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' Abstract '
A variational problem about maximal stable arches in a hopper is formulated; This prob- 

. lem idealizes an industrial problem related to guaranteeing reliable flow of material out of aj 
storage silo. To obtain existence, the generalized function spaces are introduced and, studied. . 
Specifically, functions in the spaces can'be discontinuous in the ihteriOr of the'domain as Well 

,. as along the boundaries. For the von Mises type of material in two dimension, the limit load is, 
estimated and its asymptotic behavior is investigated.. , , -

§0. Introduction .

For flow of granular material under gravity in a hopper (Figure 0.1); information about 
the Moment of collapse under increasing loads is Very important for the design of a hopper. 
In this paper, we shall- investigate this problem. Assume that the material is rigid-perfectly 
plastic. Based on the limit analysis,we shall forimllate two variatibnalproblems, which we 
shall call the stress problem and the strain problem. Then we shall investigate solutions of 
these variational problems. ■ ; '• ; > .

To study these problems, appropriate function spaces should be chosen, especially for 
the strain  problem. Physically, deformations can be discontinuous inside plastic material; 
M athematically only an L 1 estimate can be obtained for the minimizing sequence'in the 
strain problem. But the unit ball in L1 is not compact either in the norimtopdlogy or in the 
weak topology. S tr a n g ^  and Temami17! introduced a new function space; to allow strain 
discontinuities in the interior of a domain. Functions in this space assume their boundafy 
values in a  continuous fashion. We shall extend their function space to one whose functions 
are defined on the closure of a domain so that boundary can also be treated. Specifically, 
velocities are summable functions on the domain, and the entries of the strain rate tensor are 
bounded measures on the closure of the domain. In this space, functions can be discontinuous 
in the interior of the domain as well as the boundaries and the unit ball is compact; in the 
weak topology,

Most previous work!1,3’17’19! on the variational formulation of plastic problems dealt with 
pressure insensitive material which is incompressible. When velocity discontinuities, occur 
along a surface; the normal Component d f  velocity along the surface remains cbntihuous. 
But a granular material is pressure sensitive. Its deformation is accompanied by a change 
of volume, and a  tahgential discontinuity of velocity albng a surface is accompanied by a
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normal discontinuity. In general, abrupt thinning or abrupt thickening could happen near a 
slip surface.

In section 1, two variational problems are formulated. The stress problem is given in 
terms of statically admissible stress fields (§1.2); the strain problem is given in terms of 
kinematically admissible velocity fields (§i.4 and §1.5). These two problems are dual to 
each , other under the Legendre transform and the duality relation is consistent with an 
associative flow rule. In §1.3, we also discuss the yield condition used for granular material.

In section 2, we shall study the generalized function spaces. A function in the space S(fl), 
used for the stress problem, has L°° trace on the boundary and C°° functions are dense in 
some weak topology in this space (§2.1). A function in the space BD(Q), used for the strain 
problem, has a trace which is only a measure on the boundary (§2.2); Different topologies 
are discussed for the space BD(U) as well as its subspace BDq(Q.) (§2.2.2). A generalized 
Green formula in the space E(ft) x BDq(CI) is proved. It is given (§2.3) tha t the product 
of a stress tensor and a strain rate tensor depends continuously on Stress and strain rate 
tensors in the weak topology.

In section 3, existence of both problems are proved. Existence of the stress problem 
follows from the minimax theorem (§3.1). Existence of the strain problem is derived from the 
minimizing sequence which is weakly compact in the space BD(O) (§3.2). Under a regularity 
assumption on the solution of the strain problem, the extremality relation between solutions 
of both problems are attained and both problems give us the same limit load (§3.3). Also, 
the feature of velocity discontinuity in granular material is addressed (§3.4).

In section 4, some explicit solutions are given in some cases and their asymptotic behavior 
is investigated. When gravity is assumed to be in the radial direction, exact solutions of both 
problems are found and the limit load is given in terms of parameters of both the geometry 
and the material (§4.1). Specifically, how the maximal stress depends asymptotically on 
the height of the hopper is estimated. When gravity is vertical, choosing specific stress and 
velocity; we obtain a  lower bound and a upper bound of the limit load, and conclude that, 
in this case, the limit load has the same asymptotic behavior as in the radial case (§4.2). 
Also we investigate a  linearly ill-posed free-boundary problem related to the stress problem 
(§4.3).

§1. Variational formulas

1 . 1 .  N o t a t i o n
In what follows, some of the notations we shall use in this section are listed for reference.

(1) Ei the space of symmetric tensors of order щ
(2) E d : the subspace of E  consisting of the tensors whose trace is zero;

(3) 111 = {(•.(}*2 — : the norm of a tensor £ =  (&_,•);.

(4) и =  (щ ,щ , . . .  ,un): the velocity vector;
(5)  . cr == (crij): the n x n symmetric stress tensor;
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(6) £D =  the deviator of the tensor, £,

t g = e*3 n
€kkf>ij (<% the Kronecker delta);

(7) tr<x: the trace of the tensor <r;
(8) e(u) =  (eij(u)): the n x n symmetric strain rate tensor asspciated with u, which is 

given by

£ij(u) =  + djUi)-,
П

(9) a.e(u) =. aijCij- the scalar product of two tensors;
i,j=1

(10) v — (ui, v2, . . . ,  vn)\ the.outward unit vector normal to a surface;
71

(11) a.v — 52 (Xijpf the surface traction;
з=i . \  ;П

(12) (a.v)v =  52 <*ijvivj' the normal traction component of a.v,
i,j=1

(13) (a.v)r =  a.v — (a.v)vv. the tangential traction component, of сг.гл

; In our paper, we define the stress tensor in the compressive sense, which is convenient 
for studying granular material (a granular material can support only compressive stresses)/ 
Correspondingly, we put a minus sign in the definition of strain rate tensor.
1.2. Formulation of the stress problem

Let fi be the region inside the hopper whose boundary consists of a lateral wall (two 
lateral walls in 2-dimehsions), part of spherical surface with radius R  on top (circular arc 
m 2-dimensions) and part of spherical surface with radius r 0 on bottom (circular arc in 
2-,dimensions),. Suppose tha t a body force / ,  gravity ip practice, is given in fi. .Even if the 
wall of the hopper is smooth, cohesive material in the hopper may remain at rest when; the 
width of the exit is, small. But as the width increases, the material will be unsupportable,, 
and collapse will occur. Instead of finding the largest exit width such that collapse does 
not occur, we try  to find the largest multiplier A* of /  such that A* f  can be balanced by 
admissible stresses while the width of the exit is fixed. The latter is so called the problem 
of limit analysis. The stress problem will be set up based on the static principle of limit,, 
analysis in this subsection. 4 . , , . ,

For rigid-perfectly plastic material, this collapse multiplier does not depend on the loading 
historylfl. Hence it is possible to  .find the largest multiplier A* of /.w ithout following the, 
development in time, , ..... .. ,

The rigid-perfectly plastic structure means that the stress tensor a, ,jpust belong to a,
О

closed subset B(x) of E  at every point of O. When a e B(x), the set of interior points 
of B(x), the material is at the state of rigid motion and no deformation occurs1. When; a. 
reaches the boundary dB  of B, the material begins to yield and plastic deformation occurs: 1 
Incidentally, slip between surfaces may happen in the region of plastic deformation.

