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VARIATIONAL FORMULATION
OF STEADY FLOW IN A HOPPER
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P " Abstract B _
" A variational problem about maximal stable arches in a hoppeér is formulated. This prob- ¢ -
. ,lem idealizes an industrial problem related to guaranteering reliable flow of material qut of a: |,
storage 3110 To obtain. exxstence, the genera.hzed function spaces are mtroduced and, studled .
Specifically, functions in the spaces can’ be discontinibus in the interior of the' domain as well
.- as-alobg the boundaries. For the von Mises type of material in two dimension, the limit load is.
estmated and 1ts asymptotxc behavror is mvestlgated

. §0. Introduction .. .. .

- For flow of granular material under gravity-in a hdpper'*(Fighré' 0.1); "informatiori ‘about
. the mioment of collapse under increasing loads is ‘very 1mportant for the ‘design of a hopper
* In'this paper, we shal 1nVest1gate this’problem. Assume ‘that the material i§ r1g1d-perfectly
plastic. Based on the limit analys1s, we'shall formulaté two variational problems, which ‘we
shall call the stress problem and the strain: problem Then' we shall 1nvest1gate solutions of
these variational problems. ' UL SR R S R I
-.To-study these problems, appropnate funct1on spaces should be chosen, especmlly for
the strain problem. ‘Physically, deformations: can be discontinuous:inside plastic material:
Mathematically, .only an-L! estimate can be-obtained for the minimizing sequence in: the
strain problem. But the unit ball in L!.is not.compact either in the nerm:topology or in-the
weak topology. Strangl'® and Temam!'” introduced: a new function space: to allow strain
discontinuities.in the interior of a'domain. : Functions in this space assume their boundaty
values in a continuous fashion. We shall extend their function space to one whose functions
are defined on the closure of a domain so that boundary can also be treated. Specifically,
velocities are summable functions on the domain, and the entries of the strain rate tensor are
‘bounded measures on the closure of the domain: In this space, functions can be discontinuous
in the interior of the domain as well as the boundaries and the unit ball is compact. in the
wesk topology | . oy T
Most previous workL:3:17:19] on the varlatlonal formulation of plastlc problems dealt w1th
pressure insensitive material which is incompressible. When velocity discontinuities. occur
along a surface; the normal component ‘of-velocity ‘along the surface remains continuous.
But a granular material is pressure sensitive. Its deformation is accompanied by a change
of volume, and a tangential dlscontlnulty of velocity alOng a surface is’ accompamed by a
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normal discontinuity. In general, abrupt thinning or abrupt thlckenmg could happen near a
slip surface.

In section 1, two variational problems a,reformula.ted The stress problem is given in

~ terms of statically admissible stress ﬁelds (§1 2), the strain problem is given in terms of

kinematically admissible velocxty fields (§1.4 and §1.5). These two problems are dual to
each other under the Legendre transform and the duahty relation is consistent with an
associative flow rule. In §1.3, we also discuss the yield condition used for granular material.

In section 2, we shall study the generalized function spaces. A function in the space £(£),
used for the stress problem, has L> trace on the boundary and C* functions are dense in
some weak topology in this space (§2.1). A function in the space BTD(Q), used for the strain
problem, has a trace’ whlch is only a measure on the bounda.ry (§2.2). Different ‘topologies
are discussed for the space BD(Q) as well as its subspace BDo(Q) (§2.2.2). A genera.hzed
‘Green formula in the space X(Q2) x,BDo(Q) is proved. It is given- (§2.3) that the product
of a stress tensor and a strain rate tensor depends continuously on stress and strain. rate
tensors in the weak topology. '

In section 3, existence of both problems are proved. Existence of the stress problem
' follows from the minimax theorem (§3.1). Existerice of the strain problem is derived from the
minimizing sequence which is weakly compact in the space I?T)(Q) (§3.2). Under.a regularity
- agsumption on the solution of the strain problem, the extremality relation between solutions
of both problems are attained and both problems give us.the.same limit load (§3.3)..Also,
‘the feature of velocity discontinuity in granular material is addressed (§3.4).

. In section 4, some explicit solutions are given in:some cases and their asymptotic behavior
is investigated. When gravity is assumed to be in the radial direction, exact solutions of both
problems are found and the limit load is given in: terms of parameters of both the geometry
and the material (§4.1).. Specifically, how the maximal stress.depends asymptotically -on
the height of the hopper is estimated. When gravity is vertical, choosing specific stress and
velocity, we obtain a lower bound and a upper bound of the limit load,:and conclude that,
in this case, the limit load has the same asymptotic behavior as in the radial case (§4.2).
Also we mvestlgate -a linearly ill-posed free-boundary problem related to’the stress problem

' (§4 3)

§1. Variational formulas
1.1. Notation
In what follows, some of the notatlons we shall use in this section are hsted for reference

L (1) B the space of symmegric tensors of order.n;

(2) ED the subspace of E consisting of the tensors whose trace is zero;
1

2

@) lel= (-6t = { > e,e,,} ' the norm of a tensor ¢ = (£ij);
).7_'
4) u= (ul,uz, .+« yUp): the velocity vector;

(5)..0:= (045):. the n x n symmetric stress tensor;
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(6) £P = (¢D): the deviator of the tensor.¢, _ |
55- =&j — *ﬁkk&j (6;; the Kronecker délta); i

(7) tro: the trace of the tensor o;

. (8) e(w) = (eij(w)):, the n X n symmetric strain rate tensor associated. with u, whlch is

. given by

Cej(u) = ——‘(ai'uj +"3j"i); -
(9) o.€(u) = Z oij€i;: the scalar product of two tensors;
$,j=1
(10) .v = (v1,v2,... ;¥): theroutward unit vector normal to a surface;
n .

S (1Y) o= Z 0:iv;: the surface traction;

- (12) (o) = 2 oi;viv;: the normal traction component of o.v;
ij=

(13) (0.v); = 0. — (0.v),v: the tangential traction component, of: L2

‘" In-our paper, we define the stress tensor in the compressive sense, which is convenient

for studying granular material (a granular material ‘¢an support only compressNe stresses).’
CorresPondmgly, weé put a minus sign in the definition of stram rate tensor Coaten

: v1.2 Formulation of the stress problem

Let © be the region inside the hopper whose boundary consists of a lateral wall (two
lateral ‘walls in 2—d1mens1ons), part of spherical surface with radius R on top (cncular arc
i’ 2-dimensions) and part of spherical:surface- with radius ro on bottom (circular arc in
2-dimensions).. Suppose that a body force f, gravity in practice, is given in . .Even if the

wall of the hopper is smooth, cohesive material in the hopper may remain at rest when: the
width of the exit is. small. But as the width increases, the material .will-be unsupportable,,
and collapse will occur. Instead of finding the largest exit width such that collapse does

not occur, we try to find the largest mult1pher A* of f such that A*f can be balanced by
admissible stresses while the width of the exit is fixed. The latter is so called the problem

of limjt analysis. The stress problem will be set up based on the static principle of limit,

analys1s in this subsectlon FT

For r1g1d-perfeqtly plastic matenal thls collapse mult1pher does not depend on the loadmgg.
hrstory[9] Hence it is possible to. ﬁnd the largest multiplier A* of f w1thout following the.

development in time, - Lo . . o . : DR

The rigid-perfectly plastlc structure means that the stress tensor o, ‘must belong to a,

closed subset: B(z) of -E at. every point ‘of 2. When o € B(:z:), the set .of interior- points
of B(z), the;material is. at the state of rigid motion and no deformation:occurs. - When: o:

reaches the boundary 8B of B, the material begins to yield and plastic deformation occurs:’

Incidentally, slip between surfaces may happen.in the region of plastic déformation.

