a complete Riemannian manifold of dimension n. The Laplacian Д of M  on 

Cq°(M) has a unique extension Д  to an unbounded self-adjoint operator on L2(M). One 
defines the essential spectrum of M, denoted by Ess Spec (M), to be those real numbers 
which are either cluster points of the spectrum of Д or eigenvalues of infinite multiplicity 
for Д.

In [1-3], the Ess Spec M  has been computed where M  is assumed to be some Riemannian 
manifold which can be “compared” with the space form. In [1] M  is assumed to be simply 
connected and negatively curved and the sectional curvature tends to — c at infinity and 
then the essential spectrum of M  is [ |a 2, +oo); furthermore, in [2], the authors pointed out 
that if c is infinite, then the Ess Spec M = 0. In [3], it is proved that if M  has a rotational 
invariant metric outside a compact set and the radical sectional curvature is nonnegative, 
then M  has no eigenvalues and Ess Spec M  =  [0, +oo). In order to obtain these results, a 
strong geometric and topological assumption must be given, which implies that the manifold 
possess a pole. On the other hand, we do not know much about the relation between the 
essential spectrum and the growth of the volume of a Riemannian manifold. In [4-6], some 
corse inequalities are obtained (we will refine one of them in §3) under the assumption of the 
growth of the volume of the manifold. In this paper, we compute the Ess Spec M under the 
assumption that M  has a rotational invariant metric and the growth of the volume of the 
geodesic ball satisfies log(V(r))-or-6 —» 0 as r —► oo. We also give an example to show that 
the condition of rotational invariant metric is necessary. In §4, we introduce the concept of 
“comparison” manifold to generalize the result to some non-rotational invariant metric case.

We will need the following theorem concerning the abstract spectrum theory:
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Theorem  A . The necessary and sufficient condition for а 6 Ess Spec M is that for every 
6 > 0 there exists an infinite dimensional subspace Ge ofD(A), the domain of A, such that 
for each f  e Ge we have ||Д /  +  erf || < e ||/||, where || • || is the L2-norm.

§2. The Case of Rotational Invariant Metric
The main purpose of this section is to prove the following
Theorem  2.1. Suppose M is an n-dimensional noncompact complete Riemannian man

ifold with rotational invariant metric (thus must have a pole), i.e., the Riemannian metric 
can be written as ds2 = dr2 + w2d92 where r is the distance to the pole and d02 is the metric 
on Sn~1 with constant sectional curvature 1 . And u> is a smooth function only relies on r. 
If the radical sectional curvature of M is bounded, and let the volume V (r) of the geodesic 
ball of center o, radius r satisfy . .

lim (log V(r) — at — b) =  0, . (2.1)r—>+oo " ' ' 1 ■' ‘ ■ '
where a, b are constant, then Ess Spec M =  [ |a 2, +oo).

We will need the following lemma.
Lemma 2.1. Under the hypothesis of Theorem 2.1, in addition if Cx is the bound of the 

radical sectional curvature, then there exists a constant C2 such that for r > 1 we have

OJ < C 2, Ш'
(Jj < C 2 (2.2)

and a constant C3 such that, for rx, r2 > 1, \r2 — n |  < 1,

: .... ... . w(r2)/w (ri) < C3, , (2.3)

where ds2 = dr2 +  oj2d02 is the Riemannian metric of M and ui(r) is the function of r and 
dO2 is the canonical metric on Sn-1. ,
. Proof. Let К (r) be radical sectional curvature of. M. Then by the. Jacobi equation^, 

we know , ; 4 ■

1 ' u" + KcJ = 0, : ■ : : ; (2.4)

so \ш"/ш\ < \K\ <  Ci. Let h =  и'/ш. Then'

h' + h2 = -K .  . , (2.5)

Let F he the zero set of h' on [l,+oo). Then if sup F  =  + 00, i.e., there exists zero points 
series ffc —> + 00, к —» + 00, then we have . ;

. . sup \h\ < max (\h\, л/Щ ) < y /c l  + \h{l)(, : . . (2.6)
r> 1 l<r-<n '

otherwise there exists a real number ro such that if r > tq then h! ф 0. So h is monotone. 
We can conclude that lim h(r) =  c where с Ф ± 00. Otherwise by (2.5) we know that' ' . r—»+oo ■ ' ■ . .

lim h(r) =  —00, so for arbitrary A > а > 0 there exists ro such that if r >  ro we haver—>+oo
h(r) < -A . Then for r > ro we have

“ (r)
w(r0)

So w(r) < u/(ro)e~A(r~r°) and

V(r) <  Г  иJn- 4 r  +  Г  ш(г0)п- 1е -А п̂- 1̂ г- Го'>dr
JO J ro .

