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BIFURCATION OF LIMIT LOOPS

ZHU DEMING*

Abstract.
The unified method is used to deal with the bifurcation problems of 11m1t loops genera,ted.
from the singular points of centre type and from thé closed orbits. Some known results and
methods are generahzed and improved. . :

- §0. Introduction

A great deal of work has been carried on for the research of the problems of the Hopf
bifurcation, the centre bifurcation and the closed orbit bifurcation. In this paper, such kinds
of problems are considered by a unified method, and some known results and methods are
extended and improved. o

In section 1, the limit loop bifurcation is considered in which the loops come from the
singular point with at least one couple of pure imaginary eigenvalues (simply called the
singular point of centre type below). The Hopf bifurcation theorem is generalized. By using
the Birkhoff normal form, the nonexistence and the uniqueness of the limit loop bifurcation
are proved for 2-dimensional systems.

The problem of the Pioncaré closed orbit blfurcatlon is stud1ed in the second sectlon
The method initiated by Pioncaré is extended to a class of nonlinear systems and high
dimensional sytems. S

§1. Limit Loop Bifurcation on the
“Singular Point of Centre Type”

_In this section, we use a unified method to attack the problems of the Hopf bifurcation,
the bifurcation of limit loops generated from foci and real centres.
Consider the system

& =y + fl&;y) + \P(z,y,2),
@ =_ —Z "f.g(a’yy) + AQ(.’E,y,Z), .
2 = Bz + h(z,y,2) + \W(z,y, 2), (1.1)a

where z,y € R, z € R*~2, and B is a constant matrix of order n — 2.
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Denote system (1.1)5 by (1.1)} when it is restricted to the z — y plane. Let o(B) be the
spectral set of B, i = —1. Express
f=fk+hot, g=gg+hot, P=PF +hot,
Q=Q,+hot, W=W,+hot, h=hp+hot.,
Pf‘ = P‘I‘ (m, y) + P’/‘ (w, y’ z)’ b . Qr = Q’I‘(m, y) + Q'I"(w’y, z),
where fx, gk, Pr, Qr, hm, W, are homogeneous polynomials in z,y, 2 with degree &, r,m and
s respectively. Assume
(Hy) ki ¢ o(B), Yk € Z.
(H2) & > 2, 1<'r<k: m>2, 822 '
When m = 2 or §= 2 we may further assume. - A
(Hs) hz(a:,y, 2) and Wa(z,y, z) do not contain the terms only inz and Y.
In fact, by the first several steps in the process which is similar to that of the Birkhoff
normalization, we can eliminate the terms in A and W5 which only consist of z and .
For ¢ > 0, let x — ez, ¥y — ey, z — €22, A = €*74. Then system (1.1), becomes
& =y+e" M fu(e,y) + 18P (2,) + O"),
=~z +e" gi(z,y) + " 1QNx,y) + O(Y), |
o 2=Bz+0(). - . - : o (1.2)
Its solution with initial condition z(0) = 0, y(0) ='u, 2(0)= 2 is’ ' ‘

() = usint-+ ¢+ [ [+ 6P2) cos(t — ) + (g + 6@ sin(t — s)lds + O(c*),
(e .

y(t) = ucost + " / [=(fx + 6P} )sin(t — 5) + (9x + 6Q7) cos(t — 5)]ds + O(e"),

2(t) = zgeBt + O(e). IR K o ' (1.3)
The necessary and sufficient condition for the solution (1.3) to be a perlodlc solutmn of

system (1.2) with perlod T = 27r(1 +eb=17) is that
' #T) =0, y(T) - u=0, 2(T) — 2 =0,

that is,
wsin 2ne® 17 + ¥~ (¥ By, + 6uTG,) + O(e*) = 0, (1.4)
u(cos 2me* =17 — 1) 4 e* = (uP Fy 4 6u"H,) + O(e*) = 0, (1.5)
zo(ez"B 1) + O(e) =0, = _ | " (1.6)
where :

27 \ )
G, = / [P(sint,cost) cost — Q1(sint, cost) sin t]dt,
A .
27
H, = / [P(sint,cost) sint + QX(sint, cos t) cost]dt,
0
2

Ey = [fr(sint,cost) cost — gi(sint, cost) sin t]dt,
0

27
Fy, = / [fr(sint, cost)sint + gx(sint, cost) cos t]dt.
X 0 - . s o
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By (1. 4) and (1.6), we get

