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ON THE NONLINEAR BOUNDARY
STABILIZATION OF THE WAVE EQUATION

ViLMos KOMORNIK* -

Abstract .
The author studies the energy decay rate for the wave equatlon na bounded domam under-
~ weak growth assumptions on the feedback function and, applying an integral inequality well
adapted to this type of problems, improves some earlier results of Zuazua and of Rao ans
Conrad.

7

. §1. Introduction and Statement of the Results

Let Q be a bounded open set in JR™ having a boundary T of class C2. We shall denote
by v the outward unit normal vector to I' . Fix a point ¢ € R", set ’

-~ m(z) :== 2z — o, x € R", : (1.1)
and fix an open subset I'_ of I" such that setting I'y = I'\I'- we have .
m-v20 onT; andm:»<0 onT_. L (1Y)

Letg: R Rbea non-decreasmg continuous function such that g(0) = 0, let a be a
nonnegatlve number and consider the followmg feedback system: S ‘

W -Au=0@ Q@xRy, (13

u=0 on“I‘_xR+, IR RN - (1.4)

| gy-+(m u)(au+g(u))-0 on I‘+ xR_I_,. | | l:(1.5)'
w(0) = and W(0)=u; in Q o - (16),

ThlS System is well-posd in the followmg sense (ef. [2,13]): mtroducmg the- Hllbert space
|4 by , : . :
V= {vEHl(Q) v=0 onI‘},
for every (uo,'u,l) €V x L2(Q) ‘the system (1.3)-(1.6) has a umque solutlon u satlsfymg
L _ C(Ry;V) ﬂCl(R+,L2(Q)), .
furthermore its energy E JRy— R, defined by

g feremipis g [ ot
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is non-increasing,
Let us assume in the sequel that

- either I #0 or >0 - (1.8)
and that , .
inf(m -v)>0. (1.9)

We shall prove the following result.

Theorem 1.1. Assume (1.2), (1.8), (1. 9) and assume that there exist p € [1,+00) and.

two pos1t1ve constants C1,C2 such tha.t ‘

cl|a:|p < lg(=)| < N A 1f|ar:| <1 (110
and ‘ |
alz| < |g(z)| < colz| if |2} > 1. (1.11)
Then for every (up,u;) € V x.L%(Q) the solution of (1.3)-(1.6) satisfies the energy estimates
L _E(t)<CtTH, Wt>0 ifp>1 C(112)
and |
E(t) < E(0) exp(1 — %), VE>0 ifp=1, (1.13)

where in (1.12) the constant C depends only on the initial energy E(0) in a continuous way,
while in (1.13) the constant C is independent of the initial data.

- The linear case-for p = 1 was studied earlier for example by Quinn and Russell(*¥], Chen!!,
Zuazua. Lagness and the author in [6,7,3]. Strong stabilization results were obtained before.
by Lasiecka in [8]. The first nonlinear uniform stabilization results of this type are due to
Zuazuall3l; he needed stronger growth assumptions on g (he needed the exponent 1 instead
of 1/p in (1.10) and he assumed that o is not too large. His results were improved in different
ways at the same time by Conrad and Raol?! and by Lasiecka and“Tata,ru[gl. Lasiecka and
Tataru studied a more general system:containing a nonlinear term in the equation (1.3) and
also replacing au by a nonlinear term f1( ) (at the price of using a compactness argument
which did not lead to explicit estlmates) Conrad and Rao extended the results of Zuazua
in two directions. First, they obtained analogous estimates for the alternative case where g
satisfies (1.10) with p replaced by 1 on the left hand side. Furthermore, using a new multiplier
they extended all results for large o in both cases (i.e., if either of the two exponents in (1.10)
is replaced by 1). Their method i is constructive. Our condltlon (1.10) is even weaker and
we conjecture that it is optlmal

It follows from'(1.2) and (19) that Ty NT_ # 0; if & is not too large, then (1.9) may be
replaced by this last condition (because (1.9) will be used only in the proof of Lamma 2.4.
and this lemma is not necessary for small o), and this weaker condition can also be relaxed
if n < 3 (cf. Rmark 2.1 below). We do not know whether the theorem remains valid in the
general case without the condition (1.9).

