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THE COHOMOLOGY OF MODULAR LIE ALGEBRAS WITI—I
COEFFICIENTS IN A RESTRICTED VERMA MODULE**

CHIU SEN*

. - Abstract -
This paper determines the structure of the cohomology of a modular semlsxmple Lie a.lgebra, ,
with coefficients in an arbitrary restricted Verma module '

-§1. Introduction

In [12], Williams gave the structure of the cohomology of a complex semisimple Lie
algebra with coefficients in an arbitrary Verma module. Let (g, [p]) bé a classical semisimple
Lie algebra over an algebraically closed field F, char F = p > 0, h a Cartan subalgebra
of g, b a Borel subalgebra such that h C b, and u(g) and u(b) the restricted universal
enveloping algebras of g and b, respectively. For any restricted homomorphism A : b— F
we let Z()) 1= u(g) ®yp) Fx denote the restricted Verma module of g with the highest
weight A, where F is a canonical one—d1mes1onal b-module. In 5], R. Farnsteiner and H.
Strade obtained a modular Lie algebralc version of Shapiro’s lemma and showed that if

— ol is not a sum of positive roots, then H*(g, Z(X)) = 0, where 0 : b — F is the
Lle algebra homomorphism given by o(z) := tr(adys %), Yz € b. In this paper we give,
in generalization of the results of [5], the structure of the cohomology H*(g; Z(\)) of g
with coefficients in Z()) for any restricted homomorphlsm X1 b — F. The main result is
Theorem 6.1. By Shapiro’s lemma and the Hochschild-Serre spectral sequence, we reduce
the computation of H*(g, Z(\)) to the computation of the cohomology of nilradicals n of
b in certain modules. For H*(n,F)), we generalize B. Kostant’s fundamental result (10,
Theorem 5.14] on the homology (or cohomology) of nilradicals of a complex semisimple Lie
algebra to the modular case (see Theorem 5.1). - :

Most of the results presented here can easily be modified to yleld statements regarding

homology groups.

| §2. The Restricted Verma Modules

In this section, we shall review the notions and the results of [5]. Let V' be a b-module.

- We introduce a twisted action on v by setting z - v := zv + a(m)'v, Where zeb, veV and

o(z) = tr(adg /b %). The new b-module w1ll be called V;,. Similarly, we can define the b-module
V_, such that (V_¢)o = V. Let n (or n-) be the sum of positive (or negative) root spaces of
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g. Let {h1,--- , i} be a canonical basis of h such that o;(h;) € Z/pZ, i,j =1,--- ,1, where
{a1,-++ ,q} is the set of simple roots. Let A denote the collection of p’ restricted weights
t characterized by the conditions 0 < u(h;) < p, 1 <i <1I. Then o|, € A and AJs € A for
any restricted homomorphism X : b — F. Obviously, o]y, =0 and Al = 0. Hence A and
are determined by Al -and o|y,. For convenience, we still denote Alj, and &, by A-and o,
respectively. For each 4 € A, we can also canonically obtain the one-dimensional b-module
which is still denoted by F),. For any A € A, by [5, Corollary 1.6], we have

Z(X) = u(g) ®u(r) Fx =~ Homy,) (u(g), Fr—o)(as g — modules).
Thus we can quote the modular Lie algebra,lc veraion of Shapiro’s lemma, due to Farnsteiner

and Strade. _
Lemma 2.1[5: Theorem 3.2 gy o7y )\ € A,

Hk(g, Z()‘)) =~ Hk(g’ I_Iom'u,(b) (u(g), FA——G)
= @ Ai (9/b) ®F 'Hj(b Fy-o).
z+] k

Thus the computa,uon of H *(9, Z(X)) can be reduced to the computatmn of H *(b Fy_g).
By means of the Hochschild-Serre spectral sequence, we can easily show that

Ei A’(h) ®p Hi(n,F)_, = H*®b,F,), - (2.1)

WhereueAa,ndk~—z+g
In the next sectlon we shall d1scuss H, (n~, F) for computmg H *(n F)_,.