Therefore, our stress problem can be formulated as follows ,
i | Fo e K(Q) st divo=AfinQ; ow=0on the bottom,| ... . .
i M |(6.)+|.< u(o.v); on the sides; (o.v); >0 on the top |-
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where dtva =v.0= Z 0,04, and p the coeﬂiment of friction between the material and
the wa,ll of the hopper and e _ _ )
K(Q)={UEE aeB(a:) aezEQ}

is the y1e1d set vt'hose choice depends on the matenal (§1 3). The equetlon dive = A f comes
from the conservation of momentum. The boundary conditions on the bottom come from

the fact that no surface forces are 1mposed on it. Since a granular material is, unlike metal,
not ductile and can support only compressive stresses, we have

(ow)y 20

along any surface. -In particular, (0.~), > 0 on the top. The conditions on the sides express

the simple mechanics model for friction. If the wall of the hopper is smooth then the friction
coefficient 4 = 0 and the condltlons on the sides become

_ (62), >0, (ob)r= o ‘ (L.1)
1.3. The yield condition s - h

Aswe ,know, the yield condition tells us when the internal stresses can support the external
force so that no plastic deformation.occurs and when a material begins to yield and possibly’
collapses. So the type of yield set we should take depends on the nature of the material we.
are dealing with. Here we shall discuss the characteristics of granular materlal and give the

yleld sets adopted in Our paper.
When we study pressure—msenmtlve matenals, hke metals, the yxeld set can, be wrltten as.

. K=KPoRI, D T B

where K2 'is a non-vicuots closéd ‘convex subset of ED In other words, when the material '
yields, the y1e1d strength [P is 1ndependent of the total pressure tro, the trace of stress
tensor. ‘If we assume ‘that the plastlc deformation takes place in the normal d1rect10n of the
yleld surface 6K (the assoc1at1ve flow rule), we' have - : o '

sy e i Z E"(?L) -le?.b 0

So the ma.tenal is 1ncompress1ble[4] But a granular inaterial, based on the expenmental
. factsl!®16] is pressure-sensitive. The yield set cannot be written in the form (12). The
yleld strength ol depends on the total pressure. Tn terms of the assocmtwe flow rule,
which will be discussed in § 1.5; a pressure-sensitive material undérgoes volurne changes.
As a result, a tangential discontinuity is a.ccompamed by a normal dlscontmulty a,long the "
discontinuity surface in‘velocity (see§3.4). - SRR '
~In‘our paper, ‘only cohesive materials are’considered. So the yield set B(z) must contain
a neighborhood.: of 0-in-E for almost all z-€ Q.- In this case, from the followmg eqtnvalent
form of the original stress problem . - C SRR A
3o s.t. Ao € K(Q) and dive = f inQ, ov= Oon’bottom, :
sup {)‘ [(0.0):] < p(&.v); on sides, * (o.v), >0 on top - : } i
we can obtain that, when thereis a o € L>®(), E) satisfying the equatlon and the boundary
conditions, we can choose A > 0 such that Ao € K(f2).  As expected, a cohes1ve material
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could stay at:rest. . . o C ‘
If a yield function F : E x Q — R is mtroduced then the y1eld set can be expressed as

K(Q) = {g: F(o,2) <0 ae. z€Q}.

The yield functlon we are conmdermg in this paper has the fo]lowmg form :

T

where £ (oP) satisfies (1) f (60) > 0 for all @ € EP, (2) f(0) = 0, (3) f is convex, (4)
f is homogeneous of degree one in o”. The scalars k and c, related to the internal friction
and the cohesion of the material respectively, are given positive functions of = (deformatlon
history may not the same for different points). In fact, if ¢ = 0, the yield set does not
contain a neighborhood of 0 in E, and such a material is not cohesive. Note 'that the yield

. set (1.3) is a cone in E. Yield functions of the form (1.3) include the Coulomb‘t'y‘pe' in

the two dimensional case, the von Mises type and the Tresca type in the three dimensional
case“o] For instance, for the von Mises yield condltlon,

F(o®) = |o®|. - (L4)

"~ Remark 1.1.. Another type of yield condition that can be: used for granular material
comes from Critical State Soil Mechanics!*®!, in which the yield set is a boundedconvex
set in E. It would be better to include hardening effects in this type of model. "But it is

~ difficult to formulate them in variational forms ~We w1ll study these types of models in
‘further publications.

1.4. Derivation of the strain problem :
The strain problem, which is formulated in terms of kinematically adm1881ble velocity
fields, can be found through a minimax theorem. The varlables U and o are connected by a
Legendre transformation.
From §1 2, the admlsmble ﬁelds are denoted by & = U <I> As where ’

. : dlva, =\ f in Q |(e.v)-] € u(a.u),, on sides,
o o.v =0 on bottom, (o.v), >20ontop '

Lo

From the following argument, we shall see that the admissihle velocity fields would be
| : , i 1 Uy £0, ur =Qontop } -
_ B , u‘/s;fu ET S Uy + plur] <Oonsides| -
‘We define a Lagrange functiph L(o,u) as o
| - L(a, u) = / o.¢(u) de.
Q

We clalm that the stress problem can be wrltten as a ma.xmm '

sup {\} = sup mf Lo, u),

A€A cEK U ‘
where A={X: 30 € KN®,}. By Green’s formula, we have o
sup {A} = sup inf {/ w.divo dz — / (o) uds} - (1.5)
AeA ocK €Y {Jgo
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For the integral over Q, it is easy to see that the inner minimum is —oco unless divo:-is
proportional.to f, . . ... - . . . o R T
_ . . A ifdive=Af,
inf {/ u.dive dz, / fudz —'-:1} = h )
e . Ja —00  otherwise. ,
For the integral over 89, ' ' ) B '

.+ uy<0,u; =0 on top
inf ¢ — / (o:u).ud:z:: i

Uy F plur| < 0 on sides |

0 . ifo.v =0 onbottom, (a v)y->0ontop. .
=¢ and |(o.v)+| < p(o.v), on mdes, '
~00 otherw1se " '
"I‘here'fofe',"' | - ‘
. 11161‘% {/ udlvadw—/ (a l/)uds}
A ifoed, S
={ —o00 otherwise.

