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CONVERGENCE TO TRAP ALMOST EVERYWHERE | |
FOR FLOWS GENERATED BY COOPERATIVE '
~ AND IRREDUCIBLE VECTOR FIELDS

JIANG JIFA*

‘ ~ Abstract :

This” paper ‘is concerned with the asymptotic behavior of cooperative systems in W C R™.
For a C? cooperative system whose Jacobian matrices are irreducible, it is proved. that the
forward orbit converges to an equilibrium for almost every point having compact forward orbit
closure and the set of all points which have compact forward orbit closures and do not converge
to a semi-asymptotically stable equilibrium is meager in W if the equilibrium set cannot contain
a simply ordered curye. The invariant function and the geometry of the stable manifold of an
unstable equilibrium are considered. ' '

~ §1. Introduction
“ In recent years there has been considérable interest in coopera,tlve systems which can be
modelled by the ordinary dlfferentlal equations: : LT ‘
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for i # g, z € W. Much progress has been made in the study of the asymptotlc behavror of
solutions of (1 1). In a series of pa,pers[1 5] lesch has obtalned some very 1mportant results
for general cooperatlve systems He showed that hmlt sets are mvarlant sets of systems in
one dimension lower (see [1, Theorem 3.1]), and that when m addition each Ja,coblan matrix
DF (:z:) is irreducible then almost all trajectories with compact closures are quas1-convergent

i.e., their w-limit sets consist of equlhbna (see [2 Theorem 4. 1]). Under shghtly stronger
assumptions, in partlcular, assummg the set of equlhbna is countable, he proved that almost
all trajectories with compact closures converge to traps (see [2, Theorem 4.4]). Polsitiklel
proved that the set of all points which have bounded nonconvergent traJectorles is meager in
some fractional power space for the smooth strongly monotone flows defined by semilinesr
parabolic equations. But his abstract result is not valid for the cooperative and irrediicible
systems of ordinary differential equations. One reason is that his hypothesis (M3) ({6, p.93))
does not hold for cooperative and irreducible systems (since (uI + DF(z))~! is nonpositive
for 1 < 0 and |u| sufficiently large). The other reason is that we often consider such a system
on an open subset of R", which is not the Banach space R". In earlier work [13], the author
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has given the necessary and sufficient condition that 3-dimensional cooperative system has
a globally asymptotically stable equilibrium, which generalizes [3, Theorem 9].

lesch[4’1’ 28} pomted out: “it is difficult to dlstlngulsh qua,swonvergent trajectories from
convergent ones.’ The purpose of thls paper is to 1mprove the above results of Hirsch in
case F is C%. We shall prove that for’ systems that are cooperatrve and 1rredu01b1e, almost
all points whose forward orbits are compact in- W dre cohvergent (w-hmlt set is a singleton).
With slightly stronger (but necessary) assumption, in particular, assuming that there cannot
exist a simply ordered curve which consists of equ111br1a, we shall show that the set of all
z € W having compact orbit closures and not converging to traps is rare in W. Under this
stronger assumption, we prove that every continuous invariant function is constant. Our

final results concern the geometry of the stable mamfold of an unstable equlhbrmm of (1.1)

(see Theorems 3.4 and 3.5). ‘ '

The pr1nc1pa,1 tool is the theory ‘of cooperatlve systems as developed by lesch[1 2], We
employ the same idea used:i in [6] to study.the. asymptotlc behavior, as t — oo, of the principal
eigenvalue A(t) and the corresponding principal eigenvector v(£) of DF(y(t)) associated with
a quasiconvergent solution y(t). B S B

§2. Deﬁn_itiqns and Preliminaries

In this section, we give some definitions and state some known results which will be useful
in subsequent sections. . L o

Deﬁmtlon 2.1. Ann xn matrix A = (a;;) is called cooperative if each off-diagonal
term is nonnegative and irreducible if it leaves invariant no non-trivial coordinate subspaces
of R™. '

- Define s(A) = maxRe), where A runs through the eigenvalues of A. Tt follows from
Theorem 3.1 in [2] that if A is cooperative and irreducible then e®4 is pos1t1ve for t> 0
Therefore, by the Perron theorem ([7, p- 52]) We obtain the following