_$3. The h;Module Complex C

Let U(g),U(b) and U(n~) be the universal enveloping algebras of g, b and n™, respec-
tively. For each j € N, let D; be the g-module U(g) ®y ) A(g/b). Then there is an exact
sequence of g-modules (cf. [6, Proposition 1.1]) e ’

: | B:.. dzul_’>D0—>F—>0 N 5 )
where & : Dy — F is deﬁned by the condition that.&(z ® 1) (z € U(g)) is the constant

term of z, and the g-module map d; : D; — D;_; is defined as follows:
Let z1,--- ,z; € g/b, and choose representations y1,:: ,y; € g, then for all € U(g), -

di(z® 21 A+ Axj) =Z(—1)i+1(xyi) QI N AZ; N~ Azj
i=1
- Z ()" @My, Ys| ATI A ABp A ARy Ao A,
1<r<s<j .
where 7 : g — g/b denotes the canonical map, and " signifies the omission of a symbol.
Since D; is isomorphic as U(n~)-module and as h-module to U(n~) ®@r A (n~) with U(n™)
acting by left multiplication on the first factor, and h acting on U(n~) @ AJ(n™) by the
tensor product action. The above free resolution of F' gives rise to an h-module complex

C:-- "B F@ugr) Dy 'S Fu-) Do—0 (3.2)
and its homology is H.(n™,F) and h acts in the obvious way on H.(n™, F).
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§4. The Symmetric Bilinear Form 7 on h*

Let A = (Aij)ixi be the Cartan matrix of g. Then there are positive integers ql, ,q,
such that diag(q, -+ ,q)A is a symmetric matrix. Let gg be.the semisimple Lie algebra over
Q with the same Cartan matrix A. Let h;, e, fi(i = 1,--- ,l)‘ be the canonical generators
with the relations | '

[hiyhs] =0, [es, fi] = bijhi, [hises] = Ajes, [hay fi] = =Aijfi Vi, j=1,-++ 1,
and (ade;)~4ii+! = 0 = (adf;)~ 44+ whenever i # j. Let hg be a Cartan subalgebra of
g@,.f_b C hg the root system (relative to hg), A = {ay, - ,01} a basis of &, & (or ®_)
the set of positive (or negative) roots and W its Weyl group. For every subset ¥ of @, define

(T) = 3 @ € h* For all w € W, define
pED

B, =0, Nuwd_={ped |ulp ed_}.
Write p = %(<I>+) € h*. Then —(®,) = wp — p (cf. [6, Proposition 2.5]) and p(h;) = 1 for
alli=1,.--,l. Write T = {—(¥)|¥ C &, }.
Remark 4.1. For g we still adopt the above notations, except that the 1ntegeral coeffi-
cients A;; in the relations are reduced modulo a prime p (> 2 or 3).
Define a symmetric bilinear form g on hg by the conditions
TQ(a;l)aj) = q’I.AzJa V’L,j =.'1a e ?l'
Then Tg(p, ;) = ¢;. o .
Lemma 4.1.19223 Let y = —(¥) € T. Then
(1) We have |
o(p, p) — To(u+ oy + ) 2 0. (4.1)
(2) In (4.1), equality holds if and only if there exists w € W such that ¥ = &, or
equivalently, such that p = —(®,) = wp — p. In case of equality, u determines w.
For u = - n;a; € T, we have
i

TQ(p, p) — TQ(II; + o1+ p) =TQ(pa anaz) + TQ(Z N0, — Zniai + p)'

=2 qui - Z Z giAijning K
| =2 thnz Z% ZquUn’th)

i<j
Let
- f(mla ml) = Z(Izmz ZQZ ZQZ i TiL 4
R ' . i<j .
be a polynomial in variable z1,-+- ,2; and ¢1,- -« ,¢; is the solution of the following system
of linear equations . : L . ,
20 + ) GiAiny + > GArize =gi, i=1,-- 1. - (42)

i<k - k<i
Then we have

1
5(7—@(% ,0) "'T@(:u'-"}' 0,0+ P)) < f(ch o .,cl)7 for peT. .
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Write ¢’ = max{2, [f(c1,-+,¢)]}: Define a symmetric bilinéar form 7 on h* by the
conditions ' '

T(aia aj) = Qz‘Aiij'd(p), Vi, j=1,--- .

Then using Lemma 4.1, :we have
Corollary 4.1. Suppose char.F =p>q'. Then forp=—(V) €T,

T(ep) =Tt pntp)=0

if and only if there exists (umque) w € W such that \Il ®,, and p, = —(®,) = wp — p.
Exainple. If g is of type Ay, then ' }

i—-1 ‘
il .
.Ci=§_§ k, Z=1',"'al’

k=1
satisfy (4.2) and

. -1 ‘.
' 'Q' = max{2, Z c; — Z C% + Z cz-c,'_,._l}.
2 % i=1

Thus we have

112]3|4|5]6]

g 2]2]5]8[14]:-

§5. _The Casimir Element

Let char F' =p > ¢'. Set t; = gih; and k; = %T(ai,a@-)hi, i=1,.--,1. If a= }: nio,

oo g=1

then set t, = E nit;. For oo € @, choose nonzero z, in g, and %o € g-o such that
’ g=1

[_mmza] =tq,

_ l
where g, and g_,, are the root spaces of o and —« in g, respectively. Define I' = 3 hsk; +
i=1
> Zazq Which is called a universal Carimir element of g. Similarly as in the case of char- '
a€d
acteristic 0 (cf. {8, §22. 1]) we can show that for any representation ¢ of g, ¢(I") commutes

with ¢(g).