The outer minimum of (1.5).is:obtained. only in the case o € ®. The proof of the claim is
complete. . . .. .. . o0 : T
. Now, the strain problem is deﬁned as a minmax. , . N
"inf D(u)dz = inf sup L(o,u), © (L.6)

Q uE¥ seK IR

where D(u) = sup T - e(u). More premsely,
reK

' u,,<0u.,.—00ntop
1nf /D(u)dx /fucla:—l _ .
wy, + plur| <0 on sides ;
where D(u) can be expressed explicitly when a proper yield set is chosen (§1 6) }
Essentially, the stress o in the stress problem is related to the velomty ¢ in the strain
problem through a Legendre transformation; the duality relation. If we can prove

.+

fL inf sup L(o,u
. 32%2 (o,u) 'uewaeg' (o,u),

then we can find the largest multiplier by solving the strain problem, the dual of the stress
problem. But the order of optimization is not always reversible. A A “duality gap” exists in
some situations!®¥l. Also whether or not the extreme solution can be attained depends on
the choice of function space. We shall answer these questlons in sections 2 and 3.

Remark 1.2. In mechanics, the strain rate tensor is usually found by using its relation
to the stress tensor at yield — the plastlc potentlal flow rule. It can be proved that the
duality relation discussed in the last subsection is equlvalent to the associative flow rule in
plasticity. : '

1.5. Explicit formula for D(u)
By definition, the dissipation fdnctioh '

' D(u) = sup o.€(u).
: geK
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1
= sup {-—tre(tro +cn) — ctre + P 0P } :
oc€K

Let s = “" + ¢, then the yield condltlon can be wntten f(eP) < k:s, 8 2 0. Therefore,
D, D}

D(u) = sup{tre s+ sup o ctre

FoP)gks

=sup{ (tre'+'k sup '&D-ED) s} —ctre,

o 820 f(eP)=1.
here the homogeneity and convexity of f(o”) are used. Thus
—ce; - ifep+k sup el 02 <0,
f(eP)=1
D(u) = D . D
+o0 1f€u+k sup € -0;; <O0.
R f(oP)=1

In oi'der to get the infimum of the integral
f D(u)dx YueVl,

admissible strain rates must satisfy
K*={e:e;>k sup €P-oP
f(eP)=1
which is the dual cone of the yield set K. It implies that under the yield condition in our
paper, plastic deformation is always accompamed by dilation. It follows from the formula

f(eP)=1 ,
that, physically, the collapse solution of the strain problem corresponds to the least dilation.
in volume. '

| inf {c dlvud:v dlvu > k sup e -aD, u € \If} | (1.7)

Proposition 1.1. In the space {e €E: ~tre>k sup ¢2.oP }, there exist positive
f(eP)=1

constants C; and C2, such that o - ( _
Gll<DE<Cld. . s

The proof of Proposition 1.1 is a straightforward observation of our formulation (1.7).

Remark 1.3. For other yield sets, for instance, a bounded yield set in E, the material
could (1) dilate (2) consolidate (3) neither dilate nor consolidate. Depending on the corre-
sponding state of stress o, if the projection of the normal direction at o of the yield surface
on the trace direction of stresses is positive, the material undergoes consolation; if the pro-
jection is negative, the material undergoes dilation; if the projection is zero, the material
are neither dilate nor consolidate. Incidentally, consolation makes the material stronger and
dilation makes the material weaker. This point can be recognized from the formulation of
the stra,m problem for a material w1th a bounded yleld condltlon

§2. The Generalized Spaces and Green’s Formula

Throughout this section, we assume that Q is open, bounded domain with loclly Lipschitz
continuous boundary. ‘ ‘
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2.1. The space X(2)
The space _
2@ = {oerm@B) aw e @y pom)
with the norm | |
. Nollz@ = lollz=a;m) + Idivellze(ayr
is a Banach space. The trace operator is established in the followmg proposmon and the
density of C™ functions in X(Q) with a weak topology is proved. - SU e e

Proposition 2.1. There exists a continuous linear operator, To: E(Q) — L°(6Q) such
that .

Y(0) = 6|y - for all 0 € B(Q) N C(®; E). 2.1)
Green’s formula e o

(1(0),u) = / dive.u dz + / o.gradu dz
Q Q-

bR

holds for every u € WH1(Q)".
Proof. Since there exmtsm .2 lifting operator £: LY (89)” - WH(Q)™, 4,(c) can be
defined by :

‘. (’Yu(o) ¢ / dive. Z(d)) dz + / o. grade(zf)) da: '

for all ¢ € L! (89)” and fixed ¢ € E(Q) Clearly, since Z((b) € W1 1(Q) . and
' llew)um(m,, < IIZ(¢)||W1 sy < C||¢||L1(asz)n :

wé have b o e :

I(‘ru(a) #)| <Clldivol ey 1A 721 g + IIUIILoo(a E)ngadf(@llu(n)n

<Cllllz3 onyllolz)-

Thus v, : 2(Q2) — L*°(69) is a bounded linear map.
“foisaCl (Q E) function, Green’s formula implies that

’ / . ‘(qlzg/).;¢ drtf :—-' / ’divq‘.u'dm:+ /Q d;gra;dd‘d&‘:';
for-a Cl(Q E) functlon  and & ’ulan = ¢. Since up =u — £(¢) €l &1(9) and
n L /dlvmuo d:z:+/90'gra,duo dm—_O} -
foralluo E (Q), it follows that S ;
| / 91685 (1), ¢>

Now the functions ¢ which are restrlctlons of C(Q E) are dense in Ll(BQ) So it fbliows
that 5 : L

N
“f

7"(‘-’:).‘_";‘5’;’489: -..for all o 62(92 ﬂ.v.,C‘:..(Q; E>-..-~ '-

v

By an approximation process, (2.1) follows.
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Proposition 2.2. Let  be a bounded set in IR™ ‘with Lipschitz continuous boundary.
For any o € X(2), there exists a sequence {0y, } in C*(Q; E) which satisfies
i .”Um”Lw(Q;E) < |I_‘7||L9°(9;E)’ u
Nlomvlizeay < Cllv(0)llzeony
and as m — +00, ' o ‘
divo, — dive  in LP(Q)",
om —0  weakly-star in Lo E),
omv —=7,(0)  weakly-starin L®(8Q)",
om —0  in' LY E) for any 1 < q < 0.
Proof. The proof is basically the same as in (17]. - :
‘Remark 2.1. The trace 7,(0) is weakly-star continuous in L™ (69) with respect to
| leO‘m — leO' weakly in L? (Q)"’ '
,' Om—0 weakly-star in L°°(Q E)
2.2. The spaces of BD(Q) and BD(f)
2.2.1 Definition . ,
In order to obtain collapse solutions' for the strain problem, the spax:e of veloc1t1es must be
generalized. In fact, in plastic-deformation, the velocity may be discontinuous in the interior

of  as well as along the boundaries. To handle discontinuities in u inside €2, Temam and
Strang('®l have introduced and studied