Lemma 2.1. IfAisannxn matrix which i is cooperatwe and 1rreduc1b1e, then s(A) isan
ergenvalue of A ( caIIed the principal eigenvalue of A) that is a s1mp1e root of the charactenstw
equatmn and exceeds the real parts of all other eigenvalues of A. Correspondmg to s(A)
there is a unit elgenvector ( called the pr1n01pa1 e1genvector of A) W1th pos1t1ve components

Deﬁmtlon 2. 2. A C! vector ﬁeld F:W >R (Where W c R" is open) 1s caIIed
cooperatwe (1rreduc1b1e) if DF(:L') is cooperatlve (1rreduc1b1e) forallz e W. ) C

Let z,y € R, we wnte z < y(a: < y) in case the spec1ﬁed mequallty holds, component—
w1se Sometlmes we. write z < y to s1gn1fy that z < y and T #Y.

For any. p01nts T,y in R" withz <y define. .

w- . the closed order interval [z;y] = {u:z <u <y}
and B
the open order interval [[z,y]] = {v: 2z <u < y}.

Definition 2.3. W is said to be p-convex if it has.the following property whenever
z,y € W and z <y, W contains the entire line segment Jjoining x and y. -



No.2 -  Jiang, J. F. CONVERGENCE TO TRAP ALMOST EVERYWHERE FOR FLOWS 167

Theorem 2.1. Let W C R™ be p-convex. If the vector field F' is cooperative and
irreducible then its solution fiow {¢;} is strongly monotone in W, i.e., if z 'Sy, then
$¢(z) < $¢(y) for ¢ > 0. | I ~

The w-limit set w(z) of a point z € W is the set of p € W such that z(ty) — p for
some sequence t;, — oo. Let E denote the set of equilibria. z is called quasiconvergent if
w(z) C E and convergent if w(z) is a singleton. We use the notations Q and C for the sets
of quasiconivergent and convergent points respectively. '

Theorem 2.2. (Limit set dichotomy). Assume that F is a cooperative and irreducible
vector field and = < y. Let x and y have compact orbit closures in W. Then exactly one of
the following holds: '

(8) w(z) < w(y);

(b) w(z) =w(y) C E.

Theorems 2.1 and 2.2 aré due to Hirsch and can be found in [2].

- Definition 2.4. An equilibrium p € W is called a trap if there is some open set N not
necessarily containing p, such that ¢:(z) converges to p uniformly in x € N as t — oo.

At each point p € R™ there are positive and negative cones defined by

C*(p)={z:p <} and C~(p) = {z:p > z}.
Definition 2.5. An equilibrium p € W of (1.1) is called stable from above (resp. from

below) if it is stable in C*(p) "W (resp. C~ (p) NnwW). S1m11ar1y one deﬁnes asymptotzca]
stabzbty from above (resp from below).

§3. The Main Results

Our main results may be stated as follows.

Theorem 3.1.  Suppose that F-is a C? cooperatwe and irreducible Vector field and
W is a p-convex open subset of R". Then x(t) converges to an equilibrium as t — oo, for
almost all x € W*¢, where W* denotes the set of points whose forward orbits have compact
closures in W. :

Theorem 3.2. Suppose that F satisfies the conditions of Theorem 3.1 and E cannot
contain a simply ordered curve. Then the set of all t € W having compact orbit closures
and not converging to a semi-asymptotically stable equilibrium is meager in W.

Theorem 3.8. Suppose that F' satisfies the conditions of Theorem 3.2. Let A C W be
a connected open set such that almost every point of A has compact forward orbit closure.
Then every continuous invariant function f is constant on A.

. The stable set of an equilibrium p is S(p) = {z € W : w(z) = p}.

Theorem 3.4. Let F beaC! cooperatwe and 1rreduc1b1e vector ﬁe]d p € E is not a
trap if and only if S(p) has Lebesgue measure zero.

Theorem 3.5. Let F be a C' cooperative vector field. Assume that p € E is not a
trap and DF(p) is irreducible. Then S(p) does not contain distinct points u, v with u < v.