Our next result shows that the condition (1.11) may be weakened if the solution is more
regular.
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Theorem 1.2. Assume again (1.2), (1.8) and (1.9),and assume:that g is also locally ab-
solutely continuous.. Furthermore, assume that there exist three numbers po € [1;+00), ¢ €
(1,400), r € [0,1] and two positive constants c; and cz such that -

cilzlP* < |g(z)| < eola)/P if x| < 1, (1.14)

c1|$|r<|9($)|<02|$lq 1f|93|>1 , (1.15)
q<—’i§ 1fn>2 (1.16)

and E
q<+oo ifn=2 ' (1.17)

Let us choose p € [po,+00) such that =~ .

p—12m—-2)(1-r) ifn>2, .. - .(L18)
" 2p Z-n+<é—;—7g ifg>1 (1.19)
Gt p>lifn=2andr<l. te 0t (120)

Then for every (uo,u1) eH 2(SZ) x HY(Q2) satmfymg
' ' uo = u1 0 on F...
and
AT Bup -,

B
the solution of (1.3)—(1.6) satisfies the energy est1mates (1 12) and (1.13) with some constant

o dependmg on the initial data. ‘

If r = 0, then (1.18) is satisfied for a sufficiently large p; hence this theorem permits
to obtain decay rate estimates if the feedback is défined with a bounded function g. The
possibility of a result of this type was conjectured by F. Conrad (prlvate communication).

The proof of the above theorems will be based on an integral inequality proved in [5].
More precisely, we shall use the following particular case of [4 Theorem 2. 1):

Theorem 1.3. Let F : R+ — Ry be a decreaSmg function, and assume- that there exist
a nonnegative number o and a positive _number A such that

+ (m V)(auo + g(ul)) = 0 on I‘+, )

| / ~ Bo+ids < AE() frallt>0. (1.21)
Then, putting t '
- T:=AE@0)™%, . . . (1.22)
we have | |
soson (B s 0w
ifa>0 and ) ’
E(t) < E(0)exp (1 - %) forallt>T - ' - - (1.23)

ifa=0.
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We shall also use some of the former ideas of Conrad, Nakao, Rao and Zuazua {213,

" The author is grateful to F. Conrad, M. Pierre and B. Rao for fruitful discussions and to
F. Conrad and the referee for pointing out to some errors in the first version of this paper.

§2. Proof of 'Theor'em 1.1
. Usmg a standard dens1ty argument as in [13] we may assume without loss of generahty
that the initial data belong to (V N H?(Q)) x V and that

0
auo + (m-v)(auo +g(u1)) =0 .on Ty, .
~ then the solution of (1.3)-(1.6) satlsﬁes
| u€ WAS(Ry; LA@) WY °°(n+,V) A L®(Ry; H(Q)) (2.)

~ * (we need for this the property 'y NT_ # @ following from (1.2) and (1.9), cf. [13]). These
regularity properties are sufficient to justify all the computations which follow. '

“We begin by establishing two identities. They will be obtained by multiplying the equation
(1.3) with ' and 2m - V + (n — 1)u, respectively, and by integrating by parts in Q x (S, T)
where (T, S) is an arbitrarily fixed bounded interval in IR..

Lemma 2.1. The function E : R, - IR+ is non-increasing, locally absolutely continuous
and ' ' ’

/ (m - u)ug(u')dI‘ a.e. in B.|. - (2-'2)

Proof F1x1ng 0< S < T <00 arbltranly, we have the equahty

/ / u” Au)da:dt
=/ / ’”+Vu V' da:dt—/ /r+u—dI‘dt :
/ /u’ "+Vu V! da:dt+/ / (m- u)(au+g( ))u det .

