Chin. Ann. of Math.
14B: 1(1993) 69-76.

ON BOUNDEDNESS OF HARDY-LITTLEWOOD MAXIMAL:
FUNCTION OPERATOR ON RIEMANNIAN -MANIFOLDS

.CHEN JIECHENG* -WANG SiLEr*

Abstract _ o
The authors construct a complete Riemannian manifold such that its Ha.rdy-thtlewood
- maximal function operator is unbounded. in L? for some p > 1.

- §1. Introduction
For a complete Riemannian manifold N, its Hardy-Littlewood maximal function operator
is defined by o
M(f)e) =swp B [ 17,
B(z,r
where B(z,r) is the geodesic ball W1th center = and radius 7. As known, Hardy-Littlewood
maximal operator is very important in Harmonic Analysis. For N = R", a clagsical result
shows its L? and weak type (1,1) boundedness, 1 < p < oo (see [6]). For positively curved
manifolds, Varapolous proved its L? and weak type (1,1) boundedness!®l, 1 < p < co; and
the first named author!! proved its BMO-boundedness. For non—conipact symmertic spaces, *
Clerc and Stein!¥ proved its LP-boundedness for 1 < p < oo; and Stromberg proved its weak
type (1,1) boundedness. For general negatively curved manifolds, Lohoué proved its LP-

~ ‘boundedness for p > py where po(>T1) depends on the ‘bounds of the sectional curvature of

N. A basic problem naturally arise: Is M LP-bounded for all p > 17 In this paper, we shall
construct a simply connected complete Riemannian manifold (based on [2]) with sectional
curvature K < 0, for which M is not LP-bounded for all 1 < p < 2. At the same time, the
example also shows that the main results of “On the sectional curvature of a Riemannian
manifold” (Chinese Annals of Mathematics (Ser. B), Vol. 11‘,‘No. 1, 1990)-are wrong. For
simplicity, we only consider 2-dimensional case, i.e., dim(NV) =

In the whole paper, C denotes an absolute positive number and Ca,b,.. @ positive number

depending only on a,b, -, f(r) =O(g(r )) means that C~! <|f(r)/g(r)| < C.

§2. Some Notes on Pomcare Plane

Let M_; = (D, (1—72)~2(dr? +r2d6?)) denote the Poincare plane, where D = {z: |¢| <
1} ¢ R?, B_;(z,r) denote the geodesic ball in M_; with center z and radius r, Bo(z,7)
denote the Euclidean ball in IR2 with center z and radius r, p(.,.) denote the geodesic distance
function on M_;, Ry = th1, 0 < R < 1. We have (see the figure)
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Lemma 2.1. B_;(R, p(O, R)) = Bo(Or, Or) where Or = R/(1 + R?),
B—l(R’ p(O’R) + 1) = BO( %,OIR + RO)
where O = 4e%(e? + 1)"2R/(1 + 2Rth 1 + R?),

Proof. It is éasy to see that the Riemannian structure of M_; is preserved by the maps
z— (az+b)/(bz+a) ~ (VzeD,la|?-p>=1) (2.1)

and all straight lines through the origin are geodesics. ‘So, all geodesic balls with center O
are Euclidean balls and the maps (2.1) preserve both the Euclidean and the M_;-geodesic
balls. It is also easy to see that O, the center of B_.;(R, p(O, R)) as a Euclidean ball, must
be in z-axis because B_1(R, p(O, R)) 'is't'angent to y-axis at O and the angle between two
vectors in the Riemannian structure coincides with the Euclidean angle. Similarly, O%, the
center of B_;(R,p(O, R) + 1) as a Euclidean ball, must be in z-axis. Now, let R, and R,
be shown in the figure. We shall compute R’ and O/, only, here. We have

P(O,RO) + p(O’R) = p(Ra R;)
An easy computation by maps (1) shows

Il _ le,ll + |z/__ znl
|1 _ Z/zlll _ Iz/ _ zlll

p(2',2") = —;—ln
.and thus p(O,Rov) = 1. Therefore o »
(1=R)(1-RR,+ R, — R)=(1+R)é*(1 - RR, — R, +R),
R, =(th1+2R+R?th1)/(1+2Rth1+R?),
and
O = %(Ro + R,) = 4e*(e® + 1»)—2R/('1 +2Rth1+ R?).
Similarly, we have |
R.=2R/(1+R? and Og=R/(1+R?).

