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THE GROWTH THEOREM FOR BIHOLOMORPHIC
MAPPINGS IN SEVERAL COMPLEX VARIABLES***

GONG SHENG* WANG SHIKUN** YU QIHUANG**

_ Abstract _ _
The Growth Theorem for normalized biholomorphic starlike and convex mappings on Rein-
hardt domains and classical domains are established. :

~ §1. The Growth Theorem for Starlike
Mappings on Reinhardt Domains

There are fruitful results on the geometrical function theory of one complex variable.
But there exist a lot of counter-examples to show that the corresponding reseults in several
complex variables are not true. In 1933, H.Cartan!!! already pointed out that the growth
theorem of biholomorphic mappings on the unit ball of C" is not true. In 1988, Carl
H.Fitzgerald, Sheng Gong and Roger W.Barnard/? gave the first affirmative result about
the gi*owth theorem in several complex variables. Th‘ey proved the following result.

Let B® = {Z = (21,22, ,2n) € C™| |Z| < 1} be the unit ball in C", where |Z| =
(lezl )2, and |

be the normalized biholomorphic starlike mappings on B”, where AY) = (akl))1<l k<ns
j =1,2,--+,n, are constant matrices, starlike mapping means the image of B™ by f (Z) is

starlike with respect to origin, and normalized mapping means f(0) = 0, J¢(0) = I, where
Jy is the Jacobian of f, I is the identity matrix. Then
1] _la |
—mns S f(2)] £ » 1.2
a+izp =V gz @
holds for every z € B". The estimation is precise, but the extremal mapping is not unique.
Obviously, f(B™) D %B", that is, the Koebe constant of this family of mappings on B™ is
1 _ ,

Y .
In 1989, Qihuang Yu, Shikun Wang and Sheng Gongl®! extended the Growth Theorem
of normalized biholomorphic starlike mappings on ball to the Reinhardt domain B, where

n
B,={ZecC|2|,=(3 |2:|P)? < 1,p > 1}. We proved the following result.
t=1
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Let (1.1) be the normalized biholomorphic starlike mappings on B,. Then
%] |Z]|
ariziy? < VOIS T,y

holds for every Z € B,. The estimation is premse, but the extremal mappmg is not unique.
As a consequence of (1.3), f(B?P) D ZI?BP where K =1 1fp > 2, K =n'% if 2 >p> 1.
That is, the Koebe constant of this family of mappings on B, is 3 K

On the other hand, using Loewner Chain’s method, John A. Pfeltzgraff!l proved that:

Let (1.1) be the normalized biholomorphic starlike mappings on B,. Then

(1.3)

Zllp Z|lp .
e e L R

holds for every Z € B,. The estimation is precise, but the extremal mapping is not unique.
As a consequence of (1.4), (Bp) D pr That is, the Koebe constant of this family of
mappings on B, is 4 in the sense of p-norm.

Now we would like to pomt out that (1 3) and (1 4) are equlvalent That means they can
imply each other. - : : : Fo

Let p(W) =ttWW" where W = f (Z )s Z € Bp. Then it is easy to verify

n

dp(W) = % Z(dwzw_z-i- Elo—.;;wz)
i=1

and

” 1 i dw- Zi?u_z
W, = "||W||p’z<’“i.+ _) o

w. . w-
=1 ¢ ¢

where ||W||, = (Z IwZIP)P, p>1. We have < d|W||p,dp >= ﬂ-——ﬂﬂ , Where <, > is the inner

product of the cotangent space of C™ at the point W On the other hand, < d||W||p,dp >=
M"- We obtain
Wl _
”W”p P ' ) ‘
Then we mtegrate (1.5) on both sides from W f(eZ) to W = f(Z ) Where € is a small
positive number. We get ' ‘

©5)

1Dl _ 1£(2)

1B, ~ 1f(ez)
Now we can prove that (1. 3) imply (1.4). From (1.6) and (1.3), the following inequality
holds | |

(L.6)

1£(e2)llp(1 ~ €l Z1]p)? |1/ (eZ)]lp(1 + 6|IZ||p)2_

<@y £ = (1.7
1+ 2T, P ST ) )
Then letting € — 0 we get (1.4) since 111% ik (EZ)” = ||Z |l due to the normalized condition

of f.