‘Remark. In comparison with the well-known structural Theorem 4.1 in [2], we have im-
posed the smooth assumption, but our Theorem 3.1 is stronger. It follows from [5, Theotem
9.7] that if E contains a simply ordered curve then there is an order interval [a, b] such that
every point in it is convergent to an equilibrium which is not a trap. Therefore, in Theorem
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3.2, the condition.that ‘& cannot contain a simply :ordered curve is necessary. -If a coop-
* :erative and irreducible vector field -possesses an invariant function with positive .gradient,
then its equilibria consist of a simply ordered curvel415], This implies that in Theorem 3.3,
‘the condition that. ' cannot contain a simply-ordered curve is also necessary.- Theorem 3.4
'improves Corollary 4.5 in [2] where Hirsch assumed that F is cotintable; Theorem 3.5 is the
same &g that of Smith ([16 ‘Theorem 2.10]) exeept that we:eliminate the eondition that p is
hyperbolic and s(p) > 0. Smith’s result is a generalization of 9, Theorem 6. 3] of. Selgrade
But the proof presented here is much s1mp11er than theirs.. oot

§4. Proof of the Theorems

The proof of Theorem 3.1 is:conveniently broken into several lemmas ‘We' begin with

| Lemma 4.1, Suppose that A is an n X n matrzx thh 1s cooperatwe a.nd 1rreduc1b]e
If s(4) = 0, then- the matrrx A vl . _ o '
[ v‘";- - :0 o Il B .

1s 1nvert1b1e, Where v 1s the pr1nc1pa1 e1genvector of A

" Proof. Let A* = (A,J) denote the a,d301nt matrlx of A. We ﬁrst prove that A* is
positive or negative. By Lemma 2.1, s(A) is a simple root of the characteristic equatlon,
~ the associated principal eigenvector. v is' positive,.and other eigenvalues of A hve negative
real parts. Since s(4) = 0, A*A = AA* =0, i.e., every column of A* is the elgenvector
correspondmg to s(A) Since the coefficient of one degree term of D(/\)'— det(A /\I ) is

- Z An, there is at least one term, say, Ann # 0 It i 1s easy to see that A’ is 1rredu01ble
o=l

We.have A" (AlmAgn, yAnn)" = 0. It follows from s(A™) =s(A) =0 and A,m # 0 that
AinApy >0fori=1,2,--- ,n. Since the characteristic space correspondmg to. s(A) is one
dimension,- there is p; such that (A,l, 25 m)"’ = pwfori=1,2.+ n. We deduce

- ps-F# Ofrom A;, # 0. Hence, p;p; > 0 and AmAm >0,i.e., AUAnn > 0fori z,g =1,2;:-

By calculatlon, we can prove that

det"(».;i' 'E)'U) vf (Zm) (Zv) ZM%O

: S \i=1 /- \i=1" - Cege=] -
~ Lemma 4.2. Suppose that for any u eAW A(u) ig a cooperatwe and 1rredu01b1e
matrix and that A(u) is continuous on W. If s(A(u)) = 0 and the principal e1genvec-
tor v(u) : W — IntR% is continuous, where R” {:c P> 0}, ‘then there exists
a bas1s (u) 'vl(u), . ,vn_l(u)} for R™ such that vi(u) W — R™ is contmuous for
i, -‘-'4‘.1 2 =1 and ImA is the 11near space spanned by vl,vz, . ,vn_l, Where ImA
derpotes‘.the 1mage of A '

: Proof ‘First we shall employs the Gram-Scthdt orthonormahzatmn process. Let {el, es,
+*'yeq} be a basis for R where €; = (0,:++,0, 41,0,:--,0)7 is the ith vector of the standard




No.2 Jiang, J. F. CONVERGENCE TO TRAP ALMOST EVERYWHERE FOR FLOWS .169

basis in R". We now define in succession vectors-By(u),* - -, Bn(u) by the equations: -
By (u) = v(u), ' '
Bz(u)—el—<e1,Bl >Bl, o |
kB
= eg— B —— o
Ba(’u,) es— < ey, By > By — < 32,32 >B2i ,

n(u) = €Ep—1 :;:ill:‘gz:ll >>Bn-1 —e =< en—'la B, > By,
where < - > ‘denotes the usual inner product in R™. Since B; (u) = 'v(u) is continuous on
W it is easy to see that B is also continuous on W for i = 2,3, » - By 1nductlon, we
-can prove that {B;, Bz, . } is hnea,rly 1ndependent )