T = 1(u,€,6) = —(uF~ By + 6ur“1G )/27r + O(e) ’ (1T
20 = 2z(u,€,8) = O(e). ) (18)

Substituting (1.7) and (1.8) into (1.5), we have -
M 2 'R (y(T) — u) = w"[Fpu®~" 4+ 6H,] + O(e). (1.9)

- If 'we notice that: (i) 0(0,0,0) is always a solution of system (1.1), , and it implies that
v = 0 is always a solution of (1. 9); (ii) In a sufficiently small neigborhood of the origin,
every periodic solution intersects the’ y'— 2 plane at exactly two points (u, 2p) and (u3, 21),
and u; = —u 4+ O(e*~1); (iii) Gx = Hy, = Ey = F}, = 0 when k is even; (iv) & can be chosen
such that Fy, + 6H, # 0 when H, # 0, then'it is easy to get the following theoremi.

Theorem 1.1. Suppose f,g € C*, h,W € C?, P,Q € C", H, #+ 0, and the conditions
(Hy) — (H3) are satisfied. Then, for fixed § # 0, there exist &1 > &g > 0 such that the
following conclusions hold when 0 < € < g9, A =¢€F~76.

i) If k—r > 0 and 6H,.F}, <0, then system (1.1), has at least one (its redius is ap-
proximately (—=\H,F; *)Y/*=")} and at most [(r + 1)/2] limit loops situated in the e;-
neighborhood of 0(0,0,0), where [z] denotes the integral part of z.

ii) Ifk—r >0 and 6H.Fy > 0 or k —r = 0, then system (1.1), has at most [(r — 1)/2]
limit loops situated in the el-nnghborhood of 0(0,0,0).

Remark 1.1. f H, = Hpyy = -+ = Hpy 51 =0, Hpyj #.0, and'rl --7’+3 <kj<
(k — 1)/2, then we can rewrite A = 6’“*”16 s0 that the above discussion is still true. Thus,
if we replace r by r; in Theorem 1.1, then all the conclusions remain true. Similarly, when

' H . #0, Fp =Fpy1 =+ = Fyjo1 =0, Fy; #£0,
and j < k—1, r < k+j, the conclusion still hold if k+j is substituted for k and X = gk+i~r§,

Remark 1.2. Fj = 0 when 0(0,0,0) is a real centre.

Theorem 1.2. Under the same conditions of Theorem 1.1, for any given @ > 0, there
are g9 > 0, ug > 0 such that when 0 < ¢ < &, |u — @| < wuop, there exist functions
T = 7(e,u), § = 8(e,u) and z = z(e,u), and when A\ = e*71§, system (1.1)) has a
periodic orbit passing through point (0,eu,e?2) with period T = 2x(1 + e*~17), where
7'—»7'0—(27rH) ~Lg* R Gy ~ ~ EjHy], 6 — b = —1 at T FLHt, w—0ase—0, u—i.

Proof. Denote L = ¢!~ z(T), N = 2(T) - zo Smce L=M=N= O for e =0, % —'
0, u—u>0 6= 60,7'——7'0,ands1nce '

o(L,M,N)
8(7', 5) Zo) |
is invertible, the theorem follows immediately from the implicit function theorem.

Remark 1.3. If r = 1 and take P} = Hyz/2n, QL = Hyy/2n, then Theorem 1.2 becomes
the Hopf bifurcation theorem. '

Remark 1.4. When H, = 0,
2w
G, = [P}(cost,—sint)cost — Q}(cost,—sint)sint]dt # 0,
0
we may consider the solution with initial point (u,0, o) instead of solution (1.3), repla,ce

H, by G, in Theorem 1.1 and Theorem 1.2, and then repeat the proof as above.

= 27rﬂ’"+1Hr(exp{27rB} - 1)

e=0, u=7%u
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By the Lie transformation (usually be called the averaging method) or polynomial trans-
formation, the 2-dimensional complex system with a fine focus can be transformed into the
following Birkhoff normal form (c.f. [1, 3])

z—-zz+Zakz’°+1 k+hot

5= —iZ +-Z arZ* 2T + hot.. ~ (1.0)
: ‘ ’ k=1 N : . : ot o
In paper [3], the author defined the i—th focus value of the singular point O as the quantity
fi = Rea;; and called O the fine focus of order k when f; =--- = fr_1 =0, fr #0.