Similarly, using (1.6) and (1.4), we can prove (1.3).

Note that the methods used to prove (1.3) in [3] and (1.4) in [4] are essentially different,
but (1.3) and (1.4) can imply each other. In other words, they are two different methods to
prove both (1 3) and (1.4) from [3] and [4].
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§2. The Growth Theorems for Starlike
Mappings on Classical Domains

As a part of his doctor thesis, in 1989 Taishun Liu®®) extended the result of [2] in another
direction. He got the growth theorems of normalized b1holomorphlc starlike mapping on
classical domains. The four types of classical domains are defined as followsl®!; '

Ri(m,n)={Z € menlI 77" >0},
R}}(n) {Ze C"X"|I 77" >0,Z = ZT},
Rur(n) = {Z € O™ - ZZ" >0,Z = Z7},

Riv(n) = {Z € C*1 - 227" + 22712 > 0,|2Z"| < 1}.

He proved that: Let f(Z) be the normalized biholomorphic starlike mappings on classical
domains Ry, (K I,II,III,IV) which map Ry to C4m™ Rx, Then L

12| 1Z]lx
A+IZIRE S <)k < H—ITZW (2-1)

holds for every Z € Rk, where || g is the norm of ’R,K (cf. [7]), that s, 1Z]% is a

: pos1t1ve square root of the largest eigenvalue A\(Z) of Z7" for K = I,1I,1 IT and 12| =

(|Z|2+(|Z|4 12Z"|? )%. As the corollary of (2.1), he got f(’R,K) > iRk, K =1,1I, I5,1v.

All these estimation are precise, and the extremal mapping is not unique.

In this paper, we establish another growth theorem of normalized biholomorphic starlike
mapping on classical domains. ‘

Theorem. Let W = f(Z) be the normalized biholomorphic starlike mappings on classical
doma,ms ’RK, (K = 1,II,III,1V), which map Ry to C4™ Rx. Then

1Z] 2| -
A +12]x)? ‘If(Z)IK<( “Zl?

(2.2)
holds for every Z € Rg. _ ,

" The estimations are precise, but the extremal mapping-is not unique.

. Finally, we prove that (2.1) and (2.2) are equivalent, that is, (2.1) and (2.2) can 1mp1y
each other. In other words, we have two different methods, one is Taishun Liu’s in [5] and
the other is that we use in this paper, they can prove both (2.1) and (2.2). Actually, in the
case of the domain is Ry, Taishun Liu already proved that (2.1) implies (2.2), and it is
easy to prove that (2.2) implies (2.1) i the same way as he used. So, in this paper, we only
need to. prove the theorem in the cases that the domains are Ry, Ryr and Ry, and then
prove that (21) and (2.2) are equivalent in these domains. |

83, Some Lemmas

To prove the theorem, we need some lemmas : :
Lemma 3.1. Let ®(t) be the holomorphic mappings which map RK into Rg and
®(0) = 0. Then . .

holds for every Z € Ry .
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This lemma can be deduced from Schwartz Lemma, of the normal linear space by Lawrence
A. Harrisl®]. Using the Schwartz Lemma, we have

Lemma 3.2. Let W = f(Z) be the normalized biholomorphic starlike mappings on Rx
which map Rx to C¥™ Rx. Then | ' ' o

N~k < F1W)li
holds for every Z € Rk and every r € [0,1]. ‘
Proof. Let f(Rk) denote the image of Rx under f. For a fixed Z € R, the subset of
Ry is defined as

€a={Y € Ri| I¥lx < 1Z)lx =a}.