For A € A, we let V()) :=U(g) ®u() Fx denote the Verma module of g with the highest
weight .

Lemma 5.1. Let A € A. Then I acts on V()\) as scalar multzplzcatmn by T()\ +p, A+
p) —7(p,p).

Proof. Since V(\) =U(g)(1®1), it is enough to show that TA®l)=(TA+p,A+p)—
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7(p,p))(1 ® 1). Since A(ty) = 7(A, &), we have
!

r(1®1)=2him(1®1)+ > ta(18 1)

i=1 a€dy
: _ _

=Y " ABE)AE) + D Alta)
g=1 _ ‘ acd®y :

=(r(A+p,A+p) —7(p,p))(1® 1).
Let V be a g-module and
O(V) = {c € F|l'v = cv, for some v € V, v # 0}.
For all c € F, let '
Vig={veV|T -c)"v=0, for some n > 0}.
Then ©(V) = {c € F|V|) # 0}. In particular, N
O(V(N) = {r( + A+ ) = 7(p,0)}, for A€ A. -

Let ¥ = {A1,A2,--:} C A A g-module V is said to be of type ¥ if V has a strictly
increasing (finite) g-module filtration 0 = Vo C V4 C Vo C --- such that V' = UV; and such
that the sequence of g-modules V3 /Vp, Va/Vi,--- coincides up to rearrangement with the
sequence of induced modules V(A1), V(A2), - . ‘

Lemma 5.2. For each j € Zy, let ¥/ = {\;,)),, -} be the set of the weights of
Ad(n~), then D; is of type UJ. Furthermore, we have

Di= @ Di)
c€Q(D;)
where . ' o v
©(D;) = {T()‘ji + 9,25, + p) = (s P)}i-
Proof. As h-modules, g/b ~ n~ and A¥(g/b) ~ AI(n~). Clearly AY(n~) is a weight
module with weights all of the form '

!
—anak € Zoy + -+ + Zoy,
k=1 o ‘
and the same is true of A7(g/b). Note that if m; = n; mod(p), i =1,.--,l, then

l l
- Z m;Q; = — Z N0 € _A.
i=1 i=1 .

We arrange the weights of A7(g/b) in a certain order |
! !
Mio(= =Y mpaok), Aip(= =Y magcw), -+,
k=1 k=1

l .
such that Y ;41 is not less than Y ngi. Let vj,vj,,- - be the corresponding weight
k=1 k=1
vectors in A7(g/b) and

l

Vi, =@ Fujp, i=1,2,---.
k<i
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Then
0=V,CVyCVj o
is a filtration of b-modules such that AJ(g/b) = UVJQ and each quotient Vj,.,/V;, is a
trivial m-module and is isomorphic as an h-module to a module F,,, , and &V}, /VL is
R 2

isomorphic as an h-module to AJ n-.
By [6, Proposition 1.10], the g-module D; is of type 7. Hence D; is annihilated by a
product of powers of operators of thé form I — (T(Nj; + oy g + p) (p, p)). By standard

linear algebra,
= @ (DJ)(c)
c€®(D;) .
Since the action of I' on D; commutes with the action of g of Dj;, (Dj )(c) is also a
g-submodule of D;. Let f : XY bea g-module map. Then )
fTW) =T f@), WeXx. | ENGE)
Thus we have ' . - -
. (Xz+1/X )e) = ( z+1)(c)/(X )epy, force F

a,nd the followmg subcomplex of the exact sequence (3.1) : _

B+ = (Di)(e) = (Do)e) = Flo) = 0
is also exact. = g : S . _

" Let 0= Xj, C Xj, C Xj, C +-- be any filiration of D; with the properties stated in
Lemma 5.2 and Aj, € A be the highest weight of X;y1/X;, that is, X;41/X; =~ V();,)
for each 7. Then (Dj)(c) has a g-module filtration 0 = Yy C Y7 C Y3 C -+ such that
Dj)e) = L,ng, and the family of g-modules Yj1/Y) coincides (up to isomorphism) with
the family of g-modules X,-.H /X for which 7(\j; +p, Aj;, +p) —7(p, p) = C. Hence by Lemma
5.2, we have