Assume that O is a fine focus of order k of system (1.10), and b; = Ima;. Then, in the
real coordinate system, (1.10) becomes :

&= —y(l+ Y bjA) + fizAF + hot.,
j 1
—w(1+Zb A’)+fkyA’°+hot - C (1)
=1 : -
where A = 22 + ¢%,
Now it is easy to see that Fy = = Fop =0, Fopy1 =2nfr # 0. When A 7é 0, by a
similar Lie transformatmn, system (1 1) ) will take the following form -

= -—y(1+Zb A +fk:cA’°+upJ:cN +hot
i=1

§=x(l+ Z b AY) + fkyA’“ + pp;yLDI + hodt., . (1.12)
i=1
where b; depends on A for [(r—1)/2] < ¢ < 7, and is 1ndependent of A for i ¢ [[('r - 1)/2] s
and p = (), p; =p;i(A), u(0) =0, p;(0) #0.
Take d > 0 such that u()) = 2k~ 4 o(e2*~9)) when \ = ad61 Let ¢ — ez, y —
ey, dt = (1+ E e2ib; A ~1dt. If we not1ce that the coefficients b, fi, pi in(1.12) are

polynomlals of the coefficients of terms in (1.1)} with degree< i, and that the degree of
these polynomials increases with the increasing of the subscnpt of b;, f;, pi, then it is easy
to see that (1.12) now has the form

& = —y + e2*[61p;x N + frxzAF] + 0(e¥F) Ry AT +0(eN )W,
§ =2+ *[01p;y N + fryA¥] + o(e®*) Ry AT + o(eM)W (1.13)
when (1.1)5 is C*, where Ry, R, are polynomlals in z and y, Wl, Wz € C°°, and N is an

arbitrarily given positive integer.
Now let T = 21r(1 4+ €2*7) and M = e~ 2*(y(T) — u) Then we have

M = 2ru? 1 (fru®®*=9) 1+ 6,p;) + O(e)u® ! 4 o(eV2F).

"Theorem 1.3. Suppose f,g, P,Q € C*, 0(0,0) is fine focus of (1;1)3 with order k and
focus value fi, and O is a fine focus of system (1.1)} with order j(j < k) and focus value
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upj(or pp; + fr as j = k) when 0 < || & 1. Then-

i) when j =k or j < k, Hp; fe >0, there is no new 11m1t cycle generated in the suﬂiczent]y
small nezghborhood of O for system (1. 1)%;

ii) when j < k, wp;fu < 0, a unique new limit cycle occurs in the such1ent1y sma]]
neighborhood of O for system (1.1)3. '

Proof. It suffices to make the following two remarks:

‘1) Each non-zero null point, which is generated from the 2j + 1- fold zero of the function

M, = 27ru23+1(fku2(’° N 4 81p; + O(¢))

under the perturbation o(¢¥*) with arbitrarily high order N; = N — 2k, is an infinitesimal of
arbitrarily high order. But the position of the limit cycles of (1.1)} is fixed when ¢ is fixed,
and hence the limit cycles of (1.13) can occur only at the outside of a certain neighborhood
of the origin. This is because the polynomials transformation, which transforms (1.1)} into
(1.12),

N N
T =x+ z axty’, y=y+ Z bijzty!
i+j=2 t+j=2

is sufficiently clsoed to the identity if z and y are sufficiently small. So, the limit cycles
generated from O for A # 0 can be decided only by the zero point of the function Mz
Fru®=9) + 81p; + O(e).

2) When j = k, we can take §; such that 01 76 —p] fk, and hence Mz has not a,ny Zero
point.

Remark 1.5. Theorem 1.3 tells us that a fine focus of a C* system can generate at most
one limit cycle under the perturbation of form (1.1)} which has only one parameter. But if
the perturbation has two or more parameters, the situation will be completely different. It is
well known that a fine focus with order 3 can yield three limit cycles under the perturbation
with three parameters. It is easy to show that, under the smooth perturbation with two
parameters and with the following form '