Therefore, our stress problem can be formulated as follows

sup { За E K (ti)s .t.d iva  — A/.in fi, a.v =  0 on the bottom, 1

\(a.v)T\ < /j,(a.v)v o n th e  sides, (a.v)» >  0 on the  top у  - -
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n
where dive =  v • a =  diVij, and // the coefficient of friction between the material and

»=i
the wall of the hopper and

K(Q) =  | e  e  E : a e B(x) а .е.ж € fl

is the yield set whose choice depends on the material (§1.3). The equation dive =  A/  comes 
from the conservation of momentum. The boundary conditions on the bottom come from 
the fact tha t no surface forces are imposed on it. Since a granular material is, unlike metal, 
not ductile and can support only compressive stresses, we have

(<j .v)v > 0

along any surface. In particular, {cr.v)v > 0 on the top. The conditions on the sides express 
the simple mechanics model for friction. If the wall of the hopper is smooth, then the friction 
coefficient ц = 0 and the conditions on the sides become

(a.v)v > 0, (a .t')t -  0. (1.1)

1.3. The yield condition
As we know, the yield condition tells us when the internal stresses can support the external 

force 50 tha t no plastic deformation occurs and when a material begins to yield and possibly 
collapses. So the type of yield set we should take depends on the nature of the material we 
are dealing with. Here we shall discuss the characteristics of granular material, and give the 
yield sets adopted in pur paper.

When we study pressure-insensitive materials, like metals, the yield set can be written as

ч, . K  = K d ® 1RI, (1.2)

Where K D is a non-vacuous closed convex subset Of E D. In other words, when the material 
yields, the yield strength \cfD\ isIndependent of the total pressure tr<r, the trace of stress 
tensor. If we assume that the plastid deformation takes place in the normal direction of the 
yiPld Sttrfdce ^iT (the associative flow rule), we have

Y l  €ii(u) =  -d iv u  == 0.
i

So the material is incompressible!4!. But a granular material, based on the experimental 
factsl15’16!, is pressure-sensitive. The yield set cannot be written in the form (1.2). The 
yield strength crD depends oh the total pressure. In terms of the associative flow rule, 
which will be discussed in § 1.5, a pressure-sensitive material undergoes volume changes. 
As a result, a  tangential discontinuity is accompanied by a normal discontinuity along the 
discontinuity surface in velocity (see §3.4).

In our paper, only cohesive materials are considered. SO the yield set B(x) must contain1
a neighborhood of 0 in £? for almost all x  € SX In this case, from the following equivalent
form of the original stress problem

3<r s.t. Xa e  K(£l) and diver = f  in Q, cr.u =  0 on bottom,
A :

|(£r.i')r | <  ii[<r.v)v on sides, {a.v)v > 0 on top

we can obtain that, when there is a a G Ь°°(ft, E) satisfying the equation and the boundary 
conditions, we can choose A >  0 such tha t Xa e  K(Q). As expected, a cohesive material
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could stay a t rest.
If a yield function F  : E  x Q, -* Ш, is introduced, then the yield set can be expressed as

K(Q) = {a : F(a, ж) < 0 a.e. x  E fl}.

The yield function we are considering in this paper has the following form

-F =  /  (^D) -  * (1-3)

where /  (a 15) satisfies (1) /  (cr-0 ) >  0 for all aD E E D, (2) /(0) =  0, (3) /  is convex, (4) 
/  is homogeneous of degree one in &D- The scalars к and c, related to the internal friction 
and the cohesion of the material respectively, are given positive functions of x  (deformation 
history may not the same for different points). In fact, if c =  0, the yield set does not 
contain a neighborhood of 0 in E, and such a material is not cohesive. Note that the yield 
set (1.3) is a cone in E. Yield functions of the form (1.3) include the Coulomb type in 
the two dimensional case, the von Mises type and the Tresca type in the three dimensional 
easel10!. For instance, for the von Mises yield condition,

№ ° ) . = > D|. (1.4)

R em ark  1.1. Another type of yield condition tha t can be used for granular material 
comes from Critical State Soil Mechanics!16!, in which the yield set is a bounded convex 
set in E. It would be better to include hardening effects in this type of model. But it is 
difficult to formulate them in variational forms. We will study these types of models in 
further publications.
1.4. D e riv a tio n  o f  th e  s tra in  p ro b lem

The strain problem) which is formulated in terms of kinematically admissible velocity 
fields, can be found through a minimax theorem. The variables и and a are connected by a 
Legendre transformation.

From §1.2, the admissible fields are denoted by Ф =  U Фа, where 
: : A>0,

{ diver =  Л / in D,- |(<t.*/)t | <  p(cr.v)v on sides,
<r :

cr.v — 0 on bottom, {<y.v)v >  0 on top

From the following argument, we shall see that the admissible velocity fields would be
uu < 0, uT =  0 on top 

’ uu -f fj,\uT\ <  0 on sides

We define a  Lagrange function L(cr, u) as

L{(j, u) =  / <r.e(u) dx.
Ja

We claim tha t the stress problem can be written as a maxmin

Ф
- Ы

fu d x  — 1

sup {A} =  sup inf L(a,u), 
дел *ек «е*

where Л =  {A : За е  К  П Фа}. By Green’s formula, we have

sup {A} =  sup inf 
лел 1 o-eA

|  У  u.divadx (1-5)
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For the integral over ft, it is easy to see that the inner minimum is —op unless diver is 
proportional to / .  . . . . . .

" Ц  uAivadx, 

For the integral over dfl,

udx = 1
A . .ifdiver =  А/, 

oo otherwise.

inf { - / <[ Jan
— /  (a.u).udx

uu < 0 ,uT =  0 on top 

uv +  yt\uT\ < 0 on sides

Therefore,

■ 0 ifa .u  =  0 on bottom, (<r.v)v > 0 on top 

. and \(cr.u)r \ < V>{?-v)v on sides,

, -o o  otherwise.

inf
иеФ

|  J  uAivadx

( X if er € Ф,
\  —oo otherwise.

The outer minimum .of (1.5) ,is obtained only in the case er € Ф. The proof of the claim is
complete. . . .

Now, the strain problem is defined as a rpinmax. .

inf /  D(u) dx — inf sup L(a,u),

where D(u) =  sup r  • e(u). More precisely, 
тек

(i.«)

u„ '< 0, ur = 0 on top 1 

uu +  ц\ит\ < () on sidesj ’

where D(u) can be expressed explicitly when a proper yield set is chosen (§1.6).
Essentially, the stress a in the stress problem is related to the velocity и in the strain 

problem through a Legendre transformation; the duality relation. If we can prove

sup inf L(a,u) = inf sup L(a,u),
<теА«еФ v «€Ф*6к

then we can find the largest multiplier by solving the strain problem, the dual of the stress 
problem. But the order of optimization is not always reversible. A “duality gap” exists in 
some situations!13̂  Also whether or not the extreme solution can be attained depends on 
the choice of function space. We shall answer these questions in sections 2 and 3.