From Lemma 2. 1, we know that the kernel of A is a one dlmensmnal vector space, hence
ImA is an (n—1)-dimensional vector space. Since, AB; = Av'=0, ImA L(AB,--- ,ABy)
where L(AB3,- -+, ABy) denotes the linear space spanned by ABs,-+,ABy,. Obv1ously,
AB,,---,AB, is a basis for InA. When we restrict our attention on ImA,

Alima : ImA -ImA

is an isomorphism. It follows that {A%B,,- - ,A%2B..} is also a basis for ImA. This implies
that {v(u); ABy,: - ,AB,} is linearly 1ndependent Let v;— 1(u) AB,»:for i=2 3-, RN
Therefore, {v,v1,+-,vs_1} is a:desirable basis. - - : SR

Lemma 4.3. If u is an equilibrium of F and s(DF(u)) = 0, then there exxsts a
neighborhood V' of u such that ENV is simply ordered. oo S

This lemma, can be easily proved by the centre manifold theorem and the Perron theorem
(see [8 Lemmas 4.5 and 4.6] for details).
Letu € W. Denote A(u) = s(DF(u)) and write v(u) for the pnnmpa.l elgenvector of
DF(u).

Suppose that y € W has compact orbit closure. The principal elgenvalue and eigenvector
of DF(y(t)) are denoted, respectlvely, by A(t) and v(t). We have

- Lemma 4.4. Letye€ W have compact orbit cIosure Then v(t) : (0,00) — IntR} and
/\(t) (0,00) — R are C-functions and

(i) if y € Q then both )\(t) and [|0(¢)|| converge to zer0, as t — 0o,

(ii) if y € Q\C or w(y) =u with s(DF(u)) > 0 then there exist posmve numbers m, 7ty
such that v(t) > rv(0). and A(t) >m for all t > 1. o T

- Proof. Define the mapping G : W .x IntR} x R — R"*1 by -
: v [ DF(u)v — v
G(“*)‘( ol )

It is easy: to see that G is C! on W x IntR" x R and G(u,v,A) = (0;1)" if and:only if
v =9(u), A= )\(u) Let uo,'vo,/\o w1th G’(uo,vo,/\o) = (0,1)" bemg ﬁxed By calculatlon,
we get - e

DF €l - .
D('D /\)G(uO;WO,/\O) - ( (u;))Z 0 (;)0)

Using Lemma 4.1 we know that D(,,,A)G(uo,vo,)\o) is invertible. ‘The implicit- theorem
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implies that v(u), A(u) are C'. Since y(t) : (0,00) — W is C!, A(t) and v(t) are C*-
functions. :

Suppose that y € Q. First we shall prove (ii). By [2, Theorem 2.3|, there cannot exist
u, v in w(y) with » ¢ v. By Lemma 4.3, if y € Q\C then each u € w(y) has A(u) > 0. If
y € C, then this holds by assumption. Siﬁce w(y) is compact in W and A(v) is continuous
on W, there is an m > 0 such that A(u) > m for u near w(y). From the continuity of v(u)
we obtain that the set v(w(y)) is compact in IntR”. Therefore, there exist two disjoint open
subsets U, V' C R™ such that 0 € U, v(w(y)) C V and U < V. Now, there is an 7 > 0
such that 7v(0) € U. For u close to w(y),v(w) € V. So (ii) holds due to the fact that y(t)
approaches w(y) in W. - . | ,

Denote A(u) = DF(u)—\(u)l. Then s(A(u)) = 0. As proved above, v(u) is C'. Applying
Lemma 4.2, we conclude that there is a basis {v(u) vy (w), - ,’un_l(u)} for R" such that

L('vl, . ,fun_l) =ImA and 'v,(u) is contlnuous on W for i =1,2,3,-- ,n — 1. Therefore,
for any w € R™ »there exist numbers ko, k1, , kn—1 such that o -
cw=kov+kvi+--+kn_1Vn_1. , - ,(4;1)

Define the mapping P : W x R® — R" by ‘

. , P(u,w) = ko(u, w)v(u). o
Let B(u) denote the'matrix (v(u),vi(u), -, 'un_l(u)). Then (ko, k15 ++ ,kn—1) = B~} (u)w.
Hence k;(u, w) is continuous on W for ¢ = 0,1, - -+, n—1. It follows that P(u,w) is continuous

on W x R". From (4.1), for fixed u, P is a linear mapplng about w.
Now differentiating the 1dent1ty : :

