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ON THE ESSENTIAL SPECTRUM OF A COMPLETE
RIEMANNIAN MANIFOLD WITH A POLE**

Lu ZHIQIN* CHEN ZHIHUA*

Abstract ,

It is shown that the essential spectrum of a complete Riemannian manifold with a pole and
infinite volume can be computed via the growth rate of the volume of the geodesic ball under
some technical condition. The growth-rate assumption is somewhat weaker than the curvature
assumption used by many authors.

§1. Introduction

Let M™ be a complete Riemannian manifold of dimension n. The Laplacian A of M on
c§° (M ) has a unique extension A to an unbounded self-adjoint operator on L*(M). One
defines the essential spectrum of M, denoted by Ess Spec (M ),'to be those real numbers
which are either cluster points of the spectrum of A or eigenvalues of infinite multiplicity
for A. ’

In [1-3], the Ess Spec M has been computed where M is assumed to be some Riemannian
manifold which can be “compared” with the space form. In [1] M is assumed to be simply
connected and negatively curved and the sectional curvature tends to —c at infinity and
then the essential spectrum of M is [%a,z_, +00); furthermore, in [2], the authors pointed out
that if ¢ is infinite, then the Ess Spec M = . In [3], it is proved that if M has a rotational
invariant metric outside a compact set and the radical sectional curvature is nonnegative,
then M has no eigenvalues and Ess Spec M = [0,+00). In order to obtain these results, a
strong geometric and topological assumption must be given, which implies that the manifold
possess a pole. On the other hand, we do not know much about the relation between the
essential spectrum and the growth of the volume of a Riemannian manifold. In [4-6], some
corse inequalities are obtained (we will refine one of them in §3) under the assumption of the
growth of the volume of the manifold. In this paper, we compute the Ess Spec M under the
assumption that M has a rotational invariant metric and the growth of the volume of the
geodesic ball satisfies log(V (r))-ar-b — 0 as r — oo. We also give an example to show that
the condition of rotational invariant metric is necessary. In §4, we introduce the concept of
“comparison” manifold to generalize the result to some non-rotational invariant metric case.

We will need the following theorem concerning the abstract spectrum theory:
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Theorem A. The necessary and sufficient condition for o € Ess Spec M is that for every
€ > 0 there exists an infinite dimensional subspace G of D(A), the domain of A, such that
for each f € Ge we have ||Af + af|| < e||f||, Where KD is, the Lz-norm

§2 The. Case of Rotatlonal Invarlant Metrlc

The main purpose of this section is to prove the following

Theorem 2.1. Suppose M is an n-dimensional noncompact complete Riemannian man-
ifold with rotational invariant metric (thus must have a.pole), i.e., the Riemannian metric
can be written as ds® = dr? +w2d0? where r is the distance to the pole and d6? is the metric
on 8™~ with constant sectional curvature 1. And w is a smooth function only relies on r.
If the radical sectional curvature of M is bounded and let the volume V() of the geodesw
ball of center o, radius satzsfy ' ‘

hm.(logV(r) —ar — b) o @Y

7‘—) o0
where a, b are constant, then Ess Spec M = [Z“ ,+oo).
We will need the following lemma.
Lemma 2.1. Under the hypothesis of Theorem 2.1, in addition if Cy is the bound of the
radical sectional curvature, then there exists a coristant Cy such that for r > 1 we have

|.._| <Gy (2.2)
and a constant Cs such that, for 7”1,7"2 > 1, |r2 - 7'1| < 1 ‘ o o s
L | w(ra) /w(rl ) < Ca, 29
where ds dr + w?d6? is the Riemannian metric of M and w(r) is the function of r and
d9? is the canonical metric on S™%71.. '

."Proof. .Let K(r) be radical sectlonal curvature of M. Then by the Jacobi equation!”,
we know, C - . . .

w”+Kw O . oo S A (24)
50 Iw"/w{<{K{<Cl Leth i /w. Then' I :
N N )

Let F be the Z€ro set of h’ on [1,+00). Then if sup F' = +00, ie., there exmsts zero points
series 1y — +00, k — +oo, then we have

supih|<  ax. (|h| \/ﬁ{—)<\/6_’1+|h 1)|, L ‘. S (26)

otherw1se there emsts a real number 70 such that 1f > then h’ # 0. So h i is monotone
We can conclude that hm h(r) =c where ¢ # ﬂ:oo OtherW1se by (2 5) we know that

11r+1_1 h(r) = —00, 80 for arbltrary A>a>0 there exists ro such that if 7 > ro we have
r—-+400
h(r} < —A. Then for r >.ry we have

w(?" /h(s )ds < - A('r—r@), N (2,:/)