- whence . , : :
| | . -
B(S) - E(T) = /S /F (m - v)u'g(u') dTdt (23)

Since (m-v) > 0on F+ and since zg(z) > 0,V € IR, the right hand side of (2.3) is
nonnegatlve, hence E is non-increasing. It follows also from (2.3) that F is locally absolutely
continuous and that (2.2) is satisfied. ‘

. Lemma 2.2. Putting for‘brewty _
Mu=2m-Vu+ (n-1)u (2.4)
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.foraIIO<S<T<oowehave S o
/ Bt - / u)‘ (g%)z ars
= [E"‘ / 'Muda:] +E- / E*TE / 'Muda:dt
+ fg E = /1; (m - v){(u')? - |Vul® + auz_.f (au+ g(u'))M u}dldt. (25)
Proof. We have ' ' | | S
0= ;/ST E% dt - /ﬂ (Mu)(u" - Au)damﬁL

T _ T _
= [ELF / u’Muda:] —?L—l / EEE f o Mudzdt
S Q L L
/ f o' Mu/ +(Mu)(Au)d:vdt e

Integrating by parts and using the relation divim = n we may transform the internal
integral in the last term as follows:

/ u' M/ +(Mu)(Au)da:
Q . ‘
/m V(') + (n - 1)(«')? - Vu- V(Mu)da:+/(Mu)
=/ m-V(u')? +(n-1)(u)? - 2|Vu|2 —m - V|Vul? - (n - 1)|Vu|?dz + f(Mu)gEdF
~ /"(u’)2 + |Vu|?dz +/ (m - v)((«')? — |Vul?) + (Mu)-g—:de‘
Q Jr

- / (W) +|VuPds + / -(m.u)|w|2+(2m-vu)gl:-dr
I‘

+ [ tm 0 = 190 - () g DY
Smce (1.4) 1mp11es that Vu = V-B—V on 1".., we conclude, usmg also (1. 7), that

/ﬂu’Mu +(1\4u)(Au)dz

' ' ou
=28+ | (my) (a) @
f (m ){(')? = [Vl + 0 = (Mu)(ou -+ g(u)}dr-

Substltutmg this expression into (2.6) the lemma follows.
- Lemma 2.3, We have e
/ o Mudz

Q

(Here and in the sequel we denote by ¢ diverse constants independent of the choice of (ug, u;)
and of t). -

<cE. - : 2.7
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Proof. It follows from (1.8) that the function

o (/n ot b o V)ﬁzdr)~1/2 |

is a norm on V/, equivalent to that defined by H((). Here (2.7) follows by applying the
Cauchy-Schwarz inequality. ' -

Now let us first assume that a = 0. Using Lemmas 2.2, 2.3 and taking into account that
(m-v) <0onTI_, we obtain the inequality .

T
2/ E& g

T
<cE™(8) + B (T) - / 2 s
+ / / (- u){(u')2 |Vu|2 g(u’)(2m Vu+(n 1) hara:.

<cE™ (S)+/ / (m- V){(u')2+|mlzg(u) + ¢u? +( " ) g(u’)z}dI‘dt

where ¢ is an arbitrarily fixed positive number (we also used the decreasmg property of E).
Choosing € such that :

(m v)u’dl <.E
ry

- and taking into account that |m|2 is bounded in Q (because Q is bounded )s hence we
conclude that

/TE'%L—ldt < cEEéi{S) + c/T EP_El / (m- 1/){(11,')12 + g(u')?}dldt. ‘. | (2.8)
s A

(In view of (1. 7), (1.8) & may be chosen independently of u). Now we are gomg to show that
(2.8) hold in case a > 0, too. Repeating the computations now we have

T
2/ EH dt
S

T
<cE"3 (S)+ cE (T) - ¢ / E*T E'dt
S

/ / (m 1/){( ')2 |Vu|2 + au? — (au + g(u’))(2m Vu + (n —1)u)} dl'dt

- .
S/s E* ? (mju){(u) + au? +|m| (au+g(u’))2+(1—n)au +(1 n)ug(u’)}dI‘dt

+cEfF (S)