- Obviously, &, is an open set. Becauée a holomorphic mapping is an open mapping, f(&,)
is also an open set and {f(€;)} = {f(€,)}. By the starlike hypothesis for the mapping f,
where W = f(Z), we have rW € f(Rg). That means f~1(rW) € Rg forall 0 < 7 < 1.
We claim that :

™W e f('é;); (3.1)

If it is true, then f~1(rW) € &,, which implies the lemma holds. To show that (3.1) is true
we suppose there is such an 7o < 1 that oW & {f(€,)}, i.e., [|[f~2(roW)|lx > a. We define
a new mapping K(Z) from Rg to Rg by K(Z) = f~1(rof(Z)). Since f is a biholomorphic
starlike mapping, K(Z) is well defined and is holomorphic with K (0) = 0. By Lemma, 3.1,

1Z)1x 2 1K)k = |~ W)k > a.

This contradicts ||f~1(W)||x = ||Z||x = a. Thus (3.1) is true. The lemma is proved.

Let W = f(Z) be the biholomorphic starlike mapping on Rx. Then g(W) = || ~1(W)||
is a continuous function of each entry of W. For a fixed W° € f(Rk), let o(W0) = {W =
W00 < r < 1}, this is a closed set. Thus g(W) is absolute continuous on W € o(W?9),
and then g(WW) is differentiable with respect to W almost everywhere. We have

Lemma 3.3. Let W = f(Z) be the biholomorphic starlike mappings on Rx which map
Ry to CH¥m Rk Then ||f~1(W)|x is differentiable with respect to W almost everywhere
on the c(W°) = {W = rW?0,0 < r < 1} where W° = f(Z°) is a fixed point in f(Rx) and
K =1,II,III,IV. = -

\

we have

§¢4. The Proof of the Growth Theorem

For Rrv, (2.2) was proved by Taishun Liul®l. Here we only give the proof of the theorem
in the case that the domain is Ry, and the proofs of the theorem are similar in the cases
that the domains are Ry and Ryyy.

Let W € f(Rr(m,n)) and denote pz(WWT), MZ) = ||Z||2. When Ao f~1 is constrained
on the segment o(W?) joining the origin and W° = f(Z9), for a fixed Z° € Ri(m,n),
the directional derivative of A o f~! along the direction dp, that is éﬁ%l, exists almost
everywhere on the segment o(W?°) by Lemma 3.3. By the definition of A\(Z), A(Z) satisfies
the following equation

det(\(2)] — ZZ") = 0.
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m | | | . o :
S (Dra®zz k=0, @D
k=0

~ where tr® ZZ" is the sum of all the k x k principal minors of ZZ". Differentiating (4.1)

on both sides, we have

-1
Z( 1)%(m — k)tr(k)ZZ Ak 1dA+Z( 1)kd(tr(’°>zz )Am k=0
k—-O o k=1

Thus d\ = Where

P =Y (-1)**1du® 2Z" )k, @2
k=1
m—1 : ’ R o
Q= (-1)*m- k)te®) ZZ Am—k- 3 | (4.3)
k=0
Obviously, P is equal to
m___k+1mk (%) 4
2Re Z_:( A %: Bury (tr'*zZ )dww (4.4)
Since dp? = 2Re(3 w;;dw;;), we obtain
1,5
-1 Pl
< dlo f71 dp? > |W f(Z) Q. (4.5)
where <,> |w is the inner product of contangent space of me" at the point W, and
P =4Re) (- )k+1,\m—kz tr<’°>zz Yoize . (4.6)

It is easy to evaluate, for 1,2, .- ,;m,

9 (1 2Z7)

Wij
k k
Z 213828y E 2138215
s=1

s=1

_ 0

Owis
<<y

k k
Z zlkszhs, M )Z zlkszlks

g=1

}:Zz Z Zzz 821y, | Zzz 821y, 8
3%”12 Z P1, ( 18 n)(s 28%pg - k8%py,

< <lk P11yt sPk

- £ Tt E( 1 (Tue) (Shen)) e

Li<o <l p1yee P8 g=1 \j=l,j#g \ s

where (p1,p2, -+ ,pk) is a permutation of (1,2,--- ,k) and "5,1,’1%3.'.",,’,’2 = 1 if this permutation
is even, = —1 if this permutation is odd, and the second summation in the right hand
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side of (4.7) is over all the permutations of (1,2,--- ,k), and l3,03,- - ,{i are K integers of
1,2,--+,m,1 <k <m. ' ,
Substltutmg (4.7) to (4.6), we have