So w(r) < w(re)e™A(r=") and
To r
V(r) S/ o™ ldr +,/ (O)n 1 —A(n 1)(r—r°)d'l‘

T0 -
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is finite, which contradicts (2.1). Thus h has to be bounded, i.e., there exists a constant C
such that (2.2) holds. By the mean value theorem we have
log(w(rg)/w(r1)) = log w(rs) — log w(ry)
=W(&)(re ~ 7’1) < 02-'
Then we complete the proof of the lemma,_ by letting Cs = €2
Lemma 2.2. Under the hypothesis of Theorem 2.1, there exists & constant Cy such that
Ba(T‘*‘U)“_Bv("'). w'(r)
a4 B_cr(r) " w(r )

Ba(r) = Y2, A=V +0)- V).
Proof. By Ta,ylor formula . T
Ag(r) = ow™ 1 (r) ~ —(n ) 2(-r)'w' (r)o?

< Cro, | ' (2.8)

where

o | o
= [ @) =) = (= DR () = )

1, . : - e

=5((n~1)(n = 2)w" 3(6)(W' ()% + (n = D" 2(E)w"(€)o’. (2.9)
Without lossing generality, we assume o < 1. By 'using‘Lemn;la 2.1, we have

1

Ay(r) = 0w (r) — ”—-2?—&—‘2'(7»)0}'(1‘)05

< Z((n—1)(n —2)CPLCE + (n = 1)CCF ™ (r)a.

=

If we let

= —(n ~1)(n - 2)03“102 +(n— 1)020;

n-—

~ _1__wn—_,2(,,.)w (7‘)0‘2)/60"- 1(,,,)03

S(r,o) = (A,(r) —gw™™! (7‘) -.
we have |S(r,0)| < 04 Thus :

a1/ As(T
Ba("") = ) ag_)
_ w(r) 1w r) .
=G 2 o )0'+S(’r',0)a L (2.10)
Since e e A
3 f n—1 - 1. 2 __ 2—-n
il_{%( \/1+a:.— 1 — lm)/xn._"_. g
is bounded, we have a constant Cs such that . - .,
B D P
If we let

<——7<——>>/<——> s
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we know -

|T(r,0)| < Cs.
Thus

Bo(r +0) — By(r) - ‘:,_512:0

<‘ w(r +0) —w(r) - w'(r)o ’ _|W’(T +0)- w'("") l

- /a 2 "o

wir+o)r,  1d(r+o) :

#|atreo) - L2 (14 35

- 2200 1210

w(r+o) a) w(r)
MR

CsCy

= [ Cs (Cs+1)+ WE] w(r)o?.

) w"
<Cjs + = ""(fc)z

"
% w'(n) azl

n—1

2

n—1

Let

U(r,o) = (Bs(r + o) — By(r)

20 o)/ (el
0301]

n—1

Cs = [ — (03 +1) +
Then
U(r,0)| < Cs,

so there exists a constant C; such that

Bo(r+0) = By(r) _ '(r)
oB,(r) ~w(r)

“ﬁi—{/—LU'l'U(?“, o)w(r)o? _w(r)
o(w(r) + 2w/ (r)o + T(r,0)w(r)o?)/ "Va  w(r)

L+ U@ 0)("Va)e ()

— | _w(r)

(1+ %":: :) o+ T(r,0)0?) w(r)

070'.

Lemma 2.3. Under the assimption of Theorem 2.1, there exists a constant Cyo such
that for every ¢ > 0 and 0 = i /a there exists an ro such that for r > fo we have -
Bo(r+0)—Bs(r) @

0B, (r) n—1

Proof. Under the assumption of the lemma, we know for every € > 0 there exists an'ro

such that if » > rg we have

< 01064 (213)

eI Hh=E <V (r) < e, (2.14)
Thus

gartastb=e _ gartbte < 4 (r) < gortactbie _ gartb—c (2.15)
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aoc—2€ . artb ac+2¢ __ 1
e \/e 1<B (r) <en— "\1/6 (2.16)

So there exists a constant Cg such that

and

p aertb 1 1 artb 1

_ B,,(r)‘— en-i (1 + 2= 1)61) < Cgen=1 €l
From this inequality we have

By(r+ o) — By(r) — 1e?ife‘t < 096%6%

Where Cy is a constant. By usmg the same method used in Lemma 2.2 we have the inequality
' B,(r+0) = B,(r) a
0B (r) T n-1
which completes the proof of the lemma.
Lemma 2.4. Under the assumption of Theorem 2. 1, A 2 ia , where A§*® is the
infimum of the essential spectrum of M. ’ ' '
Proof. Let w™! = g(r)r"~1. Then by the theorem in [5, p. 506] we know

vos . (1 L. 100\ 1,
Ao > (4 T’EI-}-IOO d(a:lg[‘)>r 0 8r) - 4(1,» ’ ' : . (217)

1
S C’1054 ’

and the lemma, is proved. ‘
Lemma 2.5. Let )\ > %az. For every ¢ > 0, there exist infinite positive integer pairs
(k, 1) and smooth functions ny,; such that.

| | A7k + Ameall < el (2.18)
* where || - || is L*~norm. | '
Proof. The L_aplaéia,n can be written as .