"i? = '—y(l + szyAz) + f3$A3 + >\1P'r‘1 (.’L',y) + )\2P'r'2 (.’D,y) + h.O.t.,

=1

k
g=a(l+ ) bizA)+ fayA® + MQr, (z,y) + XQr, (z,9) + b0,
i=1
a fine focus with order three of a smooth system can produce at most two limit cycles, where
the lowest degree of the Taylor expansions of Py, Qx at 0(0,0).isk,and 1 <r; <rpa < 7.In
fact, if we write \; = 777161, Ay = £7~"285, and notice that none of the four coefficients of a
cubic function with three positive zero points can be null, then the claim easily follows from
the preceding proof. But, with the same method, we can prove that under the two-parameter
V perturbation with the above form, a fine focus of order four (higher than four, resp.) can
generate three (more than three, resp.) limit cycles simultaneously in the neighborhood of
the focus. '
Remark 1.6. When 0(0,0) is a real centre of system (1.1)§ and system (1.1)} is analytic,
then F}, = 0 for all k. So, the center O cannot produce any limit cycle for A # 0.
Remaek 1.7. Theorem 1.3 extends the results of [4].
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§2. The Poincaré Bifurcation

In this section, the Poincaré method is used to Stﬁdy the bifurcation problem of closed
orbits surrounding a centre, and the theorem in [2, Chapter 8.2] is extended to a class of
nonlinear systems and hlgh-dlmensmnal systems.

Assume that O is a real centre of the system

t=y+f(z,9), §=-z+g(y) @
In the Birkhoff normal form, (2.1) becomes

. n
T=y-+ yZakA’“ + h.o.t.,
C k=1

, on o . '
Y=z - ZakAk + h.ot.. o (22)
k=1
Therefore, when consider the bifurcation problem of closed orbits in a small nelghborhood

of a real centre, we may as well assume (2.1) has the following form
t=y+yf(z,y), §=-z-3f(zy), (2.3)
and . | ' | -
(H4) 1 +f(w,y) > 0.
Now consider the perturbed system

t=y+yf(z,y)+ /\P(w y)
= -z —zf(z;9) + 2Q(z,9), | (2.4)
with condition | S . o
() f,PQe C', £(0,0) = P(0,0) = Q(0,0) =
Let ' : , .

¢ : : |

- [ @+ pele),wis)s, e
where (z(t), y(t)) is the solution of system (2.4). | '

Obviously, the period of the periodic orbit of system (2.3) passing through point (zo,0)
is }

27 .
T(xzo) = / (1 + f(xo cos 8, zosin )~ df. (2.6)
A .
Under the transformation (2.5), (2.4) now takes the form

dz

= =~V = \P@y)1+f( )

dy _ -1

d_é =T — )‘Q(m’y)(l‘ + .’Bf(tl}, y)) . . ) (27)
Its solution with initial point (‘:1;0 +v,0) is

z(0) = (zo +v)cosf+ A /00 F(—Pcos(f — u) + Qsin(f — u))du,

y(0) = (zo + v)sinf — )\‘/00 F(Psin(6 — u) +Q <fos(9 —u))du, - (2.8)

where F denotes (1+ f)~!
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The necessary and sufficient condition for (2 8) being a periodic ‘solution with period
¢.= 2w + e7 is that

(zo + v)(coseT ~ 1) + /\/ F(- Pcos(er - ) + Qsm(ev‘ u))du =0,

(zo + v)siner — )\/ F(Psin(er —u) + Q cos( ET — u))du -—0 (2.9)

Let A = g6. Then, from the second formula of (2. 9), we get

T =7(€, 6, Lo, V)
2w o
-5(3:0 +v)” -1 / F(—Psinu+ Q cosu)|r,du + O(e), - (2.10)
0 - _

where L, is the loop {(z,y) : © = (zo + v) cosu, y = (zo + v)siny, 0 < u < 27}
Puttmg (2.10) into the first formula of (2.9), we have

2
/ F(Pcosu+Qsmu)|Ludu+0(s)
~Jo

Now set. L(xzg) = f()% F(P cosu + Qsinu)|L,du. _
-. Theorem 2.1. Suppose that conditions (H,) and (Hp) are satisfied. Then

i) if L(x) has k zero points (taking the multiple into account), then system (2.4) has at
most [(k — 1)/2] limit cycles when 0 < || < 1;

ii) if there is an zg > 0, such that L(zo) = 0, L'(wo) # 0, then, for any given § # 0,
there exists o > 0 and ‘a unique differentiable function v(e), so that system (2.4) has a
periodic orbit I'(zo) passing tgrough (zo + v(e),0) with period Ty (mo) = fo (x(8),y(6))do
when |e| < €9, A = 6o, where T is given by (2.10), z(0),y(0) are defined by (2.8), (s) —.0
~ase — 0, and I'(xo) is an unstable (stable) 11m1t cycle when AL' (o) < 0(> 0).