P = 4Re{Z( 1)k+ipm= kzwz,

i,J

Z Z p1, ,ka( H Zzl,.szlpJ (Zgziszlpq )}, (48)

li< <l P1y+* Pk g=1 i=1,js¢q 3

fora Z €e Ri(m,n). Let Y = “——ﬁ— Where t is a complex number w1th |t| < 1. Then

RS G BRI N
X(2)
That means ¥ = | | € Ri(m, n), and obv1ously ||Y||I = |t| /\(Y) = |t|2. Let WO = f(Y).
By Lemma, 3.2, .

A (Wo)) = AN = r)Wo) 20
f(?;reveryIZTZO,and o L e
| AT W) = AN = )W)

>0
7‘ .
for every 1 > r > 0. By the definition of directional derivative
—1
' M >0, (4.9)
dp W=w,

if the directional defivative at W = W? exists. But by Lemma 3.3, it exists almost every-
where on the segment q(WO) On the other hand a3
| y 4o 1)

(d(Xo f71),dp? )|w='w0 =2p :
dp W=W,
hence (4.9) is equivalent to
({d(Xo f71),dp?)|lw=w, = 0.
By (4.3),(4.5),(4.8) and (4.9), we have '
P; “
== >0,
Q2 ~
where
m k+1(p|2(in—k) 4|2k ;
P, = 4Re Z( 1) ’tl% - i Zw,, )
‘ k=1 t”Z“I i W—f(ﬁr‘ <<l
. 7 Af C ) L ‘ ) - Z|r: :,.
leqs . 1
E Z ply P H Zzlﬂszlp Z awz zlpqs) '
Dk q— N P =1,j# s J W= f("ﬂ-) :
and " - A ’

,"“1< 1) (m k)|t|2<m, 2

Q=S 77"
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It is easy to observe that we can rewrite P,/Q; as 4|t|2Re—3- where

k m—k
A0) = 121 Z( Yt s,

1]

2

li< <l

w=f(1r5—zn;'>

» leqs) , (4.10)
w=f(rt) N

= z{ [T, (et N 5

g=1 {\ j=1,j#q s

and

m—1

Q= (~1)*(m - k)tr(k)ZZ?X‘(Z)m‘k. | (4.11)

k=0
By (4.9), Re%?; > 0. Obviously, C(t) = %%1 is an analytic function of £ when 0 < || < 1

and ReC(t) > 0. We have
hm 1&) ( t2 )
' “\12lx

; 8w” _ aw,, 8zkl

ot t_o_zazkl ot

=S gid 2R _Zig (412
=2zl T Tl (@12

where 67} are Kronecker symbols and

lim 2241 =89 . (4.13)
t~0 Wsj ‘

W=f(1#)

Using (4.12) and (4.13), we get

"‘”Z”I Z( 1 k+1)\ Z)m kz “zzﬁI Z Z Pl, prk'

1 <<l P1ye

k k '

o=1 {j=Lj#q @

(—1)k+1)‘(z)m—k Z Z pl, ,pk

< <lk D1y 5P

o
Z{ H (Zzz szzp s)(zzzqszz,,q }

g=1 j=Lj#q s

‘ ’ k

NgE

=
Il
-

<o <lg PLy " 4PK

4 iMs

(~1)FHNZ) ke R 27

£
il

1
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Thus . .
m ~T
Y. (Z1)FHIN(Z)m k) 77

> (m— B)(=1)FA(Z) kP ZZT

This is equal to 1 by (4.1).

‘The analytlc function C(t) of one complex varlable ¢ where t is in.the unit dlsc of C
satisfies: C(0) =1 and ReC (t) > 0. By a theorem of analytic function with real part in the
unit disc, we have o

1- t] 1 + |t|

" t) 4.14
Takmg t= HZ”I in (4 14)2 we_get N

VA 1+ (i1 Z]|r

}} ZHI > ReG(|2] )2 7 IZ]

— 1zl
But it is easy to verify '

1 . dho f-1
CIZ10) = 350z o ™4 w0 - vr .