=  1 h(s)ds < -A (r -  r0). 
Jr0

(2.-7)
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is finite, which contradicts (2.1). Thus h has to be bounded, i.e., there exists a constant C2 
such that (2.2) holds. By the mean value theorem we have

log(w(r2)/w (ri)) =  logw(r2) -  logw(ri) , ,

=  ti(£)(r2 -  n )  < C2.

Then we complete the proof of the lemma by letting C$ = e°2.
Lem m a 2.2. Under the hypothesis of Theorem 2.1, there exists a constant C7 such that

Ва{г +  o) — Bff{r) ш'(г)
<yBa(r) ш(г)

< C7a,

where

Ba{r) =  ’ 

Proof. By Taylor formula

Ar(r)
ao

, Aa(r) - = V(r +  o )-V (r ) .

Aa{r) -  oof1 1(r) -  - (n  -  l)o;n 2{r)u'(y)o2A '
rr+cr ’

=  /  (u>n -1(r) — wn_1(r) — (n — 1)шп~2 (r)u' (r)(r — r))d
J т '

r))ar

= i( ( n  -  l)(n  -  (()(»'(Q)2 +  (n -  l)a.”- 2(fia."K))<T3.

Without lossing generality, we assume о < 1 . By using Lemma 2.1 , we have 

Aa(r) -  crojn~1{r) -  ^ w n~2(r)u>'(r)o2
A

< k (n  -  l)(n  -  2)C%-l C$ +. (n -  1 )С2С Г > п~Ч гУ - о
If we let

c4 = hn  -  l)(n -  2)crxcl + (n -  \)С2С Г\
о ,

S(r,cr) =  (Aa(r) -  cra;n_1(r) - ..^ Д а > ”"2(г)<«;,(г)<г2)/а1п"1(г)о-3,

we have |5(r, o)\ < C4. Thus

BAA  =
.1 Mr)

ao
w(r)

a
L n - lw ' ( r )  n. . „

V 1 +  —  M F)C+S(r;,,)a
Since

; lim ( 71 y/l +  x -  1 ------ ~ x ) / x 2 = -j-— 2_x—►()' n — 1 2{n -  1 у
is bounded, we have a constant C5 such that

r, /„N ш(г) Л , luJ'(r) j \  \ ^ A r) ^  _2
Ч 1 +  2 M r )V \ -  ^ H Cs<T

If we let

r ( r , a ) = ( B„ W - ^ . ( l + i
1 U)'{r)

ж

’(<■)

(2.8)

(2.9)

(2.10)

(2.11)

(2 .12)
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we know

\T (r,a)\< C 5.

Thus

B„(r +  a) -  Ba{r) -
V °

<
w(r + о) — ш(г) — w'(r)o \ 1 u)1 (r + ct) — u'(r) _

n-iA7 I +  о a

+

+

<СЪ

a I 21 n~ya

Ш<г + <т) v l  +  Osn~l/a
Съ . , n  . СзСх'

- ^ (Сз +  1 )+  »-^a

ш(г) 2I , 1 * " ( 0  7 1 «"(»?) -2
n~y/a f f | +  2 — b=<rn~̂ /a +  2 -•$/5

u>(r)o2.

Let

u'(r)U(r,cr) =  (ДДг +  0-) -  Bff(r) -  -^ ф а)/{и {г)а2),

C e= [ ^ (Cs +  1) +  ^ l '
Then

\U (r,a)\<C 6,

so there exists a constant Cj such that
Ba{r +  a) -  Br(r) u>'(r)

aB^r) w(r)

4Щ сг + и(г,а)ш(г)а2 u '{ r )

а(ш{г) +  |u/(r)cr +  T(r, а)ш(г)(т2)/  n~j/a w{r)

+  u (r> *)( п-Уа)а ш>(г)
<  CfO.

