ON BOUNDEDNESS OF HARDY-LITTLEWOOD MAXIMAL FUNCTION OPERATOR ON RIEMANNIAN MANIFOLDS

CHEN JIECHENG*

WANG SILEI*

Abstract

The authors construct a complete Riemannian manifold such that its Hardy-Littlewood maximal function operator is unbounded in L^p for some p > 1.

§1. Introduction

For a complete Riemannian manifold N, its Hardy-Littlewood maximal function operator is defined by

$$M(f)(x) = \sup_{r>0} |B(x,r)|^{-1} \int_{B(x,r)} |f(y)| dy,$$

where B(x,r) is the geodesic ball with center x and radius r. As known, Hardy-Littlewood maximal operator is very important in Harmonic Analysis. For $N=\mathbb{R}^n$, a classical result shows its L^p and weak type (1,1) boundedness, $1 (see [6]). For positively curved manifolds, Varapolous proved its <math>L^p$ and weak type (1,1) boundedness^[9,1], $1 ; and the first named author^[1] proved its BMO-boundedness. For non-compact symmetric spaces, Clerc and Stein^[4] proved its <math>L^p$ -boundedness for 1 ; and Strömberg proved its weak type <math>(1,1) boundedness. For general negatively curved manifolds, Lohoué proved its L^p -boundedness for $p > p_0$ where $p_0(>1)$ depends on the bounds of the sectional curvature of N. A basic problem naturally arise: Is M L^p -bounded for all p > 1? In this paper, we shall construct a simply connected complete Riemannian manifold (based on [2]) with sectional curvature $K_N \le 0$, for which M is not L^p -bounded for all $1 . At the same time, the example also shows that the main results of "On the sectional curvature of a Riemannian manifold" (Chinese Annals of Mathematics (Ser. B), Vol. 11, No. 1, 1990) are wrong. For simplicity, we only consider 2-dimensional case, i.e., <math>\dim(N) = 2$.

In the whole paper, C denotes an absolute positive number and $C_{a,b,\cdots}$ a positive number depending only on $a,b,\cdots, f(r) = \overline{O}(g(r))$ means that $C^{-1} \leq |f(r)/g(r)| \leq C$.

§2. Some Notes on Poincare Plane

Let $\mathbb{M}_{-1} = (D, (1-r^2)^{-2}(dr^2 + r^2d\theta^2))$ denote the Poincare plane, where $D = \{z : |z| < 1\} \subset \mathbb{R}^2$, $B_{-1}(z,r)$ denote the geodesic ball in \mathbb{M}_{-1} with center z and radius r, $B_0(z,r)$ denote the Euclidean ball in \mathbb{R}^2 with center z and radius r, $\rho(.,.)$ denote the geodesic distance function on \mathbb{M}_{-1} , $R_0 = \operatorname{th} 1$, 0 < R < 1. We have (see the figure)

Manuscript received August 1, 1990. Revised October 7, 1991.

^{*}Department of Mathematics, Hangzhou University, Hangzhou, Zhejiang 310028, China.

Lemma 2.1. $B_{-1}(R, \rho(O, R)) = B_0(O_R, O_R)$ where $O_R = R/(1 + R^2)$,

$$B_{-1}(R, \rho(O, R) + 1) = B_0(O'_R, O'_R + R_0)$$

where $O'_R = 4e^2(e^2+1)^{-2}R/(1+2R \ln 1 + R^2)$.

Proof. It is easy to see that the Riemannian structure of M_{-1} is preserved by the maps

$$z \to (az+b)/(\bar{b}z+\bar{a})$$
 $(\forall z \in D, |a|^2 - |b|^2 = 1)$ (2.1)

and all straight lines through the origin are geodesics. So, all geodesic balls with center O are Euclidean balls and the maps (2.1) preserve both the Euclidean and the \mathbb{M}_{-1} -geodesic balls. It is also easy to see that O_R , the center of $B_{-1}(R, \rho(O, R))$ as a Euclidean ball, must be in x-axis because $B_{-1}(R, \rho(O, R))$ is tangent to y-axis at O and the angle between two vectors in the Riemannian structure coincides with the Euclidean angle. Similarly, O'_R , the center of $B_{-1}(R, \rho(O, R) + 1)$ as a Euclidean ball, must be in x-axis. Now, let R_* and R'_* be shown in the figure. We shall compute R'_* and O'_R only, here. We have