Let ap and o'y be shown in the figure. Then
Lemma 2.2. ag = arccos 1(1+ R?) =O((1 - R)?) (R—17), -
oy = arccos(20; th1 +th? 1 — R?)/(~2R0%) = O((1 - R)?) (R—17).
Proof. Here, we only compute ;. We have o
|[Rexp(iay) ~ Op| = Ok + Ro,
S0 . -
o =va,rccqs(20}2 thl+ t-hzi 1— R?)/(—2ROp). -

Now

U dg - 1 de
a,rccosa:=/m \/.1____:‘52_=‘O(1)/0c T
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Thus
oy =O(1)(2RO% + 20} th1 + th?1 - R?)} |
=0(1)(((8¢*R? + 8¢2R?th1)/(1 +2Rth1 + R?) + (e — 1) — R(e? +1)?)%)
=0(1)(8¢*R(1 + R) — 8¢*R(1 — R) + ((e* + 1)(1 — R?) — 2¢3(1 + R?))
.(€*(14+ 2R+ R%)+ (I'— 2R+ R®)))7
=0(1)(2e*(4R(1 + R) 1+ Rz)(l +2R+ RZ))
—2e%(1+ Rz)(l - R)*+ 0+(1 - ))
=0(1)(0((1 - R)?) + 264(R2 + 2R+ Q- R)2 +0.(1- R))2
=0(1- R} (R-1), _ |
where 4(R) = O, (1 — R) (R — 17) means that when R — 17,
R(R) > 0 and C~! < |h(R)/(1 = R)| < C.
Lemma 2.2 is proved.
Let r¢ and 7} be shown in the figure. We have -
Lemma 2.3. 7y = (27"/(1 +72)) cos 6,
7l = O cos 8 + ((O cos 8)2 + (20’ th 1 + th? 1))%.
Proof. We only compute ;. We have
Irhei® — O'p| = Ok + Ro,
rh? — 20/ cos0 - rh — (20 th 1+ th®1) =
Its positive solution is . v :
rh = Ol cosf + (O cos8)? + (205 th 1 + th? 1))%.
Now, we have
Lemma 2.4. |B_;(0, p(O,R))| =m(1/(1 - R?) - 1) = O(1/(1 - R)),
|B_1(0, p(0, R)) N B_y(R, p(0, R) + 1) = O(1/(1 - R)%)
when R — 1~
Proof. We have

B0.00,B)I =[O B = [ T

— ol ldt =T _ p2y—-1 _
__27r/0, g = (=BT - 1),

And, by Lemma 2.1, we have
|B_1(0, (0, R)) N B_1(R, p(O, R) + 1)
=|By(0, R) N By(O% +Ro)

ow( " [+ // // rers:

=O(1)(I+1I-+111).
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It is easy to see that

I =0(1) = o(1/(1 ~ R)%). | (R - 1-) |
I=0()ap/(1~R) =0(1/1-RB)}) (R—>1)

by Lemma, 2.2. To estimate II, we consider 1 — r} first. We have *

1—75=1-0%cos8 — ((O% cob 0)2_+ (20 th1 + th?1))?

_ (1—Ofcos 0)? — (O’ cos6)? — (2032 thi+ th?1)

1= 0 co86 + ((O) cos 8)2 + (205 th1 + th? 1))z
=O0(1)(1 — 20 cos 0 — (20 th1 +th?1))

= 0(1)((1 — th®1)/205 — th1 = cos §)
= O(1)((1 - th®1)(1 + 2R th 1 4 R?)(e? +1)?/4¢*R — th1 — cos §)
= 0(1)((1 + R?)/2R — cos §) '
= O(1)(1 — (2R cos 8/(1 + R?))?).
So
2 [T0  rdrdd 1 (% df
H=/a'n/o (1-72)? §/<xa 1—rp?
—~ (% 4o (% o
= 0(1) /a;%- 1:._ ré--: 0(1) /‘;,R 1— (2030089)2
= 0(1)(1 - 403)7} (§ - srota((tg )/ (1 - 10B)H)).
Now
(1-40%)% = (1 - 4(R/(1+ B*)*)% =0(1- R),
tgay = (cos™2 o — 1)% = O(1)(1 — cos a’R)%
= 0(1)ak = O((1 - R)}),
3 — arctg((tg o)/ (1~ 403))
tg o’y /4/1—40% dx _ tg o} -1
=/0 1+x2=0((\/1ﬁ;) )
=0(1)((1 - R)?).
Theref;?e