Lem ma 2.3. Under the assimption of Theorem 2.1, there exists a constant Сю such 
that for every e > 0 and о =  e* /а there exists an ro such that for r > tq we have

Bff(r +  cr) -  Ba(r) а
<  C \q€* • (2.13)сгВа{г) n — 1

Proof. Under the assumption of the lemma, we know for every e > 0 there exists an ro 
such that if r >  ro we have

e ar+b-e  <  у <  e a r+ 6 + e i (2 .14)

Thus
ear+a<T+b-e _  &ar+b+e <- A ^ r )  <  e ar+acr+6+£ _  gOr+b-6  ^  15 )
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and
„ ,, I рас—2e _  1 _,. г>а<т+2e __ 1
°£±b n - l / e  ^  n  / \ ^  e.r.rhg n - 1 / в  ' —  1e n~1 • \ j -----:-----:— < Bv(r) < e n~1 •

acr асу (2.16)

So there exists a constant C% such that
_  , ч ar+b /  1  1 \
В , ( г ) - е . - . ( 1  +  5 ^ 6 > )

Prom this inequality we have

Ba{r +  c) -  Ba(r ) ------ei
n  — 1

where Cq is a constant. By using the same method used in Lemma 2.2 we have the inequality
Bff(r + <r)~ Be(r) a

. „  I< C%e «-1 62.

or+Ь jL
< Cge " -1 62,

<  Cxoe4 >cr B„(r) n — 1
which completes the proof of the lemma.

Lemma 2.4. Under the assumption of Theorem 2.1, Aqss > \a 2, where Aqss is the 
infimum of the essential spectrum of M.

Proof. Let u)n~l =  0(r)rn_1. Then by the theorem in [5, p.506] we know

\e s s  ^  f L v  ■ t  1 ^ \ 2 1 2A®s s > ( -  lim mf ) = -~
\ 4  r —>+oo d(x,xo)>r в  дт /  4

(2.17)

and the lemma is proved.
Lemma 2.5. Let A > |a 2. For every e > 0, there exist infinite positive integer pairs 

(k,l) and smooth functions rjk,i such that

\\Ащ  + ХщД $е||»7* Д  (2.18)

where || • || is L2-norm.
Proof. The Laplacian can be written as

d 2 . . u/(r) d  1
A =  -y-o +  (n — 1):— • ~r~ H— 2 A s»-1ar2 w(r) ar a»2

(2.19)

under the metric ds2 =  dr2 +  ui2dd2 where A^n-i is the Laplacian on 5” *. Let H(x) be a 
C°° smooth function such that .

' 0, x < 0,
H(x) =  < 1, 7Г < x < 2тг, 

k 0 , X >  37Г.

Then we know that are bounded, i.e., there exists a constant Сц such that
|# |  +  \H'\ + \H"\ < C\\. Let • ■ ,

/3 =  yA  -  ^a2, f(r) =  e 2r . sin/?r.

Then /(r ) satisfies the equation . .

f"(r) +  af{r)  +  A/(r) =  0

(2.20)

(2.21)

or

А /  =  ( ( n  -  ! ) ^ y  -  a ) f ' ( r ) ~  A/ W - (2.22)
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For arbitrary integers к, l, define

. r) k,i(x) =  я (
r — ктс/(3

)f(r )- (2.23)

For the sake of simplicity, we use rj instead of Then

AV =H A f  +  2V/У Я  +  /Д Я  -  Я • ((n -  1) ^  - a ) / ' ( r )  

-  А Я / +  — 'f'(r)H' + f (H " ^  +  (n -  1) ^ Я '  j ) -

So

Because

|Д?? +  A77I < f c n  (n -  1) — -  a\ и;

ш'(г) о .

+ C*12 V -Щг
— У (2.24)

lim
. T >-|-o© U)(r) n — 1 ’

for arbitrary ?  > 0 there exists an r0 such that for r > tq we have

, . V ( r )( n -  1)—r-г- - o
'w(r)

< 6.