<cE™F (S)'+ c/T B% A (m - v){(')? ;1-g(u’)’2 +u?}dldt,
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ie.,
T o Bl T e '
2 / ETdt<cE= (S)+c / E% / (m - ){(W')? +g(u')? +u®}dldt.  (2.9)
s s T4

In order to deduce (2.8) from (2.9) we need the following lemma:

Lemma 2.4. There exists a constant c such that for every ¢ € (0, 1) we have

T | ’ T
/ E® | (m-v)u?dldt < cE™ (S) +e¢ / ES dt
S I‘+' ; ) . .JS .
T . "
+e /S E% /r (m - v){jug(@)| + e~*(u')2}dTds. (2.10)
s © 0, -

Proof. We apply a method introduced by Conrad and Rao in [2]. we define p € H'(Q)
by : ' ' I .

Ap=0inQ andp=u onrl.

It follows from the standard variational theory of elliptic equations (using also (1.9)) that.

| /(pz Sc/ (m - v)u2dl < cE S (2.11)
e Jry v
‘and applying the Green formula we also have ‘ ‘
a .
[ Vo= oz = - [ @o)u—gho+ [ Fu-p)ir=0
1] Q ' r ov
whence _ A
/ Vo - Vudz =/ Vol?dz >0. _ (2.12)
Since ¢’ satisfies a system analogous to that of defining ¢, we have also the estimate
/((,o’)2 < c/ (m - v)(«')?dT. | _ (2.13)
Q P+ ' » . - i
Now multiplying (1.3) with E 25—1<p and integrating by part bwe obtain the equality

T~ -
0 =2 / E™ / o(u" — Au)dzdt
S Q
T

p-l ! p_l T p=3 ! ,4
=[E2 /tpudm] —-—2—/ EZE/tpud:cdt
Q s s Q-
TEE;—I 71 T p=1 ou _
- (¢'v' — Vo - Vu) dzdt - E™=2 w—dl'dt

p=1 ! T p—'l T =3 '] ]
=|E"Z pudr| —~— E7TE [ pudzdt
Q s 2 Js Q ‘

__/ E’%l/ (p'v — Vi Vu) dmdt+/ E’%'/ (m - v)u(au + g(u'))dT'dt.
- s Q ' s Ty
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Usmg (2. 11) (2.13) hence we conclude that

: a/ E% (m v)u? dl'dt

/ E™ / (m - v)ug(u') dl'dt + / f o'u'dzdt
/ B R f <pu'd:z:dt+ [E " / (,ou’da:]
L S

</ / (m- V)lug('u,')|dl"dt+cE ) (S)+cE (T)

f / (as (W) + (so’)z) dzdt — ¢ /S B Edt

< / / (m - u)|ug(u’)|dI‘dt+cE (S)

+ae/ E™ dt+——/ | (m- V)(u’)zdI‘dt
I‘+

‘Hence (2.10) follows. ' o ‘
~ Using the inequality :

C|U9(u')| < u + —g(u )
we deduce from (2.10) the estimate

T
/ E% [ (m.v)u?drds
s ry -

o T ' T
<cE*F (S)+ 25/ EX dt + c/ (m-v) ( () + g(u’)z) dr'dt.
' s s I'y

Chobsing ¢ sufficiently small and combining with (2.9) hence (2.8) follows.
 Now we, are going to majorize the last integral in (2.8). We set .