DF(y (t))'v(t) /\(#)’v(t)
w1th respect to t we obtain _

D2F(y(t))g(®)u(t) + DF(w(®)i(t) = Atyo(t) + At)o(t) (4.2)
and hence o . _ ‘ »
P(y(t), DFy(t)(tye(®) = Mep(®). -~ (43)
Since' y(t) is quasiconvergent, Jim y(t) = 0 (see [4, p.31]). Due to the fact that F'is C2 it
follows from (4.3) and the contmulty of P that '

Jim M@ = Jlim |P(y(t), D*F (y(t))y(t)’v( =
We claim that hm 'u(t) = 0. Suppose not, there exists a sequence ¢, — 0o such that
hm v(tn) = vy # 0 Wlthout loss of generality, we may assume that hm y(tn) ='yo and
hm )\(tn) = Ag. From (4.2), DF(yo)vo = Aovp. Therefore, either vy > 0 or g < 0. We

assume the former case holds. v(yo) = vo/||voll- Smce < 'u(t) v(t) >= 1, < v(t),0(t) >=
0. It follows that < v(t,),o(t,) >= 0 for n = 1,2,.--. Letting n — oo, we obtain
< v(%o), llvol|v(yo) >= 0, i.e., |lvo|l = 0, a contradiction, which implies our claim holds.

Lemma 4.5. Lety € Q\C or w(y) = up which is not a trap and isolated in E. Assume
that there is a neighborhood [[u,v]] of y such that every point in it has compact orbit closure.
Then there are two equilibria p, ¢ and two points uy, vy such that p<u < uy <y < vy <
v < q and tll'rgo 2(t) = p for all z € [[u1,y]] and tllglo w(t) = g for all w € [[y,v1]].
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Proof. Let z € [[y,v]]. We first prove that w(z) > w(y). As in Lemma 4.4, denote
v(t) = v(y(t)) )\(t) My(t)). Let A(w) >0 for u € w(y). - : :

(y(t) +ev(t)) ~ P(y(t) +ev(t))
—F (y(t)) +ev(t) — Fy(t) + ev(t)) -

=ei(t) — ¢ / DF(y(t) + esv(®)o(tds (“4)
=ed(t) +e /0 [DF(y(t)) - DF(y(t) '+ ssv(t))]v(t)ris - eX;(t)v‘('t).

Since F is €2, for £ > 0 sufficiently small- and'¢ > t; :
/t[DF(y(t.)) — DF(y(t) + esv(t)~)]v(t)ds.< 1/2mrv(0).< 1/2mv(t).., . (45)

By Lemma 4 4 v(t) — 0 Therefore, there is a t; >ty such that |
¥(t) < 1 /2mrv(0) <1/2mo(t), fort>ts. (4 6)

Usmg (4 4) (4.6) ‘we see that for small ¢ > 0 and‘t > ¢z the function y(t) = y(t) + ev(?)
satisfies - - . .

y(t) F(y(t))<(1/2m+ 1/2m m)v(t) 0. (4.7)

Slnce z> Y, 2(t2) > y(tg) Make e>0so0 small that z(tg) > y(tz) Then by the well-known
Kamke theorem z(t) > 7(t) for all t > t5, i.e.,

2(t) — y(t) 2 ev(t) > erv(0). | (4.8)

By Theorem 2.3 and (4.8), w(z) > w(y). If w(y) = u which is not a trap, then it easily
follows from Theorem 2.3 and Definition 2.4 that w(2) > w(y) for all z € [[y, v]].

