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EXISTENCE OF DISCONTINUOUS SOLUTIONS FOR A 
DOUBLY DEGENERATE ELLIPTIC EQUATIONS ON Шw

W a n g  J u n y u * * *

A b s t r a c t
It is demonstrated that under the hypotheses I—III the problem

f div((fc(t/) +  е ) |Ш |" -1  Ш )  =  /(j* |, U) +  eU in JRN, N >  1, (1.1),"

' 1/(0) >  0, U(x) >  0 on fit1* ,U(x) —> 0 as |as| —* +oo (1.2)

for each fixed e >  0 has infinitely many distinct radially symmetric solutions Us — !4(|ж|) such 
that V,(a), sN- 1(k(Ve{s)) +  e)\V^s)\M~1V^s) € C[0,+oo)nC1(0,+oo),

J (sJV- 1(ft(V,(s)) +  e ) |^ (e ) lM _1^ (* ) )  ■ =  V.{a)) +  eVi(*)) for s > 0, (1.8),.
I' Уе(0) =  В >  0, V^s) >  0 for s >  0, and Ve(+oo) =  0, (1.4)

where В  is a positive number chosen arbitrarily, which extends the result in (3j. In particular, 
the author proves that Uq(x) := Vo(|a:|) is a weak solution of the problem (l.l)o-(1.2).

§1. Introduction

In this paper we demonstrate the existence of infinitely many radially symmetric, contin­
uous solutions of the problem

( div((k(U) + e)\DU\M~xDU) — f(\x\,U) +  eU in JRn ,N  > 1, -(1,1),

\  17(0) > 0, U{x) > 0 o n R N, U(x) -* 0 as |®| -♦ +oo, (1.2)

where D stands for the gradient operator, under the following hypotheses:
I. e > 0 is a small parameter and M  > N  — 1(> 0) is a given constant.
II. k(t) is a nonnegative continuous function defined on [0, -foo).
III. f(s, t)  is a nonnegative continuous function defined on [0,+oo) x 

[0, +oo) such tha t it is increasing in s for each fixed t > 0, and /( s ,  0) =  0 for all s > 0.
Our aim of studying the problem involving a small parameter s is to determine solutions 

for the limiting case e =  0, in which discontinuities may appear when the function k(t) has 
intervals of degeneracy, and to ascertain its properties when solutions for the case s > 0 are 
found. By an interval of degeneracy we mean a closed interval on which k(t) — 0. It must 
be pointed out tha t the equation (l.l)o  is of doubly degenerate elliptic type when k(t) has 
zeros.

Solutions of the problem (1.1),-(1.2) are sometimes called “ground state” , a term bor­
rowed from the physical context (nonlinear field equations) in whcih the problem (1.1),-(1..2)
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arises. In fact, the equation ( l . l ) e is regarded as a steady state generalized diffusion equation 
with absorption (see [1, 4]). A similar problem of the form

A U  = f(U) in R n , N > 1
U(x) > 0 in MN,U(x) —> 0 as |ж| -» +oo

has been studied by authors under various restrictions on f(U) (see for instance [2] and its 
references). Moreover, in a  recent paper [3] G.Citti proved that the quasilinear degenerate 
elliptic equation

div(|D U l ^ D U )  =  f(U) in MN, 0 <  M  < N  -  1

has infinitely many distinct radially symmetric solutions under some restrictions on f(U), 
applying the critical point theory of Ljusternik-Schnirelmann type.

Utilizing only the theory of ordinary differential equations and the Schauder Fixed Point 
Theorem, we demonstrate in this paper that the problem ( l . l )e-(1.2) for each fixed e > 0 
has infinitely many distinct radially symmetric solutions of the form

Ue(x) :=  Ve(s), s =  |ж| := (x2 +  H-------f- x2N)1/2,

such that Ve(s), а ^ -1 (й;(1^(в)) +  e)\Vl{s)\M~^Yl(js) € (7[0, +oo) h  С х(0,4-cx>), and

f [ s ^ i K V ^ s ) )  +  e ) |y ^ s ) |M- 4 ' ( s ) r  =  sN- {( /( s , Ve(s)) +  sVe(s)) for s > 0, (1.3),