$$\rho(O,R_0) + \rho(O,R) = \rho(R,R'_*).$$

An easy computation by maps (1) shows

$$\rho(z',z'') = \frac{1}{2} \ln \frac{|1 - \bar{z}'z''| + |z' - z''|}{|1 - \bar{z}'z''| - |z' - z''|}$$

and thus $\rho(O, R_0) = 1$. Therefore

$$(1-R)(1-RR'_*+R'_*-R) = (1+R)e^2(1-RR'_*-R'_*+R),$$

$$R'_* = (\operatorname{th} 1 + 2R + R^2 \operatorname{th} 1)/(1 + 2R \operatorname{th} 1 + R^2),$$

and

$$O_R' = \frac{1}{2}(R_0 + R_*') = 4e^2(e^2 + 1)^{-2}R/(1 + 2R \ln 1 + R^2).$$

Similarly, we have

$$R_* = 2R/(1+R^2)$$
 and $O_R = R/(1+R^2)$.

Let α_R and α_R' be shown in the figure. Then

Lemma 2.2.
$$\alpha_R = \arccos \frac{1}{2}(1+R^2) = \overline{O}((1-R)^{\frac{1}{2}}) \quad (R \to 1^-),$$
 $\alpha_R' = \arccos(2O_R' \operatorname{th} 1 + \operatorname{th}^2 1 - R^2)/(-2RO_R') = \overline{O}((1-R)^{\frac{1}{2}}) \quad (R \to 1^-).$

Proof. Here, we only compute α'_R . We have

$$|R\exp(i\alpha_R') - O_R'| = O_R' + R_0,$$

so

$$\alpha_R' = \arccos(2O_R' \th 1 + \th^2 1 - R^2)/(-2RO_R').$$

Now

$$\arccos x = \int_{x}^{1} \frac{dx}{\sqrt{1 - x^{2}}} = \overline{O}(1) \int_{x}^{1} \frac{dx}{\sqrt{1 - x}}$$
$$= \overline{O}(1)(1 - x)^{\frac{1}{2}}.$$

Thus

$$\begin{split} \alpha_R' = & \overline{O}(1)(2RO_R' + 2O_R' \th 1 + \th^2 1 - R^2)^{\frac{1}{2}} \\ = & \overline{O}(1)(((8e^2R^2 + 8e^2R^2 \th 1)/(1 + 2R \th 1 + R^2) + (e^2 - 1)^2 - R^2(e^2 + 1)^2)^{\frac{1}{2}}) \\ = & \overline{O}(1)(8e^4R(1 + R) - 8e^2R(1 - R) + ((e^4 + 1)(1 - R^2) - 2e^2(1 + R^2)) \\ & \cdot (e^2(1 + 2R + R^2) + (1 - 2R + R^2)))^{\frac{1}{2}} \\ = & \overline{O}(1)(2e^4(4R(1 + R) - (1 + R^2)(1 + 2R + R^2)) - \\ & - 2e^2(1 + R^2)(1 - R)^2 + \overline{O}_+(1 - R))^{\frac{1}{2}} \\ = & \overline{O}(1)(O((1 - R)^2) + 2e^4(R^2 + 2R + 1)(1 - R)^2 + \overline{O}_+(1 - R))^{\frac{1}{2}} \\ = & \overline{O}((1 - R)^{\frac{1}{2}}) \qquad (R \to 1^-), \end{split}$$

where
$$h(R) = \overline{O}_+(1-R)$$
 $(R \to 1^-)$ means that when $R \to 1^-$, $h(R) > 0$ and $C^{-1} < |h(R)/(1-R)| \le C$.

Lemma 2.2 is proved.

Let r_{θ} and r'_{θ} be shown in the figure. We have

Lemma 2.3.
$$r_{\theta} = (2r/(1+r^2))\cos\theta$$
,
 $r'_{\theta} = O'_R\cos\theta + ((O'_R\cos\theta)^2 + (2O'_R \tan 1 + \tan^2 1))^{\frac{1}{2}}$.