BD(Q) = {u e L' (Q)": 61:(“) € M(ﬂ)},

where M(R) is the space of bounded measures on 2. ‘For a discontinuity in » occurring
along I', a’ part of the bounda.ry 0Q, they added the term :

. /au('yg(u) up)ds
a

in the formula for the strain problem to include the corresponding dissipation work; where
up is a given function on I' and 7o(u) € L*(0R) is the trace of a BD function %. But in our
strain problem, the boundary conditions are given in inequality forms and the value ur on.
the:part of boundary needs to be determined as a part of the solution. Therefore; the:space
BD is not convenient for us to study the problem..

We generalize the space BD as the followmg

Wii:ﬁ ;the;' norm R L

lellgpa) = ”'“”Ll(n)" + HA(u)”Mm)

Instead of €;;(w) being a measure over Q we use AzJ (u), a measure over Q the closure of €.
Note that M () = C()* and M(Q) = Co(R)*. For any A;; € M (), which equa.ls €5 (m
the distribution sense) in the interior of £, the following difference

{(Aij, BYorxe — (i Besxe} s Yo e C()
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defines: a bounded measure on 0. Hence -
| BD(Q) = BD(Q) X M(ao)

In fact, for given functions u € BD(R) and v € M(8S), the corresponding A(u) is given by

(Aij(u), d)c+xc '*/ %(u ¢+f Jij(vo(w) — v)¢
where 79(u) € L'(92) is the trace of the BD function »17) and
Jij (p) "(szJ +P.7Vz) o (22)

Conversely, for any u € BD(S), we haye.

<€zyy ¢) (A,], ¢> Vo € c'0 (Q) 3
and the bounded measure on the boundary is given by

/ Tii(w)p = / Tiir0(u))é - / Agj () + / w,)#, V¢e0(n) (23)

We shall take (2.3) as a deﬁmtlon of the trace ¥(w) of & BD function u (replace v by ¥(u)
in (2.3)). Consequently, the norm of a'BD(2) function also can be written as

lullgney = lullan@) + 17 (vo(w) = Y(@)llm@n).
For further use, we a.lso deﬁne two subspaces BDO(Q) and LD(Q) of BD(Q)

BDO(Q) {u € BD(Q), v(u) € L* (asz)}

LD(Q) {’llzi € LI(Q),Egj(U) € LI(Q)}
Note that the norm of LD(Q) o
: » . ”"~"||L1 + Tijlless (u)”Ll(Q) :
is the same as the norm of BD(Q) foru e LD(Q) C BD(SZ) A generahzed Green’s formula
holds in ¥(Q2) x BDO(Q) but not in X(2) x BD(Q) (§2.3). The disadvantage of using the
spaces LD and BD, is that a unit ball in BD, (Q) and LD(Q) is not weakly-star compact.
- 2.2.2. Properties ; : A

~ In this subsection, we shall study the trace operator and the compactness in the space
BD(Q) under. different topologies. : :
- Proposition-2.3. The trace 7 defined by (2 3) is a bounded measure on 69 satxsfymg

Y(u)=ul,, forallue BD(Q) nc@)".

The map 7 : BD(Q) — M(09) is a continuous linear map. Furthermore the map v is
weakly-star continuous in M(09),-i.e., [;ov(u)$ is continuous for all ¢ € C(0R), with
a weak topology in BD(Q), where the weak topology is the one determined by the norm
lull (@)= and the family of seminorms

\ el

Proof.. For any ¢ € C(BQ), there exists an extension function @ € c() satlsfylng
@lag—annd o v P .

fora11¢€C’(Q) ' z,g =H1,---_,n..

Nellow < C||¢||c(ao)-\ S (2.4)
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Thus, using || (Yo(%))l| 260y < Cllull Bpay (¢f.[17)) , we have

[ Ftrotw)s o~ [ As@8| < Cllulaom + ulpal®lom: @5

Now lookmg at the third term in (2.3), for any § > 0, choose 1 € Co(Q), 9 =:1 on Q; where
Qlcﬂsuchthat N U

Then we have .
| / cs(w2 | feswevs [ 650001 - «p)l

o Lleis@lan @l @lo@) + 5.
Since & is arbitrary, combining with (2.4) and (2.5), we;-iqbtam
[ 04| < Clluloey1®lcion- 29)
If u € C(Q) N BD(R), then [, pijp = [, €i5(u)p. Thus

[ aene= [ Fi(o0)u)é do

ThlS 1mphes that for all u € BD(Q) n C(Q)

- c Y(w) = Yo(u) = ulag.
* - Next, we prove weakly-star continuity of y(«) in M (8€). Suppose that there is a sequence
{um} and a u such that, as m — oo, L

llum ~ wllz2 @y — 0,
[ 6t tum) = Ass)]
for all ¢ € C(Q). 1t is sufficient to prove that, as m —oco,
/8 QL%'(*/o('wm)) ~ Jii(70(w))]¢ dz + /ﬂ [€i(tm) — €35 (u)] = 0.
For any 6 > 0, choose 9 € C*({2) such that '

W - ¢”C(ﬁ) < W

. "BD(Q)
Thus,
[ 100um) - Tl ~9) do-+ / o) 501~ «p)]

<2||um - u“BD(ﬂ)||¢ Yllow < 9.

By Green’s formula, -. :
[ trtom) = (s + [ (st -
= ‘% , /ﬂ [(uﬁm) — u;)0;9 + (uﬁ’”) — u;)0;9)dx

<l — w2 @y [l or @y < 6
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for large m. Therefore, we have, as m — oo, L
| At ] o

for all ¢l;.; a0 € C(09).