\  Fe(0) = В > 0 ,1^(s) >  0 on [0, +oo), and Уе(+оо) =  0, (1.4)
where В is & positive number chosen arbitrarily, under the hypotheses I—III; the function 
ye(s) pointwise converges to  a limit Vo(s) as e |  0, the limit Uq(x) := У»(|ж|) is called a so­
lution of the reduced problem (l.l)o-(1.2); the solution y>(s) has jump points (discontinuity 
points of the first kind), when the function k(t) possesses at least one interval of degeneracy 
in [0, B], and there is a one-to-one correspondence between the collection of all intervals of 
degeneracy in (0 ,5 ) and the set of all jump points appearing in Vo(s); Vo(s) satisfies the 
equation (l.l)o  at all of its continuity points, while at each of its jump points Vo(s) must 
satisfy certain jump conditions.

§2. Analysis
A function U(x) is said to be a solution of the problem (1.1)-(1.2) with e > ,Q if 
(a.) Ue{x) e C (R N) П C ^ ^ U O } ) ,
(b) Ue(0) > 0, Ue{x) >  0 on MN, Ue(x) —> 0 as |ж| —̂ +oor
(c) (k(Ue(x)) +  e)\DUe{x)\M~1DU{x) € C 1( ^ JV\{0}) x ••• x С 1(Жя \{0}), and
(d) div((k(Ue{x)) + £)\DUe(x)\M- 1DUe(x)) = f(\x\,Us(x)) + eUe(x) in R N\{0}.

If the solution Ue (x) pointwise converges to a  limit Uq (x) as e j  0, then the limit is called a 
solution of the reduced problem (l.l)o-(l-2).

By looking for solutions of the form

U(x) =  V(s), s = \x\,

we arrive at the boundary value problem (1.3)e-(1.4).
■By a solution of the boundary value problem (1.3)e-(i.4) with e > 0, we mean a nonheg-* 

ative function Ve(s) satisfying the following conditions:
(a) ye(s) € С[0, +oo) П C^O, +oo), . r;
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( b )  ye(o) =  o ,K (+ o o ) =  o, ■■■■ -  : ' ^

(c) sN~l (k(Ve(s)) +  e ) | ( s)IM~1 VJ(S) e  c[0, +oo) П C^O, +oo),and

(d) (1.3)e holds for all s > 0.

If the solution Ve(s) ppintwise converges to a limit Vq(s). as e j. 0, then Vq(s)  is said to be a 
solution of the reduced boundary value problem (1.3)o-(1.4).

Obviously, if V£(s) is a solution of (1.3)e-(L4) and Vo(s) is a  solution of the reduced 
problem (1.3)o-(1.4), then Ue(x) V^(|ar|') is a solution of ( l .l )e-(1.2) and Щ(х) := Vo(|a;|) 
a solution of the reduced problem (l.l)o-(1.2). So we shall consider only the boundary value 
problem (1.3)e-(1.4) in the seqhel.

R em ark . A solution of the reduced problem (l.l)o-(1.2) is a weak solution of the elliptic 
problem (l.l)o-(1.2) in the following sense: for any ф(х) e Cq(M^\{0}) '

/  (W{x)(k(Uo(x))\DUo(x)\M- 1DUo(x) + <f>(x)f(\x\, U0(x)))dx =  0. (*)

In fact, if Ug(x) is a solution of ( l . l ) e-(1.2), then for any ф{х) € Cq(R^\{0})  .

f  [D</>(x)(k(Ue(x) + e)\DUs{x)\M- xDUe{x)) + (/(|ж |, Щ  x)) + eUe{x))<l>{x))dx =  0.
JRN ^ ' _ . , ; . .. , ■ ... ... . . ■ ■ ‘ ,i.