Proof. We only compute r'_{θ} . We have

$$|r'_{\theta}e^{i\theta} - O'_{R}| = O'_{R} + R_{0},$$

 ${r'_{\theta}}^{2} - 2O'_{R}\cos\theta \cdot r'_{\theta} - (2O'_{R} \operatorname{th} 1 + \operatorname{th}^{2} 1) = 0.$

Its positive solution is

$$r'_{\theta} = O'_R \cos \theta + ((O'_R \cos \theta)^2 + (2O'_R \tan 1 + \tan^2 1))^{\frac{1}{2}}.$$

Now, we have

Lemma 2.4.
$$|B_{-1}(O, \rho(O, R))| = \pi(1/(1 - R^2) - 1) = \overline{O}(1/(1 - R)),$$
 $|B_{-1}(O, \rho(O, R)) \cap B_{-1}(R, \rho(O, R) + 1)| = \overline{O}(1/(1 - R)^{\frac{1}{2}})$

when $R \to 1^-$.

Proof. We have

$$|B_{-1}(O, \rho(O, R))| = |B_0(O, R)| = \int_{|z| < R} \frac{r dr d\theta}{(1 - r^2)^2}$$
$$= 2\pi \int_0^{R^2} \frac{\frac{1}{2} dt}{(1 - t)^2} = \pi ((1 - R^2)^{-1} - 1).$$

And, by Lemma 2.1, we have

$$|B_{-1}(O, \rho(O, R)) \cap B_{-1}(R, \rho(O, R) + 1)|$$

$$=|B_{0}(O, R) \cap B_{0}(O'_{R}, O'_{R} + R_{0})|$$

$$=\overline{O}(1) \left(\int_{0}^{\alpha'_{R}} \int_{0}^{R_{\epsilon}} + \int_{\alpha'_{R}}^{\frac{\pi}{2}} \int_{0}^{r'_{\theta}} + \int_{\frac{\pi}{2}}^{\pi} \int_{0}^{r_{\theta}} \right) \frac{r dr d\theta}{(1 - r^{2})^{2}}$$

$$=\overline{O}(1) (I + II + III).$$

It is easy to see that

$$\begin{split} & \text{III} = \overline{O}(1) = o(1/(1-R)^{\frac{1}{2}}) \qquad (R \to 1^{-}), \\ & \text{I} = \overline{O}(1)\alpha_{R}'/(1-R^{2}) = \overline{O}(1/(1-R)^{\frac{1}{2}}) \qquad (R \to 1^{-}) \end{split}$$

by Lemma 2.2. To estimate II, we consider $1 - r'_{\theta}$ first. We have

$$\begin{split} 1 - r_{\theta}' &= 1 - O_R' \cos \theta - ((O_R' \cos \theta)^2 + (2O_R' \tan 1 + \tan^2 1))^{\frac{1}{2}} \\ &= \frac{(1 - O_R' \cos \theta)^2 - (O_R' \cos \theta)^2 - (2O_R' \tan 1 + \tan^2 1)}{1 - O_R' \cos \theta + ((O_R' \cos \theta)^2 + (2O_R' \tan 1 + \tan^2 1))^{\frac{1}{2}}} \\ &= \overline{O}(1)(1 - 2O_R' \cos \theta - (2O_R' \tan 1 + \tan^2 1)) \\ &= \overline{O}(1)((1 - \tan^2 1)/2O_R' - \tan 1 - \cos \theta) \\ &= \overline{O}(1)((1 - \tan^2 1)(1 + 2R \tan 1 + R^2)(e^2 + 1)^2/4e^2R - \tan 1 - \cos \theta) \\ &= \overline{O}(1)((1 + R^2)/2R - \cos \theta) \\ &= \overline{O}(1)(1 - (2R \cos \theta/(1 + R^2))^2). \end{split}$$

So

$$\begin{split} & \text{II} = \int_{\alpha_R'}^{\frac{\pi}{2}} \int_0^{r_\theta'} \frac{r dr d\theta}{(1 - r^2)^2} = \frac{1}{2} \int_{\alpha_R'}^{\frac{\pi}{2}} \frac{d\theta}{1 - r_\theta'^2} \\ & = \overline{O}(1) \int_{\alpha_R'}^{\frac{\pi}{2}} \frac{d\theta}{1 - r_\theta'} = \overline{O}(1) \int_{\alpha_R'}^{\frac{\pi}{2}} \frac{d\theta}{1 - (2O_R \cos \theta)^2} \\ & = \overline{O}(1) (1 - 4O_R^2)^{-\frac{1}{2}} \left(\frac{\pi}{2} - \arctan \left((\operatorname{tg} \alpha_R') / (1 - 4O_R^2)^{\frac{1}{2}}\right)\right). \end{split}$$