I=0()((1-R)"%) (R—1).
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§3.- Construction of the Counterexamp.le
Let |
Dy={z:|z2—2z,| <1}, 2,=(n+2)?
R, = thn,
dsZ(z) = f3 (r)(dr® +r%df) where 2=z, +re?,
fr(r) =1 — (rxa(r)?™,
xe® = s s = [
or(t) =" o(t/r), .
o(t) = { CerO, W<l g / e =g,
R .

TrWpys(t-u)de (= (1-R)),

0, It] > 1,
1, t < R+ e
Xr(t)=1<¢ 0, t> R+ 2¢,

linear, R+ %e <t<R+ %e.
Then, take (compare with [2])
N = (R?,ds?),
dsz(é’) _ ds%(z), S Dna n=12-.-,
dzdzZ,  otherwise.
We have . : '
Lemma 3.1. N is a smooth complete Riemannian manifold.
=(1-r%)"1 forr <R,
fryq =1 forr > R+,
<(1-rHt forR<r<R+e
Proof. Obviously, fg, € C*(D,) and fg, =1 for -
z €D, ~l{z:l >lz—2z,|>1-R, —€,}
So, ds? is a smooth Riemannian metric. Thus, it is easy to see that N is a smooth complete
Riemannian manifold. Now, noticing that ;
(t) = { 1 fort <R,
XR\) = 0 fort>R+e,
we can easily get the estimates of fgr. ‘
Let d(.,.) denote the geodesic distance function on N, B(z,r) the geodesic ball with
center z and radius r. Then, we have
Lemma 3.2. When n — oo, we have

|B(zn, d(zm Zn + R@))l = 0(1/(1 - Ra)),
[B(zn + By s 20 + B) + 1)] = O(1/(1 = Bn)?).

Proof, The first estimate is the same as the first estimate in Lemm@ 2.4. The second
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estimate can be obtained by thé second estimate in Lemma 2.4. Since
B(2n + Rn,yd(2n, 20 + Ry) + 1)
-is convex in N, we have ,
B(zp, + Rn, d(2n, Ry + zn)_+ 1) N Bo(2n, R + €5)
CBo(2n, R + €n) N {2 : |arg(z — za)| < &g, })
U (B(2p + Rnyd(2n, R + 2) + 1) N {2 : |arg(z — 2n)| > 0/g,}).
So, by Lemma 2.4 and Lemma 3.1
|B(2n + Rn,d(2n, Rp + 2n) + 1) N Bo(2n, Ry + en)l
=0(1/(1~Rn)?)  (n—co).
Finally, the Riemannian metric on ,
B(2n + Ry L + d(2n, Rn + 20)) 0 (Bo(2n, B +.€))°

is Euclidean and the geodesic distance

d(2ny R + 20) = % In((1+ Ra)/(1 - Ra)) =,

so we have
|B(2p, + Rnyd(2ny Ry + 25) + 1) N (Bo(2n; Rn + €n))°|
=6(1)(d(zm Rn + 2n))* = O(1)(In((1 + Rn)/(1- R,))%.
Therefore '
| B(zn + Rn,d(2n, 2 + Ry) +1) =0((1 = R,)"%)  (n — o0).
Now, take o ' |

hn(z) = | B(2n, l)I—IXB(z,,,l)v(z)- -
Then, for 2z € Byo(zn, Ry) A
M(ha)(2) > |B(2,d(2, 2) + D71 |
> |B(zn + R, d(2n, 20 + Rn) +1)| 7"
) > C(1 - Ry)?
by Lemma 3.2. So , :
[{z : M(hn)(2) > C(1 = Ry} > | Bo(2n, Ry)|
=|B(2n, d(2n, 2n + Rn))|
=0(1/(1 — Ry)).
But . .
(=R} [ Ba(do(2) = O~ Rl )

Thus, M is not weak type (p,p) bounded for 1 < p < 2. Of course, it is not LP-bounded for
1<p<2. . ‘ _
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