Lemma 5.3. Let \II{, = {)\ € \IIJ|T()\ + A+ p) - 'r(p, p) =0} Then the reso]utmn B is

a direct sum of an exact g-module complex

By : *++ = (Di)0) = (Do)o) = F — 0 (5.2)
and a finite number of exact g-module comp]exes
By = (Di)o = (Do)() = 0, for ¢ #0 (5.3)

such that for each j € Z,- (D; )(0) is of type Ui,
By Lemma 5.3, the complex (3.2) is the d1rect sum of the h-module complex
Coy v+ = F ®ury (D1 = F Bu(n-) Do)y =0
and the h-module complexes : C
C(c) R a ®u(n-) (Dl)(c) - F ®u(n-) (Do)(c) — 0,for ¢ # 0.
- Since D; 'is free as a U(n~)-module, (5.3) is a U(n~)-projective resolution of the zero
module 0. Thus Tor? (F,0) = 0, that is, the homology of C(¢)(c # 0) is zero. Hence we

have
Lemma 5.4. H.(n™, F) is h-module 'isomofphic'to' the homology of C ).
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Note that F' ®y(n-) (Dj)(0) is isomorphic to the sum of all the h-weight spaces A(n7)»
with weights A € A satisfying 7(A + p, A + p) = 7(p, p).

For all j € Z., write W; = ={w e W|i(w) = j} and F,, = F_z,)-

Theorem 5.1. Suppose that charF = P > q'. For each j C Z., the h-module o

Hi(n",F) ~ EB Fupp.
weW;

Proof. First, we shall show that

F @u-) (D)) = @) F-(a,)-
" weW;

Let w € Wj. Set A = —(®y,), By = {1, , 065} and zg, € gﬂz Then we have zg Av- e A
zg, € A¥(n7) (the weight space in AY(n~) with the weight A). Since.A = —(®) = wp — p,
we have 7(A+p, A+ p) = T(wp, wp) = T(p, p). Conversely, let zg, A---Azg, € AJ(n~)) such
that (A + p, A+ p) = 7(p, p) and zp, € gg,. By Corollary 4.1, there exists (unique) w e W;
such that ®,, = {61, ,0;}. Hence. F(zg, A--- Azp;) = Fyy and

F&ua-) (D))= D Fo= D F@) = D Fur-sr
weWw; weW; . weW; : .

Next, we claim that all of the maps d; : F ®yn-) (Dj)(0) = F Qu(n—) (Dj-1)(0) are zero.
Indeed, if o, 8 € @, then o+ 8 € &, or a+ [ ¢ ©. Hence
Dj(og, A -Agg) = 3 (=17 *[op,,ap A+ ABsA--ABg, A+ Adg, Ar--Alig, = 0.

1<r<<s<g _ _

Since Hj(n, F) =~ wéBW'F ~wp and Hi(n, F) = H;(n, F), we obtain

3

Corollary 5.1. Let charF =p > q'. For each j € Z,
Hi(n,F) = D Fup-p

weW;

. . . l ,
Remark 5.1. Let (®,) = Y n;a;, ¢ = max{¢,ni,---,n} and charF = p > q.
. _ = . v d

Obviously, if wip — p = wap — p, for wy, we € W, then wy = ws. But if p < ¢, then the
conclusiuon is not always true. .

§6. The Cohomology of g with Coefficients in Z(A)

In this ‘section, we assume that charF ='p > q. First, we compute H*(b, F,,) for u € A.
By (2.1) and Corollary 5.1, we have ‘
B3’ ~ Ai(h) ®F ( @ Fup—p)-u
. weW;
Thus we obtain two cases:
(1) If p # p — wp, for all w € W, then Eé’j =0, for p,q > 0. It implies that

H*(b,F,) = E =0 Vk e Zy.

2) If u = p — wgp, for some wp € W;, then wp is unique and
J

y 0, for i > 0 and j # I(wo),
Ey ~ .
2 A?(h), for i >0 and j = l(wo).
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Thus we have- - o
HE(b, F,) = By ™00 — ph-llwo)p, -
Then we have shown - ' '

Proposition 6.1. Let u € A. Then for each k € Z_,_,
H*(b,F,) = { AF=Uwolp  if 1= p — wop, for some wy € W,

Next, since o} = —(®+) = —2p, by Proposition 6.1, Lemma 2 1 and (2 1), we have
Theorem 6.1. Let A € A. Then for each k € Z,

_ . @D A’(g/b) ®r AJ"(w")h if X = —wgp — p, for some wy € W,
(9, 2(A) = | |

0, . otherwise.

z+3—k
0, C " otherwise.

Remark 6.1. If A = (p — 1)p, then Z((p —1)p) is called the Steinberg module. Since
(p—1)p # ~wp — p for any w € W, by Theorem 6.1, H*(g,Z((p — 1)p)) = 0. On the
other hand, by [9, Corollary 5,4], Z((p —1)p) is irreducible and projective, hence is injective
(since U(g) is a symmetric algebra). It also 1mpl1es that H*(g, Z((p — 1)p)) = 0, which is
compatible with the above fact.
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