Proposition 2.4. Assume thatQisa star—regxon wrt zo and has the outside strong sphere

property. Then C*(Q) functions are dense in BDO(Q) with respect to an intermediate

topoIogy of BDO(Q) More precisely, for any u € BDO(Q), there exists a sequence ot'
€ C*(f), such that, as m — oo,

/ A,-,-(um)qb - / Aij(w)p for all 6 € C(@), 27)
Q Q ) 5
||um —V’U,"Lf(ﬁ)n -0,
A (um)lazay = 1A @l (2.8)
As a result, we also have D S e "
() = Y@l om) = 0. - (2.9)

Proof. Since the trace y(u) € L}(99Q) for u € BDO(Q), we can use the lifting operator
£: L}(89) — Wi(Q°), where Q¢ = R™\(, such that, £(y(u)) = w in ¢ and w| oqe = 7(%).
In this way, the function u is extended as a function 4 in JR™. It is clear that 4 is a BD(IR")
funetion; and .A(%)is absolutely continuous with respect to Lebesgue measure in: R™\ Q.
Now, we define :

w@) = [ pale - 0)aly+ 5 = a0
R
where p, is a modifier and M is chosen such that
|:v—_a:5| <M ,for"all z€EN, - .. P - (2.10)
It is easy to check that | o
llun — w1 (@) -0 asn - 0.
Now, we prove (2.7). By dlﬁerentlatlng Uny
[ $Msnte) = [ 86) [ e (it0+ 2yt~ a:o») (1+n)do

Let z= y + -”—(y a:o) and sw1tch the order of integration.

[ #@nton = / [ #en (w—zf SETLAP u(u<z>>,
- z+nxo/M

v Qn={z: w-— TEn/M
which contains the closure of Q because of (2 10) Write it in two parts

o(z)Aij(uy) = qS(:IJ)p,7 :_.z nm"M dz| Aij(a(2)).
foensn=[ [ ([ ( ) 4

where

<, wGQ}
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Since A(%) is-absolutely continuous wrt Lebesgue measure in Q,, \ §}, the first term tends to
zero as 11 — 0. The second term.tends to - R R '

/ on) Ay (),

and (2. 7) follows For (2.8), it follows from the lower semi-contmulty of ||A(u)l| M) in the
weak topology of M({2) that .

/ A <hmmf / IA(u,,)I

On the other hand carrymg out the same steps as in the proof of (2.7), we > have

/ hstun@as= [ ] g, (o= 2 Astutep)| do

< [ 184l + 800

where §(n) — 0 as n — 0. This finishes the proof of (2. 8)
Finally, let us prove (2.9). Define

Q={y:lo-yl<a, z€Q}

‘and F = aﬂ (Fo = 39) Since llA‘J (u,,)"M(Qa) — "A,J (u)"M(na), and Ilun—ullp(ga) — 0

it follows from Fubini’s Theorem that -
/ Iu,,-—ulda:—-»o ae ﬂe (0 a) )

In Qg \ &, we have
/ '71.1('7(“77) 7(“ )dw = / \Z] (’Y('U'n - u))dw ‘l'/ Am(un u)dw

For any ¢ > 0, choose 3 such that the first term is less than % and then choose 7 such that
the second termi is less than £. Therefore, as 7 — 0,

/ |Tei(Y(g = @) do = 0.

Note that v(&%).= (), which completes the proof of (2 9). . 5 :

Remark 2.2. Since BD(Q) is the completion of BDO(Q) in, the weak topology, c>
functions are also dense in BD(Q) W1th the weak topology

Remark 2.3. The trace 7y(u) defined by (2.3) is linear and-continuous wrt the norm
in ﬁ)o(ﬂ).' Also, the trace y(u) is weakly-star continuous wrt the intermediate topology.
But the trace y(u) is not weakly-star continuous wrt the weak topology in Eﬁo(ﬂ) The
measure defined by the weak limit u of a sequence {um} € ﬁ)o(ﬂ) may be concentrated
along the boundary. So it may happen that % € BD(Q) \ BDO(Q)

2.3. The generahzed Green formula .

For given u € BD() and 0 € 5(), a product o A(u) does not make sense in- general
because 0 € L°(; E) and A(u) € M(Q; E). In this subsection, the meaning of o - A(u) is
discussed, and the generahzed Green’ s formula is recovered ’

In X x BD,, we define o - A(u) as

fn o-Au)p = ./s; divo.u¢ dz + fn o.(u ® grad¢) dz — /a o (o). y(u)p dz (2.11)
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for all ¢ €. C*(f). Since dive € LP(p > n), u € L=T1(Q)17, 7,(0) € L*®(IQ) and
y(u) € L*(69), every term on the RHS is meaningful. Furthermore, the product o - A(u) is
a bounded measure on { based on the following proposition.

Proposition 2.5. The product o - A(u) defined by (2.11)is a bounded measure on Q and
absolutely continuous with respect to |A(u)|, satisfying- :

| o8| < Iolsmaiey [ 181G

Proof. Let o, approx1mate o as in Propos1t10n 22in §2 1. Substltutlng Om in (2 11),

we have, as m — 00, :
/vwmwwaf¢mw¢

for all ¢ € C1(). The inequality
| omtu)s

|/aMM¢<wmwmy/wa

The conclusion follows from this by a classical argumentlz]
The bounded measure o - A(u) also satisfies the followmg
- Proposition 2.8. Suppose that o € () and v € BDO(Q) 'Then, we have the following
conclusions
. (1) The measure o - A(u) depends contmuously on o in the sense that 1f as m — 00,

leO‘m = dive -weakly in LP(Q)",

" ..Om — 0 - weakly-star in L°(Q; E),

<demmfwm

gives, in the limit,

then, as m — oo, .A
/ ¢Om - A(u) — / ¢o-Aw)  forall ¢ € C(Q).
(2) The measure 0. A(u) depends contmuously on u in the sense t;hat 1f as m — 00,
| A(um) — A(u) Weakly-star in M (Q)E
L Um Y st;roneg in Ln—l.(Q)"
umwm@ﬁmwmm~
tnen, as m — 00, : - -
/ ¢a A(um) — f ¢a A(u) for all ¢ € C’(Q)

Therefore, one can define o. A(u) as a continuous functlonal on Q, such that the generahzed
' Green s formula holds (take ¢ = 1in (2.11)) ' :

‘/QUA(U) /dwaudwb [SQ'YU(U).fy(u)'da;z,.‘_ .



No.2 An, L. J. VARIATIONAL FORMULATION OF STEADY FLOW 143

§3. Existence of Solutions

8.1, The statement of the main result

In what follows, we study existence of solutions for both the stress and the straln problems.
For the stress problem, existence follows from the theory of convex analys:slﬁl For the strain
problem, e)nstence comes from weak-compactness in the BD(Q) space. As eXpected “the
solutions for both problems do form a saddle pomt for the Lagrange functlon L(a, u) deﬁned
on the function spaces X X BDo

Theorem 3.1. There exists a pa1r of solutions o* € %(Q) and u* € BD(Q) ‘for the
variational problems. Moreover, if y(u*) € Ll(aﬂ) then the triplet (a A*,u*) forms a
saddle point for L{o,u) on K1 x ¥ C T x BD, satisfying P e

Lio,u*) < L(c*,u*) = X* < L(o*, u),
and the extremality relation holds : R
c-divu* =o* A(w*) - in M(),

Yo(0*)-y(u*) =0 . ae €.
The requirement y(u*) € L}(02)" guarantees that a generalized Green'formula holds
(8§2.3). So the duality relation can be achieved. In §3.2, we shall study the duality relation
and obtain existence of the stress problem. In §3.3, based on a fundamental estlmate, we
derive existence of the strain problem. ' o

3.2. Minimax theorem and existence for the stress pi*oblem
By Proposition 2.6, we know that the Lagrange function

Lo, u) = /9 o.A(u). |

i

is a bilinear continuous function defined on E(Q)xﬁo(ﬂ)ln this euheectioh, we shall

prove

. ¥oeK
where

K= {a € T(); loP] <k (E’{— + c) a.e. T € Q} .