R em ark  1.2. In mechanics, the strain rate tensor is usually found by using its relation 
to the stress tensor at yield — the plastic potential flow rule. It can be proved that the 
duality relation discussed in the last subsection is equivalent to the associative flow rule in 
plasticity.
1.5. E xplicit fo rm ula  for D(u)

By definition, the dissipation function

; D(u) = sup cr.e(u).
<t€K.
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=  sup < — tre(tr<r -f cn) -  ctre + eD.aD 
<т&К l  П  v

Let s=  ^  +  c, then the yield condition can be written f(crD) < ks, s > 0. Therefore, 

D{u) — sup{tres +  sup aD • eD} — ctre
«>o /(<rD)<fcs

=  sup{ f tre +  к sup crD • eD j  s} — ctre, 
«>o \  i )

here the homogeneity and Convexity of f{a D) are used. Thus
sup

D(u) = <

-c e «  if €ц +  к sup efj • afj < 0,

+oo if €ц + к sup • aft < 0.
i

In order to get the infimum of the integral

1D(u) dx Vu E Ф,jJ a
admissible strain rates must satisfy

К * ± \е - .е ц > к  sup -(rD \
{  Я < т ° ) = i  J

which is the dual cone of the yield set K, It implies that under the yield condition in our 
paper, plastic deformation is always accompanied by dilation. It follows from the formula

inf  ̂c /  divu dx : divtt > к sup eD • oD, uE  Ф 
u I fa /(<r°)= 1 }

(1.7)

that, physically, the collapse solution of the strain problem corresponds to the least dilation 
in volume.

P ro p o s itio n  1.1. In the space <eE Ё  : - t r e  > к sup eD • oD >, there exist positive
{  J

constants Ci and Сг, such that

C2|e| <  D(e) < Ci\e\. (1.8)

The proof of Proposition 1.1 is a straightforward observation of our formulation (1.7).
R em ark  1.3. For other yield sets, for instance, a bounded yield set in E, the material 

could (1) dilate (2) consolidate (3) neither dilate nor consolidate. Depending on the corre
sponding state of stress <r, if the projection of the normal direction at a of the yield surface 
on the trace direction of stresses is positive, the material undergoes consolation; if the pro
jection is negative, the material undergoes dilation; if the projection is zero, the material 
are neither dilate nor consolidate. Incidentally, consolation makes the material stronger and 
dilation makes the material weaker. This point can be recognized from the formulation of 
the strain problem for a  material with a bounded yield condition.

§2. T he G eneralized Spaces and Green’s Formula

Throughout this section, we assume that Q, is open, bounded domain with loclly Lipschitz 
continuous boundary.
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2.1. T h e  space  E(f2)
The space

E(O) =  j a  € L°°(SliE) : diva e  £ p(ft)n ( p > n ) j

with the norm

IHIs(si) =  .1М1х,«>(п$£!) +  ||diva||x,P(n)n

is a Banach space. The trace operator is established in the following proposition and the 
density of C°° functions in E(f2) w ith a weak topology is proved.

P ro p o sitio n  2.1. There exists a continuous linear operator, 7„ : S(O) —>■ L°°(dQ,) such 
that

/y1/ (o) = d-u\QQ for all cr e  E(f2) П С(й; E). (2.1)

Green’s formula

(7„(<x) ,m) =  /  diver.u dx +  /  o.gvadudx
Jsi Jsi

holds for every и E W 1,1(Q,)n.
Proof. Since there exists!7! a lifting operator l  .: L x{d£l)n -* W 1,1^ ) ” , 7,,(cr) can be 

defined by

' ),Ф) = I div<r.f(ф) dx +  / tr.gradf(^) dx

for all ф € L x{dSl)n and fixed о € E(Q). Clearly, since £(ф) € W’1,1(Q)n and 

11̂ ) 11х,*г(п)п -  № )llw M (n)»  <  C'||^|j£i(an)«,-j

wfe have 1

\М<г),Ф)\ < C ||d iva ||W( n ) » ||^ ) | |b ^ (n)n +  ||a|Uoo(0;B)||gradf(^)||Li(n)» 

<C'II^IU1(afi)"lklls(n)-

Thus : E(f2) —► L°°(dQ,) is a bounded linear map.
If о is a C 1(fi; E) function, Green’s formula implies that

I (сг.1/).ф dx =  /  diver.и dx+  /  er.gradu dx
J • . v i/ Й

for a Cl(Q] E) function и and a =  ф. Since щ  = u — £{ф) € and

I diver.uo dx+ I er.gradtio dx = 0 
J Cl Jci

for all uo € 'Wp’̂ f t) , it follows that

(<тм).ф dx = {ч„{о),ф),
Jan , .

Now the functions ф which are restrictions of С(й;Е) are dense in L l {dfl)n. So it follows 
that . . . - - Л  ... ■ ■. .

7„(сг) =  cl.y\Q̂  for all cr € E(fi) П E).

By an approximation process, (2.1) follows.
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P ro p o s itio n  2.2. Let Q be a bounded set in with Lipschitz continuous boundary. 
For any о € E(ft), there exists a sequence {ат} in C°°(Q-rE) which satisfies

||о'»п^||ь«>(еп)п <  C,||7i/(<T)IUoo(8fi)"

and a s m - »  +oo,

diver,, diva in Lp(Q)n,
om -* 0 weaJdy-star in L°°(ft; E),

0m-v—> 7 i/(0 ) weakly-star in L°°(d(l)n,
0m -* 0 in L*(ft; E) for any l  <q < 00.

P ro o f. The proof is basically the same as in [17].
R e m a rk  2.1. The trace 7„(a) is weakly-star continuous in L°°(dCl) with respect to

divam —► diva weakly in Lp(ft)n,

.... . a m —> a  weakly-star in L°°(ft; E).

2 .2 . T h e  spaces o f  BD (ft) a n d  BDo(ti)
2.2.1 D efin ition
In order to obtain collapse solutions for the strain problem, the space of velocities must be 

generalized. In fact, in plastic deformation, the velocity may be discontinuous in the interior 
of II as well as along the boundaries. To handle discontinuities in и inside II, Temam and 
Strangt18! have introduced and studied

RD (ft) =  j u  € Xx(f2)n : е ф )  € M (ft) j ,

where M (ft) is the space of bounded measures on ft. For a discontinuity in и occurring 
along F, a part of th6 boundary dftj they added the term

l
0M.(lo(u) ~ Ur)ds

in the formula for the strain problem to include the corresponding dissipation work; where 
u r  is a given function on Г and 70 (w) € Ll (dQ) is the trace of a BD  function u. But in our 
strain problem, the boundary conditions are given in inequality forms and the value и? on 
the part of boundary needs to be determined as a part of the solution. Therefore; the space 
BD  is not convenient for us to study the problem.