W=£(z)
Thus the inequality
| DDA 56 ), a8 gy < 2DLEN (4.15)
T+VA@) | (; - A(z»
holds almost everywhere on the segment o(W). ‘ o ‘
- We take a sufficient small positive number s <.1-such that the small hyperball
B(s)={W ¢ men| trWW —tr(f(sZ) (sZ) )}

intersects o(Z). The intersection point is

| & (SZ)f(SZ)
| trWW :
Obviously p(Q) = p(f(sZ)) and (4.15) is equlvalent to the following two inequalities
(1—\/)\(Z) d)(\i -Sl (4.16)
Z)(1+ \/A(Z ) p AZ_=f—1(W) P
and ' '
1+\/ Z)) d)\Z) 21 @)
2X Z)(l— \//\(Z) lz=grromy P
Integrating (4 16) with respect to dp along the path or(W) from Q to W gives
A/ 144/
Clnp(W) 2 > In- )\(Z A+ yAes p(Q) - (4.18)

TV vy

It follows by the normahzed assumption for f that

A(@) = A (s2)) = i(f(s2)FE) = 2(6:2Z" +0(s)). (4.19)
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The normalized conditions shows: f - is also normalized.. That is Bz” /8wy = 6;3. Then we
have ERRE < B :

i@ s \ltr_(f(sZ)f(sZ) ).w

HWW"
: _ f'_i' (8 ( trZZT +0(S)) )
\ \Verw
=s( uzZ W+O(s)). (420
trWW
Thus we have | '
o f7UQ) = 2(ttZZ° +0(s)). . . . (421)

Substituting (4.19),(4.21) into (4.18) and letting s — 0 in (4.18), we get

S =iz UIT
Gy T

holds almost everywhere.

We have almost proved the left hand side mequahty of (2. 2) is true almost everywhere.
Based on the fact that p(f(Z)) and A\(Z) are continuous functions of Z on Ry(m,n) and the
measure of the excluded set is zero, we see that the left hand side inequality of (2.2) holds
for all z € Ry(m,n). Similarly, We can. prove-the right hand side inequality of (2.2) holds
for all z € Ry(m,n). :

Using the same method, we also can prove the theorem in the case that the domains are
Rk, K = II,III,IV. We omit the details of the proof. Obviously, the method used by
Taishun Liu to prove (2.1) are different from the one used by us in thls paper.

The following mappmgs show (2. 2) is premse and the extremal mappmgs are not unique.

Ri: Z‘lfl'z_)z ZII - (ﬁ)r?;

Rir: = m—%Z= z%, Z[1-2)7%7 = 77,
(l_Zn) : RN
Rrv: ——:—l———Z Z =77, Z[I - AZ)™%,Z = Z7,
Z\ . .
where ( 0 ) is a square matrix and

0 1\, {0 1\. .
A=<_‘1 O)+-.-+<_1 0) if n is even,

{0 1Y\ P B B S R P
VA':(-—I O)+v“.'+(.—l 0)-iaovlfnlsb_odd.
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. §5.. The Equivalence of Two Growth Theorems
for Starlike Mappings on Classical Domains

Now we prove (2.1) and (2.2) are equivalent. As did in the previous section, we only
prove this conclusion in the case that the domains is-R;. And the proofs for the other two
cases are similar. '

If A(W) is the largest elgenvalue of W™ , then ||W||2 = A(W), where W = f(Z), Z € R.
A(Z) satisfies the equation ' :
det(/\(W)IA—‘ WW') =
which is equivalent to
m _
Y (—1F AW = o, (5.1)
k=0 "
where tfOWW' = trWW" and tr™MWW' = det WW . Differentiating on both sides of
(5.1), we have

m—1 | . m ' v .