Applying Lemma 4.3 we know that if y € Q\C then A(u) > 0 for each v € w(y). Let
u € w(y). If A(u) > 0, then u has a 1-dimensional strong unstable manifold tangent to
the principal eigenvector v(u) at u. If A(u) = 0, by assumption, u is not a trap, then
[12, Theorem 3] implies that u also has a 1-dimensional unstable manifold tangent to the
principal eigenvector v(u) at u. Fix u € w(y) and choose a point u; > y(ts) (for some t3)
such that it belongs to the unstable manifold of u. Since the solution of (1.1) is continuous
with respect to initial condrtlons there is a pomt vy € [ly,v]] such that z € [[y,v]] implies
z(t3) < u1. Applylng Theorem 2.2, we get w(z) < < w(uy). It follows from Lemma 2.1 and [9,
Lemma 2.3] that uy(?) is increasing for ¢ € (—o0, 00), i.e., if 8y < tg, then uy(t;) < ul(tz)
As proved above w(2) > u. Therefore, w(z) > u;, Which implies w(z) > w(ul) So far we
can conclude that w(2) = w(u1). This shows that w(2) = w(ul) = q for any z € iy, wa]]- It
is easy to see that g is asymptotlca,lly stable from below :

" The proof of the case z < y is analogous

Proof of Theorem 3.1. Define

N = {z € W°; w(z) is not a singleton}.

To prove that N has measure zero it suffices by Fubini’s theorem or [5, Lemma 7.7 to prove
that N N L is countable for every line segment L joining a and b with ¢ < b. By Lemma 4.5,
the set N N L is discrete, therefore countable. This completes the proof of Theorem-3.1. -
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Recall that:A C W'is called nowhere dense in W ifits closure A has empty interior; 4 is
called meager (of first category) in W if A is the union of a countable.set of nowhere dense
subsets of W. From [5, Theorem 7.5] and the proof above we conclude that N is meager in
Let L C R" be a one-dimensional linear subspace spanned by a positive vector. Then
L has a complementary closed linear subspace M C R* s0 that R* = M @ L. Define

= {x € W\N : w(z)isnot a trap} Due to compactness of the semiflow and the
Kura.towskl-Ulam Theorem[18] s1mp1e modlﬁcatlons of lesch’s argument m Lemma 7.4 of
[5] yield Lemma 4.6. L

Lemma 4.6. Assume that for any u € M, (u+ L)NY. is meager inu+ L. ThenY is
meager inW.

‘Proof of Theorem 3.2. Tn the proof of Theorem 3.1, we have proved that N is meager
in W. Therefore, we only have to _prove that the set Y is meager in W. By Lemma 4.6, it
suﬂices to examine that LNY is meager in L for every strarght line spanned by a pos1t1ve
vector. Since the union of any countable family of meager sets is meager, we only have to
prove that J NY is meager in J-for any line segment J which joins points @ and b:with
a < b. Without loss of generality, we can assume that every point in J has compact orbit
closure. We claim that Y is nowhere dense in- J. Suppose the contrary. Then there is an
open line segment J; C J such that J1 C clos(Y). We shall prove that J; C Y. For any
. % '€ Jy, there exist two sequences {x}} C Y such that zf, - a8 — 00 for i= 1 2, and

$1>$2>. >$n>$n+1> >$,

‘ T _ ,‘:c1<a:2 <a: <wn+1< ‘
By assumptlon, pn = w(:c,,) isnot a trap, neither is g, = w(:z: ) Therefore,

' m>m> >%>%H>

N<g<- <Qn<Qn+1<
Let p = hm pn and ¢ = —_ hm gn. Obviously, P,q € E. Hence, ¢ < w(:z:) < p We assert
that q= w(w) =p. Otherwxse, for example, w(a:) < p, then there is a number o such that

(to) < P. Smce the solutions of (1.1) contmuously depend on 1n1t1a1 condltlons, there isa
nelghborhood U of z such that 2(to) <P for any zeU. It follows from hm zl =z that

there isan N such that zLeUforn > N, so w(a:n) w(a:n(to)) < p, ie., pn < pforn > N,
:'a contradlctlon This shows that w(a:) =q. Therefore, p is not a trap. By deﬁnltron,
z €Y, whlch shows JicY.