={zely:|uv (a:)| < 1} and Pz = {a: € I‘+ |u’(a:)| > 1} (2.14)
Usmg (1.11) and (2 2) we obtain that '

/ / (m - V)Y{()? + g(u)?} dTdt < —c / B Bdt < B (S) (2.15)
Furthermore, using (1.10) we have

/ (m-){(W)? + g} dr < c / (m- v)(Wg))FHrdT

<c(/ (m - V)ug ')dI‘) gk < o(—E')7H |

and hence, applying the Young mequahty, for any € >0 we have

/ E—"—‘f (m V){(u')2+g(u’)2}d]_‘dt<—c/ E ( E') +1dt .
. S/: (eE Z —c(e)E’) dt .<'_€‘/:'1E.2 dt'+c(e)E(,s'),'-: - -



No.2-- - Vilmos Komornik STABLIZATION OF WAVE EQUATION 161

Combining (2.8);(2.15) and (2.16) we conclude that .-

T T '
/ E™ dt < cE™(9) + ec/ E dt+ c(e)E(S).
S S :

Choosing ¢ sufficiently small (such that ec.< 1) it follows that

[ Btasarte s, em
S -

Since E is non-incerasing and since 2+l > 1. we deduce from (2.17) that’

T o
/ E*tldt < AE(S) forall0 S S<T<+oo

with o := P—— and A := c(1+ E(0)%). Lettmg T— +oo we. obtaan (1 21), and Theorem 1.1
follows by applylng Theorem 1.3. .

. Remark:2.1. The:conditions (1.2) and (1.9) are saJtisﬁed if Q) is star-shaped-with respect
to zo or more generally, if it is the set-theoretical difference of two such. ddma,ins”ha}ving&
disjoint boundaries, but otherwise they represent a strict geometnc assumption on 2. For
n < 3 and for small o Theorem 1.1 remains valid without the assumptlon (1.9): this can
be shown by the methods of [3, 6] or [13], applying an inequality due to Grisvard. It is an
open question whether Theorem 1.1 remains always valid w1thout the assumptlon (1. 9)

;§:3.' Proof of Theorem 1.2

It follows from our assumptions that u satisfies the regularity property (2. 1); this will
be sufficient to justify the computations of this section. (We remark that contra,ry to the
preceeding section some constants below will not depend only on the initial energy ‘of u and

.. therefore our result will not extend by density to more general mltral data). -

Consider first the case o = 0. 1ntroduc1ng I'; and I‘z by (2 14), we deduce from Lemmas
2.2 and 2.3 the following inquality: '

/ B d <cB™H (5) + / f m.- V){('u,')2 |Vu|2 o )Mu}dI‘dt
<cE*(8) + ¢ / / —, )2+g(u')2}dl"dt |
fe / % [ mon)y + IMulg)dres.

Ma;onzmg the first integral on the rlght hand s1de in the same way as in section 2, i.e.,
applying (2.16) with a sufficiently small ¢, we obtain that - ‘ :

\.'.4: A

/ B di < cBF () 4 cB(S) +e [ BT [ (m-v){() + Mullg)}dlt. (33)
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Now consider the case a > 0. We have -

T
2 / E= dt
S :

<cE™ (5)+ /S " g /r (m - V){(W)? = |Vl + ou? — (ou + g(u'))Mu} dTdt
T . '
<cE®*(S) +¢ / E™ ‘/r‘ (m-u){(u’)2+g(u’)2+y2}d1"dt

+e s [ menwr e+ @) [Mul}ardt.
S Y

Applying Lemma 2.4 with a sufficiently small £ > 0 hence we deduce the inequality

T T
2/5 E*F dt ScEﬂzi(S)-}-c/S E%I/P (m - v){(u")? + g(u')? + |ug(u")|} dTdt
T _ ’ o
ve [ B [ mou) ) + 1o (ul+ 1Vu)}ares

Using (1.7) and (2.13), for any fixed ¢ > 0 the first integral on the right hand side is
majorized as follows: : : .