Now

$$\begin{split} (1-4O_R^2)^{\frac{1}{2}} &= (1-4(R/(1+R^2))^2)^{\frac{1}{2}} = \overline{O}(1-R), \\ \operatorname{tg} \alpha_R' &= (\cos^{-2}\alpha_R' - 1)^{\frac{1}{2}} = \overline{O}(1)(1-\cos\alpha_R')^{\frac{1}{2}} \\ &= \overline{O}(1)\alpha_R' = \overline{O}((1-R)^{\frac{1}{2}}), \\ \\ \frac{1}{2}\pi - \operatorname{arc}\operatorname{tg}((\operatorname{tg}\alpha_R')/(1-4O_R^2)^{\frac{1}{2}}) \\ &= \int_0^{\operatorname{tg}\alpha_R'/\sqrt{1-4O_R^2}} \frac{dx}{1+x^2} = \overline{O}\Big(\Big(\frac{\operatorname{tg}\alpha_R'}{\sqrt{1-4O_R^2}}\Big)^{-1}\Big) \\ &= \overline{O}(1)((1-R)^{\frac{1}{2}}). \end{split}$$

Therefore

$$II = \overline{O}(1)((1-R)^{-\frac{1}{2}}) \qquad (R \to 1^{-}).$$

§3. Construction of the Counterexample

Let

No.1

$$\begin{split} D_n &= \{z: |z-z_n| < 1\}, \quad z_n = (n+2)^2, \\ R_n &= \operatorname{th} n, \\ ds_n^2(z) &= f_{R_n}^2(r)(dr^2 + r^2d\theta) \quad \text{where} \quad z = z_n + re^{i\theta}, \\ f_R(r) &= (1 - (r\chi_R(r))^2)^{-1}, \\ \chi_R(t) &= \widetilde{\chi}_R * \varphi_{\epsilon/3}(t) = \int_{-\infty}^{+\infty} \widetilde{\chi}_R(u) \varphi_{\epsilon/3}(t-u) du \quad (\epsilon = (1-R)^2), \\ \varphi_r(t) &= r^{-1} \varphi(t/r), \\ \varphi(t) &= \begin{cases} Ce^{-(1-t^2)^{-1}}, & |t| < 1, \\ 0, & |t| \ge 1, \end{cases} \qquad C^{-1} &= \int_{R^1} e^{-(1-t^2)^{-1}} dt, \\ \widetilde{\chi}_R(t) &= \begin{cases} 1, & t \le R + \frac{1}{3}\epsilon, \\ 0, & t \ge R + \frac{2}{3}\epsilon, \\ \operatorname{linear}, & R + \frac{1}{3}\epsilon \le t \le R + \frac{2}{3}\epsilon. \end{cases} \end{split}$$

Then, take (compare with [2])

$$N=(R^2,ds^2),$$
 $ds^2(z)=\left\{egin{array}{ll} ds_n^2(z), & z\in D_n, & n=1,2,\cdots,\ dzdar{z}, & ext{otherwise.} \end{array}
ight.$

We have

Lemma 3.1. N is a smooth complete Riemannian manifold.

$$f_{R(r)} \begin{cases} = (1 - r^2)^{-1} & \text{for } r \leq R, \\ = 1 & \text{for } r \geq R + \epsilon, \\ \leq (1 - r^2)^{-1} & \text{for } R \leq r \leq R + \epsilon. \end{cases}$$

Proof. Obviously, $f_{R_n} \in C^{\infty}(D_n)$ and $f_{R_n} = 1$ for

$$z \in D_n - \{z : 1 > |z - z_n| \ge 1 - R_n - \epsilon_n\}.$$

So, ds^2 is a smooth Riemannian metric. Thus, it is easy to see that N is a smooth complete Riemannian manifold. Now, noticing that

$$0 \le \chi_R(t) \le 1, \qquad \chi_R \in C^{\infty},$$
$$\chi_R(t) = \begin{cases} 1 & \text{for } t \le R, \\ 0 & \text{for } t \ge R + \epsilon, \end{cases}$$

we can easily get the estimates of f_R .