So we let к > ^ a. Then

|Л?7 +  Ar/| < (Сц€+  2C

because r) is zero on [0, and [--^ 3i7r, +oo). So 

||Д?у +  Ar/||2 <  ^Сце H— Cn- 1
к п i 3lrr"Г+

e arwn 1(r)dr, (2.25)

where Cn_i is the volume of 5 n L Let ip denote the characteristic function of the set 
{x e M\ f  + lf <  dist(a3, o) and 6 be ; Then

. . . М 2 > Ш 112 . .

=  Cn- i
L

6+lf
e~ar wn~l (r) sin2 (3rdr

1-1  Г.6+Ш^
e arb n 1 (r) sin2 /3rdr= v /

> ^ Е /  • e - ^ - H O d r .
j=0 ^г+^Г + 3/з .

By (2.22) we get

i‘S+

J 6+ 4

(j+D̂
/3

Using (2.26) and (2.27), we obtain

e~aru>n~1(r)dr < Cj3 e~aTujn~l (r)dr.
Js+ig.+ ” _

(2.26)

(2.27)

fOnr p
J e^aru)n~l (r)dr < 2Ci3|l?y||2. (2.28)
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By the mean value theorem,

■(w(r +  hr//?))n_1
log - lo g

(w (r )) 71— 1

Фga(r+hr/P)

’~arun~1(r)/ (w(r +  1к//3))п~1е~а(г+ы/^) < exp(^Ze),

e - V - ^ r )  j  (o/(r -l'it/{3))n- 1e -a(r- ln/ft) < exp (^Й).

(2.29)

(2.30)

(2.31)

Let l =  [i]. Then by (2.25), (2.28), (2.30), (2.31), there exists a constant C such th a t.

||A»7 +  Ai7||<CVflM |. (2.32)

Thus we can prove the lemma if we let e =  C\/e.
P roof o f  T heorem  2.1. For every A |a 2, there exist infinite pairs (k,l) such that 

||Д?7k,i +  A%,;|| <  611%,;||, and their supports do not intersect each other. Letting 6 - > 0 ,  
by Theorem. A we know A € Ess Spec M.  By Lemma 2.4 the essential spectrum of M  is 
[ |o 2,+Oo). • . /  : . , ; . .

Using the same method we can prove . ,
Theorem  2.2. Let N be (n-l)-dimensional compact Riemannian manifold whose metric 

is g. Let M be n-dimensional complete Riemannian manifold which is diffeomorphism to 
N x (0, +oo) outside some compact set and whose metric can be written as ds2 =  dr2 +  w2g 
where r is the distance to N  x {0}. Assume the sectional curvature of M is bounded and 
V(r) denotes the geodesic ball of radius r with center a fixed point of M which satisfies

lim (log V(r) -  ar — b) =  0, .
r —>+oo

where a, b are constants. Then Ess Spec M ,= [^a2, +  oo). .
Rem ark. J. F. Escobar И proved that if the metric of a complete noncompact manifold 

is rotational invariant and the radius curvature is nonnegative outside some compact set, 
then M  has no eigenvalues. But in general case we. cannot expect such results (see the 
counterexample of H. Donnelly^).

§3. A Counterexample

In this section, we will show that the assumption in Theorem 2.1 that the metric is 
rotational invariant is necessary.

T heorem  3.1. There exists a Riemannian manifold with a pole which has bounded 
radical curvature and the volume V(r) of whose geodesic ball of radius r and center о 
satisfies

lim (log V(r) — a r  — b) =  0 (3.1)
1—>+00

but Ess Spec M ф [ |a 2,+oo).

Proof. We consider the metric onR " ,

ds2 = dr2 + e2r>Wrde2, (3.2)
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where (г, 9) are the radical coordinates on R n and smooth function rj: Sn~x —> R n satisfies

{1, 9 € the neighborhood near the north pole of S'” -1  with the measure 1 ,
в  € the neighborhood near the south pole of S ^ 1 with the measure 1 ,

We estimate V(r) V{r) = j d9

isn-i ((
J e {n - l)v (6 )r  _  X) W (3.3)!Sn- 1 \(n  — l)rf{9)

Using the Laplace method ([9, p.163]) we know when r —> +oo,

lim (log V(r) -  (n -  l)r  +  log((n -  l)/C „ -i)) =  6. . (3.4)
• .• ■ ' Г—̂+ОО ' ' . . ' •; *•• •. ' „ - ' ' ’ ...J ' .  ' ^

But we will show that the essential spectrum of (Rn,ds2) is not ,-foo). In fact we
will prove that the infimum of essential spectrum A0ess <  j^(n -  l )2. In order to prove this 
we will first establish the following theorem which slightly generalizes the result in [5].