Proof. The conclusion i) is obv1ous
Since

e Yz(2m + e"r) — (o +)) = =8 L(zo + v) + O(e) =
when € = 0, v = 0 and L(zo) = 0, the existence of the C! fanction 'v( ) comes from the
implicit function theorem. Considering the sign of (27 + eT 4+ A1) — (2o + v(e) + Av), we
obtain the criterion of the stability of limit cycles. _
Remark 2.1. From the de_ﬁnition of L(x), it is easy to see that, when xo = 0, the limit
cycle bifurcation guaranteed by Theorém 2.1 is just the Hopf bifurcation.
Example 2.1. Consider the system
& =y(L + f(z,9)) + Noz(z? +47), |
g =~ (1l + f(z,9)) + dey(s® +9°)?, (21
where f(z,y) = a(z® + 9%), a > O be >0.
. 2m
L(z) = (1 + az?) "1 (bz® cos? u + ex® sin® u)du
o A :
= 13 (b + ex?)(1 + az®) L.

Since L(zo) = 0 and L' (zo) = 2mexd(1 + az2)™* # 0 for 2 = (~be~1)1/2, system (2.11)
has a unique limit cycle in the small neighborhood of I'o : {(z,y) : #* +y* = 23} when
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0 < [A| < 1, and the cycle is unstable (stable) for.Ae <0 (> 0).

Theorem 2.1 gives the sufficient conditions for system (2.4) to have the closed-orbit bi-
furcation. But, in general case, the function L(z) is rather complex, for its positive zero
points are difficult to get. In this case, an alternative way is to use the Poincaré-Bendixson
theorem which in turn produces the following theorem

Theorem 2.2. Suppose that (Hy) holds, (0, 0) = P(0,0) = (O 0)=0, f,P,Q e C°
and guarantee the existence and uniqueness of the solutions of (2.4) with initial values, and
the zero points of L(z) are isolated. If there are x1 > x5 > Osuch that L(z1)L(z2) < 0, then
there exist Ao > 0 and zo()\) such that system (2.4) possesses a limit cycle passing through
(z0,0) when 0 < |X| < Ao, where 23 < zZo()) < 2. '

Example 2.2 Consider the system '
& =y(1+ f(z,9)) + AeyPg(z,y) exp{(b - 20)a® — ey},
3y =—z(1 + f(z,v)) + az’yg(z,y) exp{bz? + cy®}, (2.12)

where b > ¢ >0, -1 <a <0, f(0,0) =0, f(z,y)+1>0, g(z,y) 20, g(z,9) #0, f,g
being continuous and guaranteeing the existence and uniqueness of the solutions of system
(2.12) with initial values. '

_Now
- L(z) = 2% exp{—cz®}(1 +aexp{2cz?}) [ G(t)dt,
L SJoo T
where

G(t) = g(zcost,z sin t) exp{(b — c)a® cos® t} sin’ t cos? ¢/(1 + f(cost, z sin £)).

It is easy to see that L(zy) < 0, L(z2) > 0 whenz; > 1, 0 < 2, < 1. So, when 0 < [\ « 1
and A > 0(< 0), the focus O of system (2.12) is unstable (stable) and there exists at least
one stable (unstable) limit cycle T', I' 0 {(,0) : z > 0} € (z2,1).

Next we consider the high dimensional system

& =y +yf(2,9)) + \P(2,9,2),
?) === CBf(.’B, y)) + )\Q(.’B,y, Z), .
32 =Bz + AR(z,y, 2), (2.13)

where z,y € R, z € R™.
- Assume that, for system (2.13), (H,) and the following hypothesis are valid:

(Ho): f,P,Q ReC, £(0,0)=P(0,0,0) =Q(0,0,0) = R(0,0,0) = 0.
Similar to above, make transformation | .
t .
6(0) = - [ (1-+ flale), u(e))ds

where (z(t),y(t)) is the solution of system (2.13).
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System (2.13) now is transformed into
dx
7 A APF,
@ =gz — AQF.
do ’
dz :
| — =Bzt ,\R.. | (214
The solution of (2.14) with initial value (zo + v,0,w) is
_ .6 :
z(0) = (zo + v) cos 0 + )\/ F(~Pcos( — u) + @sin(f — u))du,
, 0 .
. p ‘ _
y(0) = (xo +v)sinb — )\/ F(Psin(0 — u)+ Qcos(0 — u))du, -
AT A “Jo ; I |
t
2(t) = eBhw + A / B R(w(8(s)), y(6(s)), 2(s))ds, (2.15)
0
where t(6) = — fo (z(6),y(8))d0 is the inverse function of 6(t).
Let A = &6 and ¢ = 27 + eT again.
T =T(zo) = / F(zo cos 0, zysin8)db, - (2.16)

o 6
T =Tiao) = | Flo(6), yO) .