¥(u)y <0, ¥(u); = 0-0on top }

{ue o( ) /qu T = y(w)y + ply ()| < 0 on sides

Using maz on the RHS of (3.1) means that the supremum is attained for the supinf. In

other words, the expression (3.1) gives the existence of the first component o* of the saddle

pomt

To obtain existence for the stress problem, we prove that, for some ug, the functlon
o — L(o,up) is coercive. '

Lemma 3.1. There is a ug € ¥ N C*(Q)" such that

li L ,' = - ., L. E ) 3.2
UGK’""H;"'*'OO (U uo) 700 s ( )

Proof. In deriving the strain problem, we obtained the dual cone of the cone K in the

mf supL(a,u)—meaI){c inf L(o,u), | - o (3.1):
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strain rate space

K* {A(u)eM(ﬂ E); —trA(u)>k sup ¢ aD | a.e;xeﬂ}‘-; -”"(3.‘3)
Ce L feR)=1 . . )

We can ch00se ug € C’(Q)" nw n K * where K is the 1nterlor of K*. It is obv1ous that, for
any o € K, ‘we have L(uo,o) < 0, and as ”0‘”2 — oo, the va,lue of L(uo, o) tends to —00.

To prove the minimax theorem, weak compactness is requlred But the umt ball m both
BDO(Q) and LD(Q) is not weakly compact. We introduce a new functlon spac,e '

LDs(Q) = {u € Ll(o)" €ij ('u) € L1+5(o E)}
Correspondingly, we define , :
W5 = UNLDg(SY). :
For 6 > 0, the unit ball in LDs() is weakly compact and .LD(Q) = 69()L‘Dg(ﬂ-). B
Proposition 3.1. The perturbed Lagrange function
Ls(o,u) = L(o,u) + Slea (w)|lx45 -
possesses at-least-one saddle point (0},u3) on K x W5 C L(Q) x LDg(X2), and
| L5(0'5,'u,6) = neu‘ln s:p Lg(a,u) maI){c 1€nf Lg(a,u) -
Proof The functlon v — Lg(o,u) is also coeércive .in the followmg sense: there is &
09 € K such that : - R ;
im L{oo, 4
uG‘I’m"““LDs(Q)""m (oo, )

For each u € ¥s, the function o — L; (a, u) is concave and upper semi-continuous; for each
0. € K, the function u — Ls(o,u) is convex.and lower seml-contmuous The conclusmn
easily follows from game theoryl®l. B
Proposition 3.2. The stress prob]em has at Ieast one solution o*. On K x ¥ C
() x LD(S2), we have - e ‘

mf sup L(o,u) = nt_:a}}{c uelf L(a, u). (3.4)
Proof. For fixed 6 > 0 we have from Propos1t10n 3.1
Lo, up)+6|A(up)ll1+s < L(og, uz) + 6|[A(up)l|1+s.
| . . L L(o§,u) + 6||A(u)”1+5 Vu'eTs, o€ K._'_ (3.5)
It follows from (3.5) that - S ‘
B  L(o3,up) 2 Lioyug) VoK,
L(o},u}) > sup L{o,u}) > inf sup L(o,u) = 7.  (3.6)
o T oeK. v T ue¥geg T - o -
Setting u == ug in (3.5), we have
L(03,u0) + 6|A(wo) 145 > L(o3,u3) + 8lA@les. (37
Comblmng with (3.6), the above (3.7) gives :
Lo}, u0) 2 L(og,uf) — Sl A(uo)lies > v ~ 6| Ao)llaes -~ (3.8)
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Assume v > —oo (when v = =00, the equality (3.4) is obviously true) Thus, L(as,ug) is
bounded from below when § — 0, and from (3.2), R Co

o is bounded using the norm of () for § — » 0.
There then exists a sequence d; — 0 and o* € K such that
| oF — 0 weakly in K
Let §; — 0'in’ (35),by (3.6), ' .
L(c*,u) > lxmsupL(aé,u) > hmsupL(as,ua) > y, Vue v,

j—0 850

This gives . ‘
| < < mf L(a u) < sup 1nf L(a,u),

and the conclusion follows.
Note that LD(S2) and BDO(Q) have the ‘same norm, and LD(Q) functions are dense in
BDO(Q) in the weak topology As a result, we have the followmg conclusmn

Corollary 3. 1. The stress prob]em bas at Ieast one solution o*.. On K X \If C E(Q)
BDy(82), we have

: L fL . . S :
;relfggg (o,u) = ma.f;{cné (o5 w). R

3.3. Existence for the strain problem and the extremahty relation
We recall the strain problem

1nf{ /dlvuda: uEK*ﬂ‘D} e (3

where K* is the dual cone of K, ‘defined by 3. 3) Suppose that. {uy} is the minimizing
sequence of (3.9) in the space LD(f2). ‘We shall prove that {uy,} is uniformly bounded in
the norm topology of LD(R2). But-we ¢annot expect to-obtain solutions in-LD(S}) in general,
since a bounded set in LD() is.not weakly compact. We can take {u,} as|elements in
E’T)(Q) in which a bounded set is weakly compact. T Then ex1stence of the strain problem in
BD(Q) follows. When the solution u* belongs to BD, (), the duahty relatlon is proved, ,
Lemma 38.2. Suppose that u € LD({2), and y(u) is the trace on the boundary. Then

aw=[ b
B top : e P L
is a contmuous semmorm in LD(Q), Whmh is a norm on the set of r1g1d mot1on ,

. RIS LE ; QR {u IE(U)'LI(Q) } . -

In other words, the equation q(u) 0and v € R implyu= 0. In fact, Ris a 6-d1mens1onal
space in which only rotation and translatlon are allowed The equation g(u) = O restricts
the rigid motion and u = 0 follows. E

~ When q(u) = 0, we can obtain a Poincare inequality < ie e aa e
lullzr @ < C Z llezJ(u)llLl
l] .

In general thenOrm i the space LD(R) is-equivalent to:~ - v E ik

)+ D el
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Together with Proposition 1.1, we obtain the following result.
Proposition 3.3. Suppose that {u;} € LD(Q) is the m1n1m1z1ng sequence of (3.9). Then,
there exists a constant N > 0 such that

lukllLp@y < N.