Theorem  3.2. Suppose M is a complete Riemannian manifold with a pole whose metric 
can be written as

■ ■ ds2 =  dr2 + <J2d92.  ̂ .

For every connected open subset U ofSn~1,deEne

■ Mu = {(ry9)\9 eU} ,  p -  lim sup i  logV[/(r),r— T
where Vu(r) is the volume of the set {(f, #)| 9 £ U,f < г}. ИМ has infinite volume, then 
^ (Г <  I inf Mo-

The proof of the theorem is like that of the proof of Theorem 1 in [5] and we omit it. 
P roof o f Theorem  3.1. Let U be the open neighborhood near the north pole with 

measure 1. Then
' ' '(*

Ju {u -  l)2 
2

( n - l )

l ) !

!)•

Thus
l  lpu =  lim sup -  log Vjj(r) =  -  (n -  l ) .Г-++00 т L

So by Theorem 3.2 we complete the proof of Theorem 3.1.

§4. Generalized Case
We introduce the concept of comparison manifolds.
D efinition 4.1. If M is an n-dimensional complete Riemannian manifold with a pole 

о and whose metric can be written as ds2 =  dr2 + oj2(r,9)d92; if there exists a complete 
Riemannian manifold M' with rotational invariant metric and bounded radical curvature, 
the volume of whose geodesic ball of radius r and center о satisfies

lim (log V'(r) — ar — b) — 0,
r —>+C30 '
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where a, b are constants; and if there exists a constant c such that

, lim ^log J u>n~1(r,9)dr — log J (w,)n_1(r)dr^ —C (4.1)

uniformly about 9; then we say M' is the comparison manifold of M and M is comparable.

Rem ark. The concept of the comparison manifold is useful because by investigating 
some class of regular manifolds we can obtain the spectra information of much more irregular 
Riemannian manifolds.

T heorem  4.1. If M' is a comparison manifold of a given Riemannian manifold M', then 
Ess Spec M  =  Ess SpecM'.

Proof. By Theorem 2.1 we can assume Ess Spec M' =  [ |a 2,+oo) without loss of 
generality. So by (4.1) we know there exists a constant d such that '

PV
lim ( log con~1(r,9)dr — ar — d] =  0

-++00 V Jo /1—>+oo

uniformly about 9. Using the same method as in the proof of Lemmas 2.1, 2.2, 2.3 we can 
prove

'w£(r, 9)l i m ( Ш 1 Ё 1 _____ a— )  =
•-H-oo V oj(r.9) (n — 1) /

0
ш(г,в) ( n - l ) J  " ^

uniformly about 9. If Д, A' represent the Laplacian of the manifold M  and M' respectively, 
and the metric of M' can be written as d(s') = dr2 +  (u>')d92, then when A > |a 2, we 
have

W r M )  (w')'(̂ )
11ДЧМ -  Д'%,,112 <  #

Let

Then

C(r) =  max 
4 ’  в

L

0j(r, 9) w(r)

w'r(r,9) И '( г )
w(r, 9) u(r)

2 < f Vk.U
j  supp (r)k,l)

VI • Wvk,i

JJs\supp (»Jk,i)

supp (r]k,l)

. =(A  +  e ) M 2,

where we use the Cauchy Inequality in the second inequality. So

IIAf?JM +  ^Jwll ^ (v T + T - y/C(r) +  e) • \\rjk,i\\.

Since C(r) —> 0 (r —> +oo), we have

VT+T • V ^ ) + £ -> 0.

By the method used in the proof of Lemma 2.5 we know A € Ess Spec M. On the other 
hands, we know from Lemma 2.4 that Aqss >  \a 2. Thus the theorem is proved.
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