2 /
A= v oS L4
under the metric ds? = dr? + w?d§? where Aga—1 is the Laplacian on 71, Let H (z) be a
C* smooth function such that

—5Bgner - (2.19)

0, <0,
Hz)={1, n<z<2m,
0, z2>3m.

Then we know that H,H’',H" are bounded, i.e., there exists a constant Cy; such that
|H|+ |H'| + |H"| < Cy1. Let -

B=1/A- %az, f(r).=e %" . sinfr. - (2.20)
Then f(r) satisfies the equation L ,
')y +af'(r)+Af(r)=0 (2.21)

or

w'(r

Af = ((n -~ 1) w('r') - a)f’('r) - Af(r). (2.22)
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For arbitrary integers k, 1, define

nea() = H ( —kn/B

7 L (2.23)
For the sake of simplicity, we use 7 instead of ;. Then IR
An=HAS+2VfVH + A = - (0 - )23 ~a)£)
2
_A_E{f+ ﬂf’( )H‘/_l_f(H'I/IB +( _1)“’(()) )
So '
IAn+/\77| < (011‘(7%—1. - "“' + 012) f‘%r‘ e
Because o ' '
w’(r) a

rgl—il-loo w(r) - n— 17

for arb1trary € > 0 there exists an rg such that for » > ro we have -~ .

So we let k > £%2. Then
|An + Xl < (011e + %) mEer

because 7 is zero on [0, £%] and [’—“1%?1’1,+oo). So

9 .- L"-’-’.-{.—%’l :
an+ 3l < (Cug+ ) Cos [T eumian, @29)

i

where C,_; is the volume of S®!. Let v denote the characteristic function of the ‘set
{z e M| k” + l” < dist(z,0) < & + 2l”} and-§ be —’—’il—"- Then

Rz
= Ch_1 / ’ e *"w™ 1 (r)sin 2 Brdr
es+$l‘—“ll’L S
= Z/ “‘T{,u""l('r') sin? frdr
- . .
> ;Z/ ’ "“'"wn'l(r)dfr. S (228)
By (2.22) we get ’_
s SHEE e, ,
/ e~ "W} (r)dr < Cis / } e W (r)dr. (2.27)
5442 I N T

Usmg (2.26) and (2.27), we obtain

545 | |
/ e (r)dr < 2Cs |l (2.28)
) |
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By the mean value theorem,

(G N

SalrEin/B) < %ZE’ | o (2.29)
) (ol + B ) Sop(FR, (240
) [l ~ BRI Cap (B, ()
Let I = [1]. Then by (2.25), (2.28), (2.30), (2.31), there exists a constant C such that .
C areml<ovaml (2.32)

Thus we can prove the lemma if we let €= CVEe. ‘

Proof of Theorem 2.1. For every A > %az, there exist infinite pairs (k,!) such that
WA+ Ml < €llne,il|, and their supports do not intersect each other. Letting ¢ — 0,
by Theorem, A we know \ € Ess Spec M. By Lemma 2.4 the essential spectrum of M is
102, +00). :

Using the same method we can prove . . : ‘

Theorem 2.2. Let N be (n—1)-dimensional compact Rzemanman manifold whose metric
is g. Let M be n-dimensional complete Riemannian manifold which is diffeomorphism to
N x (0, 4+00) outside some compact set and whose metric can be written as ds = dr? + wlyg
where r is the distance to N x {0}. Assume the sectional curvature of M is bounded and
V(r) denotes the geodesic ball of radius r with center a fixed point of M which satisfies

lim (log V(r) —ar —b) =

where a,b are constants. Then Ess Spec M = [}a?, +00).

Remark. J. F. Escobar[3] proved that if the metric of a complete noncompact mamfold
is rotational invariant and the radlus curvature is nonnegative outside some compact set,
then M has no eigenvalues. But in general case we, cannot expect such results (see the
counterexample of H. Donnelly®). ’

§3. A Counterexample

In this section, we will show that the assumption in Theorem 2.1 that the metric is
rotational invariant is necessary. '

Theorem 3.1. There exists a Riemannian manifold with a pole which has bounded
radical curvature and the volume V(r) of whose geodesic ball of radius r and center o
satisfies

lim (logV(r) — a'r."— b)=0 - (3.1)

P—+400

but Ess Spec M # [ga?,+00).