We generalize the space BD  as the following

BD (ft) =  € i x(ft)n : А ф )  e  M (ft) j

with the norm

INIвщп) ~ IN U w + 11л(̂ )11м(й)-
Instead of (u) being a measure over ft, we use Лу(и), a measure over ft, the closure of ft. 
Note tha t M (ft) =  C(ft)* and M (ft) =  Co(ft)*. For any Лу. € M (ft), which equals cy (in 
the distribution sense) in the interior of ft, the following difference

{{Л ч,Ф )с*хС~ф ,Ф )с% хс}, Чф€С(й)
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defines a bounded measure on dfi. Hence

BD(Q) =  BD(D) x
In fact, for given functions и G BD(Q,) and v € the corresponding A(u) is given by

(Аг](и),ф)с*хС =  /  еу(и)ф + /  Jijtioiu) -  у)ф 

where jo(u) G is the trace of the BD  function and

Ji з{р)=\(Рг^з+РзЩ). (2.2)

Conversely, for any и G BD(fl), we have

(€п>Ф) =  (Ац ,ф) Уф G C*o(f2), 

and the bounded measure on the boundary is given by .; . •,

/  J i i W  =  [  У чЫ (и))Ф - ‘[  А^(и)ф+ f  €^(и)ф, Уф G C(Q). (2.3)
J J Jet J  О

We shall take (2.3) as a definition of the trace 7 (u) of a BD  function и (replace v by 7 (14)
in (2.3)). Consequently, the norm of a В D(D) function also can be written as

1Н1вг>(п) = IMIbd(o) + ll̂ (7o(«) -7(“))11м(ш)-
For further use, we also define two subspaces BDq(Q) and LD(Q) of BD(Cl). 

BD0(fl) =  j «  € В 5(П ),7 (« ) € L1^ ) } ,

LD(n) = [u i e L \ n ) , e ij( u ) z L 1(Q)y

Note tha t the norm of LD(D) •

.... IMU1 + S y ||ey (tt) |U i(p ) : ,
is the same as the norm of BD(fl) for и G LD(Q) C BD(ti). A generalized Green’s formula 
holds in S(fl) x BDo(D) but not in S(fi) x BD(Q) (§2.3). The disadvantage of using the 
spaces LD  and BDq is that a unit ball in BD 0(fl) and LD(€l) is not weakly-star compact.

2.2.2. P ro p e r tie s
In this subsection, we shall study the trace operator and the compactness in the space 

BD(Q) under, different topologies.
P ro p o s itio n  2.3. The trace 7 defined by (2.3) is a bounded measure on dfl, satisfying 

j(u) = и\да fo ra llu eB D (n )n C (Q )n.

The map 7 : BD(Q) —► M(dti) is a continuous linear map. Furthermore, the map 7 is 
weakly-star continuous in M(dfl), i.e., f m  у(и)ф is continuous for all ф G C(dfi), with 
a weak topology in BD(Q), where the weak topology is the one determined by the norm 

and the family of seminorms

I f *\J n
фКц{и) for all ф G C(fi), i , j  = 1, • ■ • , n.

P ro o f. For any ф G C(dfl), there exists an extension function Ф G C(fi) satisfying

^  and

т \с(й) < С\\ф\\ст. (2.4)
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Thus, using | |J y (7o(w))||Li(9n) <  C\\u\\BD{n) (с/.[17]) , we have 1

| Ji jbo (и))ф dx -  Aij(u)Ф <  С О Н в с ф )  +  Н 1 я » ( о ) ) Н * И о ( й ) -  ( 2 -5 )

Now looking at the third term in (2.3), for any i> > 0, choose ф G Cq(Q,), ф — 1 on where
й г с  ft such tha t 1

; ' '' \ 1 ^ ( и ) Ц 1 -Ф )\<  6-
. \J SI ' I л.',."' •.

Then we have . ,v

/  « ч ( « ) ф  =  I /  е (̂и)Фф +  /  ец(и)Ф(1 — ф)
I Jn I j J о Jet

^ 11€у (“ )||м 1(П)||Ф ||с(Й)+^ '
Since 6 is arbitrary, combining with (2.4) and (2.5), we obtain

I /  <7̂ (и)Ф < ^ llwllgi)(n))l^llc(.afi)- (2.6)
I v dci

If и G С(й) П BD(Q), then f a ц^ф =  f 0 е^(и)ф. Thus

[  ЯуЫи))Ф = I ЛзЫ)(и)Ф dx.
Jdsi Jdci

This implies tliat, for all и  e  BD(Cl) П C ( f l ) ,

7(w) =  7o(tt) =  u\9si-
Next, we prove weakly-star continuity of 7 (u) in M  (d£l). Suppose that there is a sequence 

{um} and a и such that, as m —> 00,

||wm - n | | n (О)" - » 0,

I Ф\Аг}{,ит) ■^■u(^)]| * ®
\JU I

for all ф € C(fl). It is sufficient to prove that, as m -*■ 00,

/  [Jijboium)) ~ Jij{7оЫ))]Ф dx+ [ец(ит) -  е^(и)]ф ^  0.
Jdsi

For any 6 > 0, choose ф G C,1(f2) such that
6 '■

Thus,

I  [Jij(lo(Um)) ~ Jijho(u))№ -Ф) йх+  /  [€ij(um) -  ец{и)){ф -  Ф)
\JdSl ->0

< 2||wm -  п ||вл(п)11̂  -  ^Исф) ^ 6- 
By Green’s formula,

/  Jijbo(um) ~ Уо(и))ф +  /  (ец{ит -  и))ф
I Jdn

= I \  f  [(«jm) -  щ)дгф +  («im) -  Ui)drf\dx

<||wm -  u||l,1(n)»||'i/,||c 1(n) ^  ^
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0

for large m. Therefore, we have, a s m - ^ 6o,

/  ~ и))Ф
I./an

for all € C(dfl).
P ro p o sitio n  2.4. Assume that Q is a star-region wrt xq and has the outside strong sphere 

property. Then С°°(й) functions are dense in BDp(fi) with respect to an intermediate 
topology of BDq(Q,). More precisely, for any и € BDo(fl), there exists a sequence of 
um € C°°(Q), such that, as m  —> oo,

I  Aij(um)<f) -> /  Aij(u)(f> for all ф eC(Q), 
Jn

ll^m — wjjii'(jh)« -► 0,

||Ay(«m)||Af(^) —►||Лу(«)||М(й).

(2.7)

(2 .8)

As a result, we also have

M um ) -  7(и)Цщвп) ->}0. (2.9)

P roo f. Since the trace 7 (u) € L 1(3fl) for и € BDo(fl), we can use the lifting operator 
t : Ll (df2) -*■ W 1,l(Oc), where fIе = Mn\Cl, such that, f(j(u)) = га in £1° andW|efic =  7 (u). 
In this way, the function и is extended as a function й in Шп. It is clear that й is a BD(Mn) 
function, and A(tt) is absolutely continuous with respect to Lebesgue measure in Мп\ й .  
Now, we define

uv(x) = / Pv{ x - y ) u ( y + j - ( y - x 0))dy,

where pn is a  modifier and M  is chosen such that

\x — x q \ < M  for all x  e  ft, (2.10)

It is easy to check that

I K  “  « llz> (0 )“ -♦  0 as 7? - > 0 .