The necessary and sufficient condition for system (2.13) to have perlodlc solution with

1n1t1a1 value (wo + 9,0, w) and perlod T, is that

(qb) (cc0+'v) (sco+v)(cose7'—1 +e:6/ F(- Pcost+Qs1nt)

y(¢) = (zo + v) siner — 56/ F(P sint + Qcost)du =0,

T o
2(Ty) —w = (eBT — Dw + 66/ e’ Rds = 0,
_ 0 ,

where t =7 —u, 6 =T} — s.
From the second formula above, we get
T =71(¢, 6, o, v, w)

27

_6(m0+v) : F( Psmu+Qcosu)du+O()
0

where . -
z = (zo + v) cos u, y =>((I70 + v)sinu, z = wexp{Bt(u)}
in the integrand. |
Denote _
My =" (a(4) = (50 +)), M =7'y(9),
Ms =2(Ty) —w, 70 =7(0,6,20,0,0)

(2.17)
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and
27
L(z) = F(P cosu + @ sinu)du,
0 _

H(z) = /027r F(Psinu — Q cosu)du. (2.18)

The above two integrals are calculated along the circle: £ = 2gcosu, y = zosinu, 2 =0.

Clearly, we have My = My = M3 = 0, and '

6(M 1, MZ’ M3)
O(v, T, w)

is invertible when ¢ = w = v = L(zo) =0, 7 =7, § = 60 # 0, o > 0, L’(a:o) # 0 and
2kmT~Y(zo)i ¢ o(B) for any k € Z.

Thus, the following theorem is an 1mmed1ate corollary of the inverse function theorem.

Theorem 2.3. Suppose that conditions (H,) and (Hs) are satisfied. Then the following
are true:

i) If L(x) has k zeros (taking account. of the multiple), then system (2.13) has at most
[(k —1)/2] limit cyeles when 0 < |A| <€ 1; o o o

i) If there is an z9 > 0, such that L(zo) = 0, L'(zo) 96 0, and 2knT~*(zo)i ¢ o(B) for any
k € Z, then for any given 8y # 0, there exist 9 > 0.and'a unique set of functions v(g), w(e)
and 7() = 7(¢, 8, 0, v(e), w(e)) guaranteeing system (2.13) has a limit loop T : {(z,y, 2) :
z = z(6(t)), y =y(0(t)), 2 = 2(t)} with period T = 2”” F(z(6),y(0))d0 when |e| < €
and XA = &by, where x(0),y(0),z(t), (), L(z) are determmed by (2.15), (2.17) and (2.18)
respectively, v(¢) — 0, w(e) — 0 as € — 0. Moreover, when a(B) N {z € C : Rez > 0} =0
and )\ is sufficiently small, ' is stable for AL'(zo) > 0 and unstable for AL/ (z¢) < 0.

Example 2.3. Suppose R € C, a > 0, eb < 0, the constant matrix B of order n has
not any pure-imaginary eigenvalue.- Then the following system

= y(1 + a(z? + 7)) + Mbz(2? + %),
§ = —z(1+a(z? +3) + Aey(a? + 7Y,
2= Bz + AR(z,y, 2)

has a unique limit loop near the circle {(z,y,0) : 22 + y? = —be~ 1} for 0 < IA] <1
Now consider the 2n-dimension system