[ 5% [ e @ + oG + gt v
< / = [ meni) 4 +ele)g(u')?}dTdt
2 [ s / / (@ + a7}

(0]

<= f B dt + () E(S);
S

choosing ¢ such that 2 <2, hence we 'conclude that

/ E%—dt <cE™* (S) +cE(S)

e / B / (m- () + lo(u)(ul + [V} dCdt. (3.2)

Let us observe that (3.1) implies (3.2), too; hence (3.2) is satisfied for any a > 0. Now we
are going to prove for any ¢ > 0 the estimates

e / (m - v)(W)?dT < B — c(e)B - (33)
r, :
and ~ : .
o /F (m-)lo(@)|(ul + [Vul dT < BF — c(e)B'. (3.9

Then the theorem will follow. Indeed, choosing ¢ sufficiently small, we deduce from (3.2)-
(3.4) the estimate (2.14) and then the proof may be completed in the same way as that of
Theorem 1.1.

In the sequel we write for brevity || ||s instead of | s -
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First we prove (3.3) and (3.4) for n = 1. Observe that.(1.14) and the increasing property
of g imply that inf{|g(x)| : |z| > 1} > 0. Hence, usmg also (2.1),.(2.2) and applying the
trace theorem (V C)H(R) «— L*(T') we have '

E* (m u)(u’)zdI‘ <cEL/ (m-v) |u’|u g( )
<CE™ o ~E') < —cE
and o R
5% [ (m -9l + Vuhar
<eB"% [ lg)ldluls <o [ olo)dr < ~cB'

In what follows we assume that n > 2 Fxrst we prove (3 3) We begin by showmg for a any ;
given s € (0,1) and ¢ € (0,1) the inequality - :

Zo(rdl)s - . Celp b
% [ (m- u)(u')zdr<eEfﬁl 7ot ~ " @5
Indeed, we have |

g (u')2drch"€—*“ ,Iu’lz“("*”’Iu’g(U’)I“’dF

JTg .
<cE™F |||u|* (’”“"’Ih/u s)lllu 9w llijs = —cE2 ol ] g(fi“f,l"ll w'g(u)ll§
2—gr+1)a ’

=cE"T ||u'|| % §r121223( E')8<sm'm I a={ine = B

If r < 1, then we choose s = 2 7 (it follows from (1.18) and (1.20) that p > 1). Using
(1.18) and applymg the trace theorem we have

ot

L H) o I =) = L ),
Usmg also (2 1) hence we conclude from (3 5) that
E= | (m-v)(u 'Y2dr < <cER —c(e)E

_ T,
which proves (3.3) (Wlth another ¢).
If » = 1, then we have simply

. E% (m v)(4)?dT <cE"? / (m - V)ug(u)dl‘< cE’

2

Turning to the croof of (3. 4) we start with the mequahty
B / (m - )lg(@)| ()] + IVu)dT

B 19110 (ullsa + IVlsa) |
 <ZcET ("u“1+q + [[Vull+q) | (w'g (v ))m”nq-l -
| .,__'<CE Z (“U“1+q+”V“”1+q)( E’)m”T
<e B (July g+ [ Vlg) ™ - d(OF.
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Hence (3 4) will be proved if we show that

: L+ Lo ' : .
B (g + [Vullig) ¥ < cBF - @9
By the trace theorem we have o ,
lleall14q + IIVU|I1+q < clullmsy, (3.7)
where 3 is defined by -
' n n-1
ﬂ—1+-2-—'1"+—q- (3.8)

(It is easy to see that 1 < 3 < 2). Set

| ptl ,_.
t: ma#;{q+1+1 p,.O},

then we have t € [0 1] It follows from (1. 6), (1. 7), (1. 9) and (3 8) that

B<2—t=t+2(1—1)

therefore we have the interpolation inequality

llull 7oy < cllllfn oy lull(ay-

Usmg (3.7, 1.7 and (2.1) hence we conclude that

and therefore

lullag + [1Vall14q < cE*/2

(e=1)(+q) i 14+a . L (p=1+t)(1+q) .
E2 (lull14q + ||V'U'||1+q) +a < cE P )

Since (p — 1)(1+q) > p + 1 by (3.9), hence (3.6) follows.
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