Now, we prove (2.7). By differentiating uv,

ф{х)А^{иГ}{х)) =  J  ф{x) j  pv(x -  y)Aij (й(у + £ ( y  -  ж0))) (1 +  ц) dx.

Let z  =  y + jfe(y -  xq) and switch the order of integration.

j f  Ф(х)Ач(ип) =  j f  ^  ф(х)рг, (x  -  j  dx] Ay («(*)'),

where
Г I z  ~%  =  Y  : ® -  -j-

+  Що/М
<r), x  € й

\+ r)/M
which contains the closure of Q because of (2.10). Write it in two parts
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Since Л(й) is absolutely continuous wrt Lebesgue measure in \Q , the first term  tends to 
zero as 77 0. The second term tends to

Jsi
and (2.7) follows. For (2.8), it follows from the lower semi-continuity of ||Л(и)||м(й);т  the 
weak topology of M(£l) tha t

[  |A(ti)| <U m inf /  |A(u„)|.
. Jsi .■ \  ; ■■■’ N  J й ■ ■

On the other hand, carrying out the same steps as in the proof of (2.7), we have

< f \A ij(u ) \+ 6(rj)
Jsi

where 6(t]) —► 0 as 77 —► 0. This finishes the proof of (2.8). 
Finally, let us prove (2.9). Define

|Ay(u*(*))| dx = 7  7  pr, l x
J О vfi </ Clff \

Z + 7)Xo/M 
1 +  r)/M )  A y  ( « ( * ) ) dx

= {tf : I* -  y\ < a , x €  ft},

and Га =  дйа (Г0 -  0ft). Since ||Ay'К ) | |м ( п а) -♦ ||Ау(«)||м(п,)» and -*■
it follows from Fubini’s Theorem that

I \ut) — й| dx —► 0 a.e. /3 € (0, a). ,
Jr0 ' "

In \  0 , we have

7 ,
For any e >  0, choose /3 such tha t the first term is less than | ,  and then choose 77 such that 
the second term is less than f . Therefore, as 77 —> 0,

У ц Ь Ы  -  l{v))dx  =  /  Jiji'jiur, -  u))dx +  /  Л у  ( u ,  -  u)dx.
JTV

/  \&]{ч{иг,-й))\<1х-+Ъ. .
J U

Note that 7 (й) =  7 (u),. which completes the proof of (2.9).
R em ark  2.2. Since BD(Q) is the completion of BDq(CI) in the weak topology, C°° 

functions are also dense in BD( 12) with the weak topology.
R em ark  2.3. The trace 7 (11) defined by (2.3) is linear and continuous wrt the norm 

in BDo(D)- Also, the trace 7 (11) is weakly-star continuous wrt the intermediate topology. 
But the trace 7 (11) is not weakly-star continuous wrt the weak topology in BDo(Q). The 
measure defined by the weak limit и of a sequence {um} e  BDo(Q) may be concentrated 
along the boundary. So it may happen tha t U € BD (ft) \  BDq(Q,).
2.3. T h e  g en era lized  G reen  fo rm ula

For given и € BD(Q) and a e  E(fl), a product а • A(u) does not make sense in general, 
because а € L°°(ft; E) and A(u) € M (ft; E). In this subsection, the meaning of а • A(u) is 
discussed, and the generalized Green’s formula is recovered.

In S  x BDq, we define а • A(u) as

I а ■ А(и)ф =  j  diver. dx + I a.(u <g) grad</>) dx -  / '•{„(^.^(u^dx 
J si Jsi Jsi JdSl

(2.11)
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for all ф e  С1(й). Since diva e  Lv(p > n), и  e  (fi)L17!, 7M(a) € L°°(dCl) and 
y(u) € L x(dCl), every term on the RHS is meaningful. Furthermore, the product a  • A(u) is 
a bounded measure on Cl based on the following proposition.

P ro p o sitio n  2.5. The product a • A(u) defined by (2.11)is a bounded measure on Cl and 
absolutely continuous with respect to \A(u)\, satisfying

P roof. Let <rm approximate о as in Proposition 2.2 in §2.1. Substituting om in (2.11), 
we have, as m —» oo,

(1) The measure о • A(u) depends continuously on о in the sense that if, asm  —* oo,

Therefore, one can define o.A(u) as a continuous functional on Cl, such that the generalized 
Green’s formula holds (take $ =  1 in (2 .ll))

for all ф E Cx(Cl). The inequality

gives, in the limit,

The conclusion follows from this by a classical argument И .
The bounded measure о • A(u) also satisfies the following
P ro p o sitio n  2.6. Suppose that о € 2(f2) and и € BDq(CI). Then, we have the following

conclusions

divcrm —> diver weakly in Lp(Cl)n, 
<rm о weakly-star in L°°(fl; E),

then, as m  —► oo,

Jn Jsi
(2) The measure o.A{u) depends continuously on и in the sense that if, as m ■-+ oo,

A(um) —> A(u) weakly-star in M(Cl)E,

um u strongly in (Cl)n, 

ЦЛ(адт)|1м(й) 1|Л(м)||м(п),

then, as m —> oo,
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§3. E xistence o f Solutions

3.1. T h e  s ta te m e n t o f  th e  m ain  re su lt
In what follows, we study existence of solutions for both the stress and the strain problems. 

For the stress problem, existence follows from the theory of convex analysis^. For the strain 
problem, existence comes from weak-compactness in the BD(Q) space. As expected, the 
solutions for both problems do form a saddle point for the Lagrange function L(a,u) defined 
on the function spaces £  x В Do.

T h e o re m  3.1. There exists a pair of solutions o* G E(fl) and u* € BD(ti) for the 
variational problems. Moreover, if-y(u*) G then the triplet (a*,\*,u*) forms a
saddle point for L(cr, u) on K\ x Ф С £  x В Do satisfying

L(a, u*) < L(a*, и*) «  A* < L {c \ u), 

and the extremality relation holds

c • divw* =  c* • A(u*) in M(f2), ' '

7„(<r*)• 7 (11*) = 0 a.e. ж G dfl.

The requirement 7 (u*) G Ll {dfl)n guarantees that a generalized Green1 formula holds 
(§2.3). So the duality relation can be achieved. In §3-2, we shall study the duality relation 
and obtain existence of the stress problem. In §3.3, based on a fundamental estimate, we 
derive existence of the strain problem. f
3.2. M in im ax  th e o re m  a n d  ex isten ce  fo r th e  s tre ss  p rob lem  

By Proposition 2.6, we know that the Lagrange function

Ь(а, и) — I o.A(u). .
■ " ' Jn

is a bilinear continuous function defined on E(Q) x BDq{Q). In this subsection, we shall 
prove

inf sup Lia, и) =  max inf L(a, и), (3.1)
« 6 Ф  a£K ■ « 6 Ф

where

+  a.e. x eQ

7(«)i/ < 0, 7 (u)r =  0 on top I  

’ 7 (u)i/ +  pb(u)r\ < 0 on sides)

Using max on the RHS of (3.1) means tha t the supremum is attained for the sup in f. In 
other words, the expression (3.1) gives the existence of the first component a* of the saddle 
point.