Letting e, |  0, we get (*). : Here we have used the facts, that both Ue(x) and Ye(x) := 
(k(U£(x)) + e)\DU{x)\M~lDUe(x) are uniformly bounded and Ys(x) poiqtoyise converges to 
a limit Yo(x) as e j  0, which will be proved in the sequel. j •'

Let V(s) be a solution of (1.3)e-(1.4). If it is strictly decreasing, then the function 
s =  .Z(t), inverse to t — V(s), exists, Z{B) — 0, V(Z(t)) = t in (0 ,B], and V'(Z(t)) =  
1 /Z'(t) < 0 in (0, J3). Inserting s — Z(t) into (1.3)e and then putting

"! W(t}:= Z N-\ t ) \Z ' ( t ) \ -M(k(t) +e), • , ,v, ,

we formally obtain a two-point boundary value problem of the fqrm

r Z'{t) =  - Z ^ N- 1)/M(t)W~1/M(t)(k(t) +  e)1/M in (0, В ),

- W '{ t} - , r -Z \ t )Z * - \ t ) ( f {Z ( t ) , t )+ e ty  *in(0,R),

W(0) =  0, Z(B) =  0.

(2.2)e 

(2>3)o:

§3. Two-Point Boundary Value Problem (2.1)e-(2 .2 )e-  (2.3)0

As the endpoint t =  0 is,singular for the two-point boundary value problem (2.1)e-(2.2)e- 
(2.3)o, we need to consider the two-point boundary, value problem without singularity о; ,;j

Z'(t) =  +  e f  fM in (0 ,5], ’ (2.1)e

{ W \ t )  =  - Z \ t ) Z N- \ t ) ( f (Z ( t ) ,  t) +  et) in (0, B], (2.2)e

W(0) = h > 0 , i Z(B) = 0.

It is clear tha t a pair (Z(t)\ W(t)) is a solution of the two-point boundary value problem
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(2.1)e-(2.2)g-(2.3)h with h >  0, if and only if it is a solution of the system
' /  g .. \ 1/P
Z(t) =  (TW )(t) := i j  P W ^ M{s)(k(s) + e )^Mds\  , p := 1 >  0, (3.1)

W'(*j = (?W)(t) := Д г ^ ) ( ^ - 1 ) ( м + 1 ) / м + eji/w  
Уо

v : (/((ТИ^)(в),в) +  e$)ds + h i o r t e  [0,5]. (3.2)ft

Moreover, for-any subinterval [a, 6] of [0,В], we have

Z(t) =  (TW )(t) :=
,6 Ч 1/?

+  e )^ w rfs +  Zp(b) , Z(b) =  (!TW)(b), (3.1)b,

W (t) =  (<£aW )(t) := + e)1̂

(/((TW )(s), s) +  es)ds +  W (a) for t G [a, 6]. (3.2)«ь

L em m a 3.1. The equation (3.2)h, h > 0, has at least one solution W(t-, e,h) > h. 
P roo f. Define a mapping ф : X  X  by the right hand side of (3.2)^, where

X  := {w(t) € C[0, B];0 <  h < w(t) < (0h)(£)}.

By the hypotheses I, II and III, it is readily verified tha t the mapping ф is a compactly 
continuous mapping from X  into X . The Schauder Fixed Point Theorem tells us tha t in 
the set X  the mapping ф has at least one fixed point, denoted by W(t\e,h), which is clearly 
a solution of the equation (3.2)л with H > 0.

L em m a 3.2. I f  h\ > h2 >  0, then

0 <  W(t]£,hi) ~W(t-,e,h2) < h 1- h 2 on [0 , 2?].

P roo f. We first prove tha t W(t',s,hi) — W(t-,e,h2) >  0 on [0,B]. If not, then there will 
be a point t — A € (0,1?] at which W{A',e, hi) -  W(A-,eih2) <  0. There are two cases.

Case (i). W(J3;e, h i) -  W(B\e,h2) <  0. We can elect the endpoint t =  В  as the point 
t = A. Because W(0; e, hi) — W(0; e, h2) = hx - h 2 > 0, there is a point t = а e  (0, B)  such 
that ' . ;

W (a ;e ,h i) -  W (a;£ ,h2) =  0 and W (t;s, h i) -  W ( i;e ,^2 ) <  0 in (a,B\. 

Whence it follows by (3.2)06 that

0 >W(B-,e ,h i)-W(B-,e,h2)

; ..
which is a  contradiction.