Moreover there exists at least one solution of the strain problem in §f)(ﬂ)
For the second part of Proposition 3.6, we take u,, as elements in BD(Q2), and then extract
a subsequence, still denoted by ., such that

um — u*  strongly in L*(Q),
divu,, — dive*  weakly-star in M (), |
IAP (um)| — [AP(u*)] weakly-star in M(2), (3.10)
V(um) = v(u*) weakly-star in M(8Q).
The convergence of (uy,) follows from Proposition 2.3 in §2.2.2. Since ¢ [, divu dz is con-
tinuous with respect to (3.10), function u* is the solution of the strain problem.
When u* € BDO(Q) the generalized Green formula holds. In this case, the duality

relation can be proved.
Proposition 3.4. If y(u* )€ LY(89) , then the triplet (o*,\*,u*) forms a saddle point

for L(o,u) on K x ¥ C X % BDo satisfying

L(o,u*) < L(o*,u*) = A* < L(o*,u),

_and the extremality relation holds

edivu* = o* - A(uw*) in M(R),
A(0*) - AMu*) =0 a.e z €00

Proof. To prove the extremality relation, we need to check that, for any u € ¥,

: ¢ [, divu if u € K*,
Lioyu)=4{
sup (o) { 400 if u ¢ K*,
and for any o € K, o
‘ L A if 6 € U =Ujo¥,,
nf I _ _
1nf (o,u) { o fogu.

When u and o are nice functions and 952 is smooth, we derived these formula in §1.4 and §1.5.
Working on the generalized function spaces £(Q2) and BDO(Q) we need an approximation
procedure to reproduce the results'”> 4. We do not carry out the calculation here. After
proving these results, we have, on the saddle point (o*,u%),

/dlvu = L(o*,u*) = A*.

This gives the extremality relations. The first part of the proposition follows from Corollary

. 3.1,

3.4. Discontinuities of the velocity field

Both the stresses and velocity in our problems can be discontinuous. It was known['!] that
a jump discontinuity of the stresses does not make a contribution to the energy dissipation
rate but a jump discontinuity of the velocities does. So when we study the strain problem,
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it'is an important issue to know. how to handle discontinuities of velocity inside €2 as well
as along the boundary. This has been done in the previous sections. Here, we Just: want
to observe a different feature between velocity dlscontlnu1t1es for pressure-insensitive and
pressure—sensﬂ'.we materials. ,

For pressure-insensitive materlals, it follows from the flow rule that the matenal is in-
compressible. As a result, the normal component ».v of the velocity is continuous across the
surface of velocity discontinuity. * But: pressure-sen31t1ve materials are compressible, so the
tangential discontinuity is accompanied by a normal dlscontmmty in general. We elaborate
~ on this point in the following,. :
~ Before proceeding, we.mention the basic fact.that, on a surface of a velocity discontinuity,
the stress components are continuous!!!. In fact, on a surface of velocity discontinuity, the
relations ‘that the stress components satisfy are determined by the flow rule. By contrast,
the relation that the stress components:satisfy across a stress discontinuity -is :determined
by the equilibrium equations, dive. = Ag. ) ,

Suppose that v is the collapse solutlon of the straln problem and o is the corresponding
stress tensor. Also assume that the discontinuity of u happens on a surface £ which separates
Q into £; and £, and o is continuous on L. Then, by Proposition 3.4,

/dlvu /UA('“) »/Qav..dwa.(-iw | e

whére v is the unit vector normal to £ from Q; to Qz, the jump [u] = (ug, ~ uq,)| cand J
is given by (2,2). By the extremality relation, we have : ' ‘

c/divu = c/ divudm—c/[u]iv’cls,-'

CoJoue, L £ :

and €(u), J([u])EK* that is o N _
divu >k sup aD € (u), >k sup oP.TP([4]).

f(oP)=1 fleP)=1

So the normal component of the velocity suffers discontinuity. )

In our case, since [u].v > 0, abrupt thickening could happen along the slip surface.
The “thlckness” of the slip surface depends on the magnitude of the dlscontmmty Th1s
observation could be helpful in studylng the formatmn of shear. bands in the reglon of
plastic deformation.

§4. Exf)limt Solutlons and Asymptotlc Analy31s

4.1. The case of radial graVIty o _
Cons1der radial gravity in two dlmensmns Assume that the wall of the hopper is smooth
(see (1.1)) and the yield condition is given by-(1.4). In this event, solutions of both the stress
and the strain problems can be obtained explicitly, and the largest multiplier A (subscript
7 is mnemonic for “radial”’) can be.expressed in terms of the top and bottom radius and. the
parameters of the material. TR '
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For the stress problem, we rewrite the equilibrium equations in polar coordinates. On
the region Q = [ro,R] X [—00,00], , '
(a) OO + 7 600'1'0 +r (o'rr - 000) -,

-1 (4‘1)
(b) Orove + 17 goge + 27' 0'-,-9 =0
and the boundary condltlons become -
a"' |r—ro Tro Ir—ro 0'1-9 |0—:§:00 0, . _ . ( 4 2)
' ' ' q""lr—R 2 O 000I9=:E90 2 0.
The yield condition is ' : _
\/ -2—(0,,. - 099)% + 202, <k (ﬂ%ﬁ‘_ﬁﬂ + c) - - (43)

Suppose that or¢ = 0 and o¢¢ > 0 (we will check later that the solution we find satisfies
‘these conditions). From the extreme case of the yield condition, we have

«/’ 2+k 2kc K
Orr 4.4
Substltutmg (44) and 0,9 = 0in (4 l(a)), we obtam
180 2K ______2Icc = —Ar
rVrr = ‘/— k 7‘1‘ \/ﬁ _ k ~ .
Solving this equation with the mltlal data a"'"lr—'r = 0, we have
. 2k . 3k—vZ
c ((;%) -k ) ,\,,._&C_z—kk (1 _(;%)72‘1';?) , k# %,Z, '
Orr = B ' A (4.5)
c(;’a——l),—-/\rlnf;,g C Co _ k=lg.
The condition o[ _, > 0 gives :
¢ 3k—2
| ‘f}—sk (1) ¥ (- )° Vgi_) , kA :
2--k 3k-v2 ’
A= o(1-(8) VER) (4.6)
g %
) L C- JL]T-_E—-’ . . . . k = 13:'

0

Thé fact that o > 0 (easy to check) and (4 4) glve Oop > Opr- So A in (4.6) prov1des a

lower bound of the limit load.
" For the strain problem, we rewrite it in the' followmg equivalent form.

nf fdlvud:z: u € K*, ug <0 on the sides
ffudx ' ursO ug—Oonthetop

Let (@, 8p) = ( r ﬁ-—k ) O) It is not dlfﬁcult to check that

¢ [y divide -

FEERNEN ) Jo fudz :

The upper bound. found from the strain problem is equal to the lower bound found from the
stréss problem. :Therefore, a pair of solutions of our varlatlonal problems are found and the
limit load A7 is given by (4.6). Do ’

R R

A=
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In terms of the formula (4.6), we can obtain the following asymptotic behavior of A} with:
respect to R, as R — oo,

_v3
+ o L -‘/-2_“3"(_}5)355“: e 2
r To \/é-—k; To ’ »3’
N | =22,

. To ln—— ' 3
Ao 2 o2 SL)

To \/— k : ) 3

“Also it is easy to check that, as R — oo, the limit load /\"‘ is monotone mcreasmg and
converges uniformly with respect to k in the interval [0,+/2 — é] (§ > 0) to the function .