To obtain existence for the stress problem, we prove that, for some uq, the function 
о -» L(o, uq) is coercive.

L em m a 3.1. There is a uq € Ф П Сх(й)п such that

lim L(o,uo) = 
creK, H<r||s—►4-00

P ro o f. In deriving the strain problem, we obtained the dual cone of the cone К  in the

-^0 0 . (3 .2)

AT =  j<r G E(fi); ||or*||

Ф =  j  и G BDo(£i)] J  fu d x  = 1
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strain rate space

K* = < A(u) G M(Q;E); — trA(u) > к sup tD.aL> a.e. x € I . (3.3)
■ {  • ; . . J ' A- '

i v.,- _ O. • t. ». О .
We can choose щ  G C(fl)n П Ф П if*, where AT* is the interior of K*. It is obvious that, for 
any <7 € AT, we have L(uo, cr) <  0, and as ||<r|]s  —> oo, the value of Ь(щ, <t) tends to  -oo.

To prove the minimax theorem, weak compactness is required. But the unit ball in both 
BDo(Cl) and LD{Vt) is not weakly compact. We introduce a new function spaqe

. . LDg(Q) =  {«G L \Q )n,€ij{u) e  L 1+S(Q; E)}.

Correspondingly, we define

Ф s =  ФП LDg(Q).

For 6 > 0, the unit ball in LDg(Q) is weakly compact and LD(Cl) = П LDg(Q).
0

P ro p o sitio n  3.1. The perturbed Lagrange function

Lg{a,u) =  L(<r,u) + 5||€1(u)||i+5

possesses at least one saddle point (<г$,и$) on К  x Ф$ c  E(fi) x LDg(Vt), and 

Ls(crg, и}) =  min sup Lg(<r,u) =  max inf Lg(&, u).
«6ФS ffSK , o-eA и€Ф«

P roo f. The function и -» Lg{o,u) is also coercive in the following sense: there is a 
его e К  such tha t

lim L(cr0, ii) =  + 06’. •
ибФ«,||и||х,с4({г)-юо

For each и e  Ф«, the function о —* Ls(cr,u) is concave and upper semi-continuous; for each 
<7 e K, the function и —> Lg(cr, u) is convex and lower semi-continuous. The conclusion 
easily follows from game theory®.

P ro p o sitio n  3.2. The stress problem has at least one solution o*. On К  x Ф c  
E(fi) x LD(fl), we have

inf sup LU7, u) =  max inf L(cr, u). (3.4)
«6Ф ,f£K <Т6А «6Ф

P roof. For fixed <!> > 0, we have from Proposition 3.1

L ^ O + i l l A K J I b + j  <  Х(сг|,«2) +  «||Л(чг*)||1+в ■

.у :  <  L(ol, ti) - f  A («)|ii, ,  Vh K. (3.5)

It follows, from (3.5) that

L(*t,u*s) > L № ) ' V<7 € K, ; -
L((Tg,Ug) > sup L(o,Ug) > inf sup L(<x,u) — 7 . (3.6)

<тек «еФ аек
Setting и — щ  in (3.5), we have

1((7в%ио) +  «||Л(ио)||1+б > Д ^ , ^ )  +  <5||ЛК)||1+в. (3;.7)

Combining with (3.6), the above (3.7) gives

Ь (о1щ )> 1(о1и})-6 \\А (ио)\\ш > 1-Ч М ио)\\1+ 8. (3.8)
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Assume 7 > —00 (when 7 =  —00, the equality (3.4) is obviously true).; Thud, L(crf;Ua) is 
bounded from below when 6 —> 0, and from (3.2),

1Tg is bounded using the norm of E(Q) for 8 —> 0. ‘

There then exists a sequence 8j —> 0 and a* e K  such that 

' ■ ' . ; af. —► <r* weakly in K.

Let 6j —► 0 in (3.5), by (3.6),

L(a*,u) >  limsupjL(cr|,M) >  limsupii(cr|,M |) > 7, Vu € Ф.
6j—►() 6j-r*Q

This gives , . .

7 <  inf L(a*,u) < sup inf L(a,u), ...
«6Ф e£K

and the conclusion follows.
Note that 1>D(Q) and BD 0(Q,)have the same norm, and LD(fl) functions are dense in 

BD q(Q) in the weak topology. As a result, we have the following conclusion, ,
C o ro lla ry  3.1. The stress problem has at least one solution a*. On К  x Ф C S(fl) x 

BDq{Vl), we have ..

inf sup L(o,v) =  max inf L(o,u).
«еФ ' v стек «еФ ' i

3.3. E x istence  for th e  s tra in  p ro b lem  a n d  th e  exitrem ality re la tio n  
We recall the strain problem

inf j  divudx : и E К* П ф | , ’ (3.9)

where K* is the dual cone of A-, defined by (3.3). Suppose that {uk} is the minimizing 
sequence of (3.9) in the space LD (LI). We shall prove that {um} is uniformly bounded in 
the norm topology of LD{f2). But we cannot expect to obtain solutions in LD(n) in general, 
since a bounded set in LD{fi) is not weakly compact. We can take {% }  as elements in 
BD(Q) in which a bounded set is weakly compact. Then existence of the strain problem in 
BD(Ct) follows. When the solution u* belongs to BDq(Q,), the duality relation is proved. , 

L em m a 3.2. Suppose that и G LD(Q), andj(u) is the trace on the boundary. Then

is a continuous seminprm in LD(Q,)., which is a norm on the set of rigid motipn , ;

■■■:’ . .. . ^  =  {u: f .. . , Л

In other words, the equation q(u) = 0 and и  € Ш тр1$  гг= 0/ In fact, 3i is a fi'-dimensibnal 
space in which only rotation and translation are allowed. The equation q(u) =  0 restricts 
the rigid motion and u = 0 follows.

When q(u) =  0, we can obtain a  Poincare inequality ь' . s

IMki(fi)" <  c '5 ^ |l ey (w)IUi -

In general, the т б г т  m the space LD{Q) is equivalent to м ' ^

, I 9(«) +  5 ] lk i j (w)IUi - ' X . ’ X  , , .
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Together with Proposition 1.1, we obtain the following result.
P ro p o sitio n  3.3. Suppose that {uk} G LD(ti) is the minimizing sequence of (3.9).Then, 

there exists a constant N  > 0 such that

||Wfc||iD(n) < N.