Case (ii). W(B; e,hi) -  W(B; e,h2)  > 0. We may without loss of generality assume that 
there is an- interval (tt; b) C (0; B), which contains the point t == A, such that

W(a; e, hi) -  W (a;e, h2) =  W{b\e, hx) ~ ЩЬ; e ,h2) =  0, . О

W(t;e,hi)  -  W(t\e,h2) <  0 in (a ,6), and W(t\s,hi) -  W(t\e,h2) > 0 on [b,B], 

Hence W'(b]e,hi) > W'(b]e,h2), i.e., Z(b',e,hi) >. Z(b-,s,h2), because ' ’

W!% 6 ih j ) r  ^ -^ ) (M + i) /M (6;£, hj)tf(Z(b-, e, h,),b) A eb)W~x/M{b-,e, hj)(k(b) + e )^M,
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where Z(t;e,hj)  :=; (TW(-;s,hj))(t), j  = 1,2. Here it has been used that the function 
s (N-i)^¥+i)/M (y,(S) -j- £&) is strictly increasing in s > 0. Whence it follows by (3.2)аъ that

0 >  W(A-,s,hi) -  W(A-,e,h2) = №aW(--,e,hi))(A) -  (фа\¥(-]е,к2))(А) > 0, 

which is also a contradiction.
This shows that W{t\e,h{) -  W(t\e, h2)>  0 on [0,5]. Prom the assertion proved above, 

it follows by (3.2)h that W(t; e,h\) — W(t ; e, h2) < hi — h2 on [0,5].
In very much the same way, we can prove the following two lemmas.
Lemma 3.3. For each fixed h >  0 the solution W(t\ e, h) is increasing in e > 0.
Lemma 3.4. The equation (3.2)h, h > 0, has at most one solution W(t;e,h).
Lemmas 3.1, 3.2 and 3.4 assert th a t the equation (3.2)^, h > 0, has a unique solution 

W(t; e, h) >  h and the solution W(t; e,h) converges to a limit, denoted by VP(t;e,b), uni­
formly on [0, B\ as h j. 0. Inserting the solution W(t\ e, h) into the equation (3.2)^ and then 
letting h J. 0 yields the equality (3.2)o, which shows that the uniform Umit W{t\ e, 0) > 0 is 
a solution of the equation (3.2)o, by the Monotone Convergence Theorem.

P ut We(t) =  VP(t; e, 0) and Ze{t) "= ( fW s)(t). It is easy to check that the pair (Ze(t), 
We(t)) is a unique solution of the two-point boundary value problem (2.l ) e-(2.2)e-(2.3)o.

Lemma 3.2 implies that for any h > 0

IP (t;0 ,0) <  W(t\0,h)  $  W (t;0,0) + h on [0,5].

Lemma 3.3 tells us that for fixed h >  0 there exists an eu >  0 such tha t 1 •

W(P, s, h) < W(t, eft, h) < W(t] 0, h) + h on [0, B] 

whenever e G (0, e^), and hence

W(t>, 0,0) <  W{t\ e,0) <  W(P, eh,h) < W(t; 0,0) + 2h on [0, B] ,

whenever e € (0,e/i). This shows that as s |  0 the function W£(t) converges to the function 
Wo(t) uniformly on [0, J5]. Whence it follows by (3.2)o that as e |  0 the function Ze(t) 
converges to  the function Zo(t) uniformly on [5, B] for any 0 < 6 < B. ■ i

We summarize the results above in the following statement.
Theorem  3.1. Under the hypotheses I, II and III, the two-point boundary value 

problem (2.1)e-(2.2)e-(2.3)o for each fixed e > 0 has a unique solution (Ze(t),We(t)), where 
both Zs(t) and - W E(t) are decreasing and continuously differentiable in (0, 5]. Moreover, 
as s tends to zero, the function W£(t) converges to the function Wo(t) uniformly on [0, B] 
and the function Zs(t) converges to the function Z0(t) uniformly on [d,B] for any 8 e  (0, 5 ).

§4. Radially Symmetric Solutions

Let us begin with the following two definitions.
D efinition 4.1. Let k(t) be a nonnegative continuous function defined on [0,5]. Put

Eq =  {t e  [0,5]; k(t) =  0} and E+ =  {t G [0,5]; k(t) > 0}.

Each connected component of the set E q which is not an isolated point set is called an 
interval o f degeneracy in [0,5] and each connected component of the set E+ an interval of 
non-degeneracy in [0,5]. ■ ;
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Definition 