Proof. We consider the metric on R™

ds? = dr? + 27O dg?, (3.2)
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where (r,0) are the radical coordinates on R™ and smooth function 7 : S*~1 — R™ satisfies
1, 0 € the neighborhood near the north pole of $"~! with the measure 1,
n(0) =< 2, 9 € the neighborhood near the south pole of §™-! with the measure 1,
. 1<n<L

We est1mate V(r)

V('l‘) =f (/ e(n—-l)n(o)rdr)da .
_ sn-1 \Jo

— : (n—l)n(a)r —_
= e 1) |d6. 3.3
fo =y -0) (33)
Usmg the Laplace method ([9, p.163]) we know when r — +00,

Jim (logV(r) ~ (n~1)r +1og((' —1)/Ch- 1)) =0. . @ %)

But we will show that the essential spectrum-of (R” dsz) is not [@——9— F00). In fact we
will prove that the infimuth of essential spectrum A\ < £5(n = 1)% In order to prove this
we will first establish the following theorem which shghtly genera.hzes the result in [5]. '

Theorem 3.2. Suppose M is a complete Riemannian manifold with a‘pole whose metric
can be written as o '
ds® = dr? + w?d6. -
For every connected open subset U of Sn 1 deﬁne

- My = {(r;0)|0 € U}, p= hm ‘sup — logVU(r)

where VU( ) is the volume of the set {(7,6)| 6 € U,r < r}. If M has infinite volume, then
A<t inf 2. S
‘The proof of the theorem is like that of the proof of Theorem 1 in [5] and we omit it."
Proof of Theorem 3:1. Let U be the open nelghborhood near the north pole with
measure 1 Then ' o

o= -

( Ln-1)r _ 1)

(S

(u
2
)

Thus
pu = '- lim sup L log Viy(r) = L (n =1):
So by Theorem 3 2 we complete the proof of Theorem 3. 1 o

§4. Generallzed Case

We introduce the concept of comparison manifolds.

Definition 4.1. If M is an n-dimensional complete Riemannian manifold with a pole
o and whose metric can be written as ds? = dr? + w3(r %(r,0)d6?; if there exists a complete
Riemannian manifold M' with rotational invariant metric and bounded radical curvature
the volume of whose geodesic ball of radius r and center o satisfies

1114{1 (logV'(r) —ar —b) =
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Wheré a,,ib are constants; and if there exists a constant c such that
_ o _ o
. n— _ - — .
T_IHI'}OO (log /0 W (r, 8)dr —log /0 (W), (r)dr) C | §4.1)
uniformly about 0; then we say M' is the comparison manifold of M and M is comparable.

Remark. The concept of the comparison manifold is useful because by investigating
some class of regular manifolds we can obtain the spectra information of much more irregular
Riemannian mamfolds

Theorem 4.1. If M is a comparison mamfold of a given Rlemanman manifold M, ' then
Ess Spec M Ess SpecM’. _ _

Proof. By Theorem 2. 1 we can assume Ess Spec M ' = [3a?,+00) without loss of
generality. So by (4.1) we know there exists a constant d such that -

lim (log/ W™ L (r,0)dr — ar - d) =0
0

r—++400

uniformly about #. Using the same method as in the proof of Lemmas 2.1, 2.2, 2.3 we can
prove

. wi(r,0) a
- =0 4
Jim (s - o) (42
uniformly about 6. If A, A’ represent the Laplacw,n of the manifold M and M’ respectlvely,
and the metric of M’ can be written as d(s’ ) = dr? + (w')%d62, then when A > a2, we
have

wy(r,8) _ (W)'(r)
lames = Ameall” <, mase [ 0g) ~ o) /suppm,z)'vn’“"'z'
Let
wp(r,0) _ (W')'(r)
C(r) = max o) " wr) l
Then

/ Ve < / Mo A N1
supp (77%,1) supp (7%,1)

< M+ 1A 78
= (A + &llmeal,

where we use the Cauchy Inequality in the second inequality. So
1AT + M al] < (VAFT-/C(r) +€) -l gl
Since C(r) - 0 (r — 400), we have
VI+1- C(r)+e—0.

By the method used in the proof of Lemma 2.5 we know X € Ess Spec M. On the other
hands, we know from Lemma 2.4 that A > 1a®. Thus the theorem is proved.
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