Moreover there exists at least one solution of the strain problem in BD(Cl).
For the second part of Proposition 3.6, we take un as elements in BDfyl), and then extract 

a subsequence, still denoted by un, such that

um -*u* strongly in L1(f2), 

divum * divu* weakly-star in M(£l),
|A'D(um)| —» |AD(u*)| weakly-star in M(Q), (3.10)

7 (um) —> 7 (u*) weakly-star in

The convergence of 7 (um) follows from Proposition 2.3 in §2.2.2. Since c divu dx is con
tinuous with respect to (3.10), function u* is the solution of the strain problem.

When u* G BDo(Cl), the generalized Green formula holds. In this case, the duality 
relation can be proved.

P ro p o sitio n  3.4. I f  7 (u*) G Lx(dQ.) , then the triplet (cr*,A*,u*) forms a saddle point 
for L(o, u) on К  x Ф С E x BDq satisfying

L(a,u*) <  L{o*,u*) =  A* < L(cr*,v,), 

and the extremality relation holds

cdivu* =  cr* • A(u*) in 

Au(o*) ■ A(u*) =  0 a.e. x e  dfl.

sup
<j €K

L(<T,u) =  I

P roof. To prove the extremality relation, we need to check that, for any и G Ф,
c fa divu if it G K*,
+00 if и £ К*,

and for any cr G К ,

. . r /  ' v " f A if ^  G Ф =  Ua>0®A)
«6Ф ( —OO if £7 ^  Ф.

When и and a are nice functions and dfl is smooth, we derived these formula in §1.4 and §1.5. 
Working on the generalized function spaces E(fi) and BDo(Q), we need an approximation 
procedure to reproduce the results^17, 141. We do not carry out the calculation here. After 
proving these results, we have, on the saddle point (cr*,u*),

: [  divu* =  L(<r*,u*) =  A*.
Jo.

This gives the extremality relations. The first part of the proposition follows from Corollary
3.1.
3.4. D iscon tinu ities o f  th e  velocity  field

Both the stresses and velocity in our problems can be discontinuous. It was known!1 ̂  that 
a jump discontinuity of the stresses does not make a contribution to the energy dissipation 
rate but a jump discontinuity of the velocities does. So when we study the strain problem,
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it is an important issue to know, how to handle discontinuities of velocity inside О as well 
as along the boundary. This has been done in the previous sections. Here, we just want 
to observe a different feature between velocity discontinuities for pressure-insensitive and 
pressure-sensitive materials.

For pressure-insensitive materials, it follows from the flow rule that the material is in
compressible. As a result, the normal component им  of the velocity is continuous across the 
surface of velocity discontinuity. But pressure-sensitive materials are compressible, so the 
tangential discontinuity is accompanied by a  normal discontinuity in general. We elaborate 
on this point in the following.

Before proceeding, we mention the basic fact that, on a surface of a velocity discontinuity, 
the stress components are continuous^11!. In fact, on a surface of velocity discontinuity, the 
relations that the stress components satisfy are determined by the flow rule. By contrast, 
the relation that the stress components;Satisfy across a stress discontinuity is determined 
by the equilibrium equations, diver =  Ag.

Suppose that и is the collapse solution of the strain problem and a is the corresponding 
stress tensor. Also assume that the discontinuity of и happens on a surface C which separates 
f! into ill  and SI2, and a is continuous on C. Then, by Proposition 3.4,

c / divu =  / cr.A(u) =  /  cr.diVcr dx 
Jfi * ’, J

=  /  . a.A(u)dx + a.J(\v\)ds, ;
*/ojUiQ2 ' J

where v is the unit vector normal to £  from ill to O2, the jump [и] =  (uq1 — un2) |£ and J  
is given by (2,2). By the extremality relation, we have ;

c / divu =  c /
J J O]

and e(u), J([u\) G K*, tha t is

divu >  к sup aD.eD(u), [и]м > к sup aD. J D([u}).
/(<т°)=1 /(<r°)= 1

So the normal component of the velocity suffers discontinuity.
In our case, since [u]m  > 0, abrupt thickening could happen along the slip surface. 

The “thickness” of the slip surface depends on the magnitude of the discontinuity., This 
observation could be helpful in studying the formation of shear bands in the region of 
plastic deformation.

divu dx
' O1UO2

— c J [u} M ds,

§4. E xplicit Solutions and A sym ptotic Analysis

4.1. The case of radial gravity
Consider radial gravity in two dimensions. Assume that the wall of the hopper is smooth 

(see (1.1)) and the yield condition is given by’ (1.4). In this event, solutions of both the stress 
and the strain problems can be obtained explicitly, and the largest multiplier A* (subscript 
r is mnemonic for “radial”) can be.expressed in terms of the top and bottom radius and the 
parameters of the material. ; >
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For the stress problem, we rewrite the equilibrium equations in polar coordinates. On
the region il== [го,Д] x [—00, 0o]>

(a) дтагт + г~1де<тгв + г - 1(<тгг -age) -  -A ,

(b) drarg + г^ддадд +  Ъг~хсггв =  0 
and the boundary conditions become

(4-1)

<7r r lr=ro “  are\r=ro -  агв\в=±во ~  ° ’
0ГГ|г_Д > 0, <J$$ 9=±e0 > 0.

The yield condition is

^  2 (<Ггг ^ вв)2 +  2 < к ((Trr + vee . \
“ Г "  + c) -

(4.2)

(4.3)

Suppose tha t a rg = 0 and crgg > <rrr  (we will check later that the solution we find satisfies 
these conditions). From the extreme case of the yield condition, we have

V 2 + k 2 kc
(Гвв •Orr ~by/2  - k  Tr ' y/2  - k  

Substituting (4.4) and crrg =  0 in (4.1(a)), we obtain
2 kc

M-4)

я  2KTOfCXrr - — 1 ( J *7“ =  —A r.
л/2  — к ' y/2 - k

Solving this equation with the initial data 0Vr|r_ro =  0, we have
f  . . _2fc

c
(Tfj* ^ (4.5)

c ( ± - 0 - Ar l nf ,\  Щ /  Го’
The condition &rr\r_R > 0 gives

k = f .

A =  <

J L ) v d r ( i _ (jl -7§bi)
r i/2-3fc .  ̂ V  >c v^_fc / 3fc—л/2 \ ’ KZF Л ’( , 4 3fc-v̂ 2\

r o ( l - ( ^ ) ^ J (4.6)

Zb1- *In ’ r0
The fact that arr > 0 (easy to check) and (4.4) give agg > aTr. So A in (4.6) provides a 
lower bound of the limit load. ■

For the strain problem, we rewrite it in the following equivalent form.