= -—50(110[/(.’170)( BT _ 1) : “

Tk = PrYr + )‘Pk(miy)’
Uk = —Drr + AQr(2,y), ‘ (2.19),
where k=1,2,--- ,npy € Z—- {0}, z = (z1,22,"* ,Tn), Y= (yl,-y'z,-'- »Yn). Assume
(Hy) : P, Qi € C, P(0,0) = Qx(0,0) =0, k=1,2,-
Since the method used is basically the same, for 31mp11c1ty, we assume n = 2 and
(Hs) : (p1,p2) = L. '
Under the hypothesis (Hg), Theorem 2.3 gives the sufficient condition for the existence
* of periodic orbit with period sufficiently close to 2mpy*(2mp; ") for py # l(pg # 1). Now we
consider the existence of periodic orbit with long period sufficiently near 27.
The solution of system (2.19) with initial value (210, Y10, %20, ¥20) = (1 +u,0,Z2+v, %2 +
w) can be denoted as follows.
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¢
z1(t) = z10 cosp1t + )\/ (P1 cospi(t — s) + Q1 sinpy (t — s))ds,
0 .
t
y1(t) = ~z1osinpit + )\/ (—Py sinp; (t — 8) + Q1 cosps(t — 8))ds,
0 .
, :
L2(t) = L0 cos Pat + Yoo sin pat + )\/ (P2 cos pa(t - 3)) + Q2 sinpy(t — s))ds,
0

¢ . : : oo
y2(t) = —xa0 SInpat + yao cOS Pat + A/ (=P, sinpa(t — 5) + Q2 cos pa(t — s))ds.
o (2.20)

The necessary and sufficient condition for (2.20) to be a periodic solution with period
21 + eT is that My = My = M3 = M, = 0, where -
eMy = z1(T) — 210, €Mz =1y, (T),
&Mz = x3(T) — 220, €My = y2(T) = Yoo,
and T = 2w + eT. ’ -
Let A =¢b, T = (&1,%s), §= (0,72),
| N Z(t) = (&1 cos pat, B2 08 pat + P2 sin pst),
g(t) = (—fﬁl ‘sinplt, ~%o sin paot + Yo cospzt),
27 . -
- Li(z,9) = A (Pi(%(5),9(s)) cos s — Qu(Z(s), §(s)) sin prs)ds,

27 - . . - . )
Fu@0) = [ (Pua(s),96) sinpis + Qu(@(e) g(e)) cospus)ds, (221
. Jo _ , _ o -
T=8p7 (@ +w) T R+ 0(), (222
7o = 6py 57 Fi(%,9)-
Whene=u=v=w=0, 7 =19, § = # 0, and take Z,y such that
L1(%,7) =0, p1&1La + pofaFi = 0, ;131 Fy — p2Z2F1 = 0, (2.23)
we have M; =0 fori=1,2,3,4.

Denote D(e,u,v, w) = §~3p2z32 Ag@%;ﬁ“ , D= D(0,0,0).

Theorem 2.4. Suppose hypotheses (H7) and (Hg) hold. If there are T; > 0 and Za, 7
such that (2.23) is valid and D is invertible, then, for any given 6o # 0, There exist eo > 0
and a unique set of functions u(e),v(g),w(¢), 7(¢), such that (2.19) has a limit loop passing
through (%; + u,0,%2 + v,§2 + w) with period 2r + e when |¢| < &9, X = e, where
u(e) — 0, v(e) — 0, w(e) — 0 and 7(g) — 7o = bop; 'Z1 Fy, as € — 0.

Example 2.4. Consider the system

&1 = 2y1 + Nz1r? — z17* + a2 + b172),

1 = =221 + A(17® — yar* + a2 + baya),

&2 = 3y + Mazz + by + aszy + bay1),

U2 = —3z3 + A(cze + dys + asz1 + bav1), (2.24)
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“where r? = 22 + y?, a;,b; are constants, (a + d)? + (b —c)® # 0.
We have

Ll(xay) = 27“17?(1 - ZE?),
Ly(z,y) = 7((a + d)zg + (b~ c)y2),
F 1 (ma y) =0
Fy(x,y) = m(~(b~ c)z2 + (a + d)ya).
If we take Z; = 1,%3 = g = 0, then (2.23) holds and
' | det D = —4n3p2((a + d)* + (b — ¢)?) # 0.

When |e| < 1, by Theorem 2.4, there exists functions u(e), v(€),w(e) and 7(¢), such that
system (2.24) has a periodic orbit I'. with initial point (1 +-u(e),0,v(e),w(e)) and period
27 + e, and = » .

Te—To:{(&y): el +y] =1, 22 =y =0} ase — 0.

Remark 2.2. Example 2.4 tells us that, similar to the limit loop bifurcation taking place

in Theorem 2.3, the limit loop bifurcation with long period sufficiently close to 27 can also

be produced by the interaction of the closed orbit bifurcation Wh_ich is confined to the z —y
plane and the Hopf bifurcation in the (2n — 2)-dimensional complementary space.
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