{2( ~1)%(m — k))\m'"’“ 1tr<’°>WW }dA+Z(—1)’°)\m"°dtr(k)WWT =0. (5.2
k=0 k=1 :

We can easily verify '

(A OWTT), dp) = %’ﬁtr“)WWT (5.3)
because of dp = wszz }dei-). From (5.2) and (5.3), we get |
4 Oij 4 OWij
za
m—1 o —o M >———T
{Z( 1)*(m — k)Am—k=- 1tr<k>ww }(dA,dp>-_——-Z(-nkk-,\m-ktr(k)vvw . (5.4)
k=0 p k=1 '
Using (5.1), we have
m—1.
> (=1 (m - k),\”Hc LW
k=0
M _qym+t | 1)k EAmk=14 (k) 77T
=5 (- ) det W~ —{Z kX MWW}
k=1
= —Z( 1)’%Am ST,
k=1
Substltutlng the previous equality into (5.4), we obtain
2)\
(dA, dp) =
That is (d]| 21, dp) = 1ZLc. Thus
d|Z]|: _ dp
== 5.5
121 = s (5:5)

holds.
As we did in proving that (1.3) and (1.4) are equivalent, we integrate (5.5) on both sides
from W = f(eZ) to W = f(Z) where ¢ is a small positive number, and then let ¢ — 0.



Nol . Gong, S. , Wang, S..K. et al.. GROWTH THEOREM 103

According to the definition of ||Z||;,; and the normalization conditions of f, we immediately.
see that (2.1) and. (2.2) are equivalent in.the case that the domain is‘R;. '
Similarly, we can prove
d”Z ||K _9p
| 2k P T
where p= (2 wmwm)l/2 W= f(Z), z € R if K = IT or K =111

'(5.6)

Using (5. 6) we can also prove that (2 1) and (2 2) are equ1va,lent in the cases that the
domains are Rr; and Ryry.

In the case that the domain is Ry, Taishun Liul? already proved that (2.1) implies (2 2),
' but it is. easy to prove that (2 2) 1mp11es (2 1) if. we use. the saime process.

.§6, The Growth Theorems of. Convex"
Mappmgs on Several Complex Varlables

In 1989 Ted Suffrldge, Caroly Thomas and Talshun L1u, usmg three dlfferent methods,
independently proved the following Growth Theorem of normahzed convex b1holomorphlc
mappings on the unit ball in C™. u

‘Let f (Z ) be the normalized convex blholomorphlc mappmg on unlt ball B™in C'N Then

2] 1Z] - B |
117 S |f(Z)|*1 iz 6y

holds for every X € B" The estimation is precise, but the extremal mapping is not unique.

As a consequence, f(B™) D éB”, that is, the Koebe constant of this family of mappings is
1

3¢

In 1989, Taishun Liu and Sheng Gong!® proved one side of Growth Theorem of normalized
convex biholomorphic mappings on the Reinhardt domains B,, B, = {Z € C"| ||Z I <
1,p > 1}, in p-norm.

Let f(Z) be the normalized convex biholomorphic mapping on the Reinhardt domains
B,. Then

Azl '
£l < T2 (62)
holds for all Z € B,. The estimation is precise, but the extremal mapping is not unique.
Now we can use equality (1.5) to get
1|
|£(Z)| < =zl
from (6.2), and conversely, we can get (6.2) from (6.3).
As the other part of his doctor thesis, Taishun Liul®! got the Growth Theorems of nor-
malized convex biholomorphic mappings on classical domains.

(6.3)

Let f(Z) be the normalized convex biholomorphic mapping on classical domains
Ri(I,I1I1,II1,IV). Then

121l

1Zlx
< ()N S To7ZIe (6.4)

1+ |12l
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holds for every Z € Rx. The estimation is precise, but the extremal mapping is not unique.
As a consequence, f(Rx) D %’RK, that is, the Koebe constant of this family of mappings
is ;
Now we can use equahtles (5.5) and (5. 6) to get
2 2zl

1+(zf = -zl
from (6.4) if K = I,II,III and in the case that the domain is Ryv, Talshun Liu already
proved (6.4). Conversely, we can get (6.4) from (6.5). -

<If(2) < (6.5)
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