(){0, k<4,
h(k) = :

3k— ’ V2
colggE k>

Nete that k is the internal friction of the material. Physically, in this specific model, only
when this value is greater than k> 33Q , can the hopper support material with infinite height.
Now we calculate the maximal stress attained inside the hopper. In fact, the relation
between the maximal stress in the material and the height R of the hopper gives us informa-
tion about how strong we should make the hopper Usmg the explicit solution found above,
we obtain, as R — oo,

. VZ-k W(f B)(V2 +k) | |
(0”)"‘-“”“( 2 ) Va-bp (ro) e

c R itk | . V3
(066) maz ~ P lan A lfk:_f%—’
Vi- k‘m"'(sk f)(f+k) V2
(qoﬂ)mazNC( ok ) (\/_ k) (7‘0) fk>'3—.

4.2. The case of vertical gravity

When the gravity is vertical, explicit solutions cannot be found But we still can ob-
tain a lower bound from the stress problem and a upper bound from the strain problem.
Asymptotically, the limit load in the vertical case possesses the same properties as that in
the radial case. _

In the vertical case, the forcing term in the equilibrium equations (4.1) is replaced by
(—Acos#, Asin 0) When choosing a,a =0 and solvmg the equatlons w1th the condition

a,.rlr_r = 0, we obtain

oge = f(r) — Arcosfd, o o
1/ f(r)dr— (r —13) cos®, ‘ '(4.7)

where f ('r) is an arbitrary function of r. Suppose 066 = Orry then the yield condition (4. 3)
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implies

a1 gket
f(r) - ArcosO—\/__ . [/ f(r)ydr—X(r® —r3)cosd| < S

To get a lower bound, it is sufficient to choos_e f (r) such _that f(r)-satisfies the equation

V2+k | 2k 2kc
rf(r) — frydr+ A T
<)fkm>(> v Verdd
where 0o is the open angle of the hopper. Solving this equa,tlon and then substituting f(r)
in (4.7), we obtain expressions fqr orr and ogy. Using Urrl,: g 2 0, we get a lower bound of

.A;*, (the subscript v is mnemonic for “vertigal’?); fo_r k# 30

(r® —r3) — Arfcos o =
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and.for k = —,

L 5 c(-’i —1) )
N> A=- ~ RERI
R+ 1 —ont)(2)'-1)

To complete our analysis, the reader can check that o6 > arr, and that o satisfies the
remainder of the boundary condltlons : ’ ,
To derive an upper bound, we use the same u as was used in the radial case,
X < ¢ [odivudz Y 6.
Jqu.fde " sin 00 |
where A} (4.6) is the limit load obta,med in the radial case. From the lower and upper bound
of A}, we conclude that ’ ' :

ln— 37

So, the 11m1t load A* in the vertlcal case has the same asymptotlc behav1or as. that in the
radial case. ‘
4.3. A linearly ill-posed free boundary problem

In the previous sections, we thought of the bottom boundary being fixed. Now we take
the bottom boundary as a free boundary and thus it should be determmed as a part of
solution, Physically, we want to find maximal stable arches in the hopper. SR
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" Suppose that the material deforms plastically everywhere. Using the yield condition to
replace one variable, the equilibrium equations are reduced to & 2 x 2 hyperbolic system.
Take the traction-free condition on the bottom as initia]l data, and tangential traction-free

(the wall is smooth) on the sides as a boundary condition. One extra condition on the top,
normal traction-free, is used to determine the largest multiplier as well as the shape of the
free boundary. _

When gravity is radial, we find such a solution (§4 1). When gravity is perturbed away
from the radial direction, we try to use the Nash-Moser Implicit Function Theorem to solve
this problem. The linearization of the equation near the radial solution can be written, on
[0,7] x [0, L], as

W) (0 £\ (u Lo L (=10 (W) _ (A= ADF0)
v), \ 0 /\v/, 1-s5\0 1/\v .0 )
subject to a boundary condition v|w=0 , = 0 and initial conditions

u(@,0) = —ah(z), v(z)="H(),

where0 < s<1(s= :/’5-5), the number o is positive, the function f(¢) is known and related
to the radial solution, and A(z) is essentially the shape of the bottom boundary. In order to
use the Nash-Moser Theorem, we need to investigate the mapping

M : h(z) — u(z,T) = g(z).

‘Using Fourier Series, we can solve the linearized problem,

uw(z, t)-/()\ A)el-s (t—'r)f(q')d7'—~ / {ael s +’Z [acosh(ﬂn)

n=1

nré

2 _
+ (a 9 (mr) ) : -1 A s1nh(,3nt)] cos @Lﬁ Cos ——} h(¢) d¢, | (4.8)

8, = 1 1+4s(nm 2
TV (@A-8)2 1-s\L/°
For the mapping M, it is easy to see that the following estimate holds
gl oo,y < C (Al re+2po,zy + 1l ojo,1y) -

Now, we look at the inverse map M1, Substituting

oo
_Co nwé
h(€) = 5 T n2=1cn co§ —=

where

in (4.8), and calculating the coefficients, we obtain

: ‘__ * 11 . 1
| h,(a;) = A 20[}\7- /0 e~ T f(1) dr — E_e 1‘ 3 /(; g(ﬁ)
> 2 L nwé | nwT
+> ' 9(£) cos —— dé cos ——.
"l [a cosh(Bnt) + Lzlo‘_'sz)SL(f;)z sinh(ﬂnt)} / L L
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isdensein R. - .+ - » SR : Do
-.This is fundamentally a conjecture in'Number Theory. - -+ -~ = 07 o
Note that term in brackets appears in the denominator. If this conjecture is true, then,
generically, the function A is-unbounded no matter how smooth g isv.'-In.fa'c't, ‘the coeflicients
of high mode terms in the Fourier Series cannot be:controlled unless. g(z) only contains finite
modes. So:the inverse:map M ! is not contintous at ¢ = 0 in any reasonable topology In
this sense, this problem is not linearly well-posed. '
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. Conjecture. For any v > 0, the.set. - .. .. ...
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