{c fd ivu d x  u e K * ,u 0 < 0 on the sides)

f  fu  dx ur < 0, ug =  0 on the top J

Let («,
f  _ v|±* \

-,йд) =  ( —r ^ - k , 0 ) .  It iis not difficult to check that

~ cffidivudx  
fn fu d x  ‘

The upper bound-found from the strain problem is equal to the lower bound found from the 
stress problem. Therefore, a pair of solutions of our variational problems are found and the 
limit load A* is given by (4.6).
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In terms of the formula (4.6), we can obtain the following asymptotic behavior of A* with 
respect to Д, as R  —► oo,

A* ~'V
c y/2 — ЗА: 

ro y/2

1

-ЗА; /Д А
- к  \ r 0)

3fe-у/2 
v/2—fc

л; — ,r 0  I n  Л

с ЗА: — у/2

к<

к

к >

й
3 ’

/ 2
3 ’

V2
г r-о у / 2 - к ’

Also it is easy to check that, as Д —► oo, the limit load A* is monotone increasing and 
converges uniformly with respect to к in the interval [0, уД —S] (8 >0) to the function

h(k) =  <
0,

c t 3fc-V2
r0 ‘ s/2-k  ’

k < ^ ,

k > &

iJote that к is the internal friction of the material. Physically, in this specific model, only 
when this value is greater than к > can the hopper support material with infinite height.

Now we calculate the maximal stress attained inside the hopper. In fact, the relation 
between the maximal stress in the material and the height Д of the hopper gives us informa
tion about how strong we should make the hopper. Using the explicit solution found above, 
we obtain, as R  -* oo,

2 if
y/2  -  A:\ (y /2  -  k )(y /2  +■*) /  Д  А ^

2k  J  ( y / 2 - к ) 2 V o )
if к < y/2

3 ’

( ^ ) m e i  ~  g
R  y/2 -}■ к 

r0 l n ^  у Д - к

) 2k
(ЗА: -  у/ 2 ) ( уД  + к) /  ДА 

(у /2 -к )2 \го )

if А: =
у/2 
3 ’

if к > V 2

4.2. The case of vertical gravity
When the gravity is vertical, explicit solutions cannot be found. But we still can ob

tain a lower bound from the stress problem and a upper bound from the strain problem. 
Asymptotically, the limit load in the vertical case possesses the same properties as that in 
the radial case.

In the vertical case, the forcing term in the equilibrium equations (4.1) is replaced by 
(—Acos0, Asin в). When choosing arg =  0 and solving the equations with the condition 
o y j = 0, we obtainT r l r = r 0 ’ ,

(гвв =  / ( r )  -  Ar cos0,

<Trr =  -  /  f ( r ) d r -  A (r2 - rg) cos0, (4.7)
Г Jrо

where f(r)  is an arbitrary function of r. Suppose oee >  o>r, then the yield condition (4.3)
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implies

/ ( r ) - A r c o . < » - ^ ± | . i  [ £ / M r f r - A ( r 2 - r ? ) o » « ]  < - J ^ .

To get a lower bound, it is sufficient to choose / ( r )  such that f(r). satisfies the equation

r / ( r )  -  v s r *  L f(T) + Ж ^ ~ к (r  " r °> - Лг» cos 190 =  7 П r>
where 90 is the open angle of the hopper. Solving this equation and then substituting / ( r )  
in (4.7), we obtain expressions for arr and <твв- Using crr^| _ > 0, we get a lower bound of

/ v fA* (the subscript v is mnemonic for “vertical”); for к ф
3 ’

■ . 3kr~\/2 /  . . , . ,
-0  ( 5 ) ^  ( l  - ( | )

A! > A =

2k . y/2-k

y/2-k
y/2-Зк

3fc —y/2 \ , _2 / ya-Hie>/2-}-fe y/2 —fc

To complete our analysis, the reader can check that age > 0>г) and that a satisfies the 
remainder of the boundary conditions.

To derive an upper bound* we use the same и as was used in the radial case,

у  < c fsi div u dx вр 
V~ Ia u' f ^ x  r sin0o ’

where A* (4.6) is the limit load obtained in the radial case. From the lower and upper bound 
of A*, we conclude that

A*
V

3 k-y/2

©  ~
if к < уД

a:  ~  о
l n £

4 ro J

К  ~  o ( i )

if к ==

if к >

уД
3 ’ 

уД

So, the limit load A* in the vertical case has the same asymptotic behavior as that in the 
radial case.
4.3. A linearly ill-posed free boundary problem

In the previous sections, we thought of the bottom boundary being fixed. Now we take 
the bottom boundary as a free boundary and thus it should be determined as a part of 
solution. Physically, we want to find maximal stable arches in the hopper.
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Suppose that the material deforms plastically everywhere. Using the yield condition to 
replace one variable, the equilibrium equations are reduced to a 2 x 2 hyperbolic system. 
Take the traction-free condition on the bottom as initial data, and tangential traction-free 
(the wall is smooth) on the sides as a boundary condition. One extra condition on the top, 
normal traction-free, is used to determine the largest multiplier as well as the shape of the 
free boundary.

When gravity is radial, we find such a solution (§4.1). When gravity is perturbed away 
from the radial direction, we try  to use the Nash-Moser Implicit Function Theorem to solve 
this problem. The linearization of the equation near the radial solution can be written, on 
[0,T] x [0,L], as

С И *  И М ' И П
subject to a boundary condition v |x_0 L =  0 and initial conditions

u(x, 0) =  -ah(x), v(x) = h'(x),

where 0 <  s <  1 (s = -j=), the number a  is positive, the function f(t)  is known and related 
to the radial solution, and h(x) is essentially the shape of the bottom boundary. In order to 
use the Nash-Moser Theorem, we need to investigate the mapping

M  : h(x) -* u(x, T) =  g(x).

Using Fourier Series, we can solve the linearized problem,

pt i  о  fL f  1 °°
u(x,t) — I ( A - A  f(r)dT  ~ — / ■< a e 1-**-K'V' a

Jo L J o {  n = 1 _
' cosh (^nt)

+ a  -  2s j ^  _ 1- ^ ~  sinh(/3nt) cos cos J h(Q d£, (4.8)

where

a _  /  1 l  + s fnir\2Pn V (! -  02 1 -  8 \ L ) •
For the mapping M, it is easy to see tha t the following estimate holds

1Ы1я*>[0,Ь] < C (ll/lllHfc+2[0,L] +  ||/Ця°[0,Г]) • 

Now, we look at the inverse map M ~l . Substituting
oo *

Co ,HO = ТГ + У1 cnCOS

n= 1

in (4.8), and calculating the coefficients, we obtain

Hx) = JQ e_ ^ T/ ( r ) d r -  2̂ e~ ^ T Jo в(0<%2a

+ E
n- 1  L

, L2a  — 2s(rwr)2 . . 4
a cosh(/3ni) +  _  smH M

/%(£)Jo
ГМГ £  , * П7Г X

cos —7— at cos - г - . L L
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C o n jec tu re . For any 7 > 0, the-set

liminf v?1 I -jn-r+QO
. ' .л  L2oc — 2s(nir)2 . , 7 - . 

a cosh((3nt) + ^  _  s}L2p '  smh(/?nt)

is dense in M.
This is fundamentally a conjecture in Number Theory. < -
Note tha t term in brackets appears in the denominator. If this conjecture is true, then, 

generically, the function h is unbounded no m atter how smooth g is. In.fact, the coefficients 
of high mode terms in the Fourier Series cannot be controlled unless g(x) only contains finite 
modes. So.theinversem ap M ^1 is not continuous at g =  0 in any reasonable topology. In 
this sense, this problem is not linearly well-posed.
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