Letz € Jy and w(z) = p. Then there is a p—convex nelghborhood V of p in W and a C’1
locally centre manifold C of V' of dimension one, passmg through p and ‘tangent to 'u(p) at
- p such that every invariant set of (1.1) in V belongs to C’ (see [17 p- 322]) Since v(p) >0,
C can be chosen to be simply ordered. Choose y € J; with z <’y such that w(y)=qeC.
Therefore, for any z € [z,9] N Ji, w(z) € C. Replace [z,y] N Jy by Jo. We assert that
Ci=[p,q] N C C E. Suppose-not, there:is an r.€ C; such that r ¢ E. So there is an open
arc C} of C such that C} N E'= §. Suppose that C; is such an ar¢ which is maximal in the
sense that EnclosC, # 0. Therefore, ENclosCy = {w, z}. Since p is not'a trap and is not



No.2 Jiang, J..F. CONVERGENCE TO TRAP ALMOST EVERYWHERE FOR FLOWS = 173

1solated in B,p < w. Foru € J, close to z,w(u) < w. Define.
" w=suplac Js w(@) <w for any o € [a:,a] ng}

By the deﬁnltlon of u and the contmulty of solutlons of (1. 1) w1th respect to 1n1t1al condltlons, '
w(u) = w. By s1mllar Way, we can prove that there is a pornt vE Jz such that w(fv) =z
Obvrously, u < v. For any 7 € [[u,v]] N Ja, w(t) < w(r) < w), ie., w < w(r) < 2z, which’
implies that the equilibrium w(r) € Cs, a contradiciton. This shows that (1.1) has a simply
ordered curve which cons1sts of equlhbrla, contradlctmg our assumptlon Therefore, Y is
nowhere dense in W.

- It remains to prove that if p € E is-a trap then p is elther asymptotlca.lly stable from ,
above or asymptotically stable from below It is easy to see that /\(p) <0. If A(p) < 0, then
pis a,symptotrcally stable. Suppose that A(p) =0. Thern there is a change of coordrnates in
a neighborhood of p which transforms (1 1) to : : : SR

' = u(y, )

. . : z—Bz+v(y,z) o
where Y e R1 z € R" -1 and B is a constant matnx such tha.t all elgenvalues of B have
negative real parts. It follows from the centre mamfolds theorem that there exists a centreA
manifold: for (4.9) z = h(y),:|y| < 6, where h is C? (see [10, pA4)).. The ﬂow on the centrei
manifold is governed by the one-dlmensmnal system . . L L

i = u(w; Ww)). N (4 10)

In [12], we have proved that the zero solution of (4.9)is a: trap if a.nd only 1f the Zero solutron a
of (4 10) is a trap. Applylng this result, we know that: thie z zero solutlon of (4. 10) is a’trap,
that is, there is a nonzero solution w(t) of (4. 10) such that hm w(t) 0, correspondrngly

(1.1) has a solution %(t) such that hm w(t) ='pand it'is tangent to the prmclpal elgenvector :

(4 9"

v(p) at p. Therefore, for ¢ suﬂiclently large, z(t) is strictly monotone with respect to. the

. relation <. This 1mphes that p is either asymptotlcally stable from above or asymptotlcally

 stable from below. The proof of Theorem 3. 2 is complete : '
Proof of Theorem 3.3. Define - -

T={zecE:zisatrap}.. . .. . . -

Then S(z)NS(y) = 0 for distinct points z,y € T. Since the stable set of a trap p contains an
open subset of W, S(p) contains a point r, every component of which is a ratlonal nubmer.
Define the map e : T'— R" by

e(p) = rp.
In fact, e is injective, which proves that T is countable.

The rest of the proof is similar to {2, Theorem 4.7].

Proof of Theorem 3.4. By [5, Lemma 7.7], it suffices to prove that every simply
ordered subset of S(p) is countable. Since p is not a trap, there cannot exist distinct points
z,y € S(p) with z < y. Therefore, every simply ordered subset of S(p) is a single point.
This proves Theorem 3.4.

Proof of Theorem 3.5. It follows from the irreducibility of DF(p) and the continuity
of DF(z) that there is a neighborhood U of p such that F is cooperative and irreducible
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on U. If there are two points u,v.in S(p) with » <. v, then there exists a T > 0 such that
u(t),v(t) € U fort > T. From the Kamke theorem, we have u(T') s v(T). It follows from the
1rreduclb1hty of DF(w) on U that u(t) < v(t) for t > T. Choose to > T. Then hm z(t) =p

for any z € [u(to) 'v(to)], ie., S(p) contains an open set [[u(to) v(to)]] There;fore, pisa
trap, contradxctmg our assumptlon Thxs contradlctlon completes the proof of Theorem 3. 5
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