Let d(.,.) denote the geodesic distance function on N, B(z,r) the geodesic ball with center z and radius r. Then, we have

Lemma 3.2. When $n \to \infty$, we have

$$|B(z_n, d(z_n, z_n + R_n))| = \overline{O}(1/(1 - R_n)),$$

$$|B(z_n + R_n, d(z_n, z_n + R_n) + 1)| = \overline{O}(1/(1 - R_n)^{\frac{1}{2}}).$$

Proof. The first estimate is the same as the first estimate in Lemma 2.4. The second

estimate can be obtained by the second estimate in Lemma 2.4. Since

$$B(z_n + R_n, d(z_n, z_n + R_n) + 1)$$

is convex in N, we have

$$B(z_n + R_n, d(z_n, R_n + z_n) + 1) \cap B_0(z_n, R_n + \epsilon_n)$$

$$\subset B_0(z_n, R_n + \epsilon_n) \cap \{z : |\arg(z - z_n)| < \alpha'_{R_n}\}\}$$

$$\cup (B(z_n + R_n, d(z_n, R_n + z_n) + 1) \cap \{z : |\arg(z - z_n)| > \alpha'_{R_n}\}\}.$$

So, by Lemma 2.4 and Lemma 3.1

$$|B(z_n + R_n, d(z_n, R_n + z_n) + 1) \cap B_0(z_n, R_n + \epsilon_n)|$$

= $\overline{O}(1/(1 - R_n)^{\frac{1}{2}}) \qquad (n \to \infty).$

Finally, the Riemannian metric on

$$B(z_n + R_n, 1 + d(z_n, R_n + z_n)) \cap (B_0(z_n, R_n + \epsilon_n))^c$$

is Euclidean and the geodesic distance

$$d(z_n, R_n + z_n) = \frac{1}{2} \ln((1 + R_n)/(1 - R_n)) = n,$$

so we have

$$|B(z_n + R_n, d(z_n, R_n + z_n) + 1) \cap (B_0(z_n, R_n + \epsilon_n))^c|$$

= $\overline{O}(1)(d(z_n, R_n + z_n))^2 = \overline{O}(1)(\ln((1 + R_n)/(1 - R_n))^2.$

Therefore

$$B(z_n + R_n, d(z_n, z_n + R_n) + 1) = \overline{O}((1 - R_n)^{-\frac{1}{2}})$$
 $(n \to \infty).$

Now, take

$$h_n(z) = |B(z_n, 1)|^{-1} \chi_{B(z_n, 1)}(z).$$

Then, for $z \in B_0(z_n, R_n)$

$$M(h_n)(z) \ge |B(z, d(z_n, z) + 1)|^{-1}$$

$$\ge |B(z_n + R_n, d(z_n, z_n + R_n) + 1)|^{-1}$$

$$\ge C(1 - R_n)^{\frac{1}{2}}$$

by Lemma 3.2. So

$$|\{z: M(h_n)(z) > C(1 - R_n)^{\frac{1}{2}}\}| \ge |B_0(z_n, R_n)|$$

$$= |B(z_n, d(z_n, z_n + R_n))|$$

$$= \overline{O}(1/(1 - R_n)).$$

But

$$((1-R_n)^{\frac{1}{2}})^{-p} \int_N h_n^p(z) d\sigma(z) = \overline{O}((1-R_n)^{-p/2}).$$

Thus, M is not weak type (p,p) bounded for $1 \le p < 2$. Of course, it is not L^p -bounded for $1 \le p < 2$.

Acknowledgement. The first named author would like to express his many thanks to Prof. Chen Min-de for his continuous, enthusiastic support, and to Prof. Bai Zhenguo for his inspiration.

REFERENCES

- [1] Chen Jiecheng, Heat Kernel on positively curved manifolds and its applications, Ph.D. Thesis, Hangzhou University, 1987.
- [2] Chen Jiecheng & Li Jiayu, Chinese Science Bulletin (Chinese edition), 34:9 (1989).
- [3] Chen Jiecheng & Wang Silei', Science in China, Ser. A, 33:4(1990), 385-396.
- [4] Clerc, J. L. & Stein, E. M., Proc. Nat. Acad. Sci. USA, 71 (1974), 1911-1912.
- [5] Lohoué, N., C. R. Acad. Sc. Paris, Série I, 300:8(1985), 213-216.
- [6] Stein, E.M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton N. J., 1970.
- [7] Strichartz, R. S., J. Funct. Anal., 52 (1983), 48-79.
- [8] Strömberg, J. O., Ann. of Math., 114 (1981), 115-126.
- [9] Varapolous, N. Th., J. Funct. Anal., 44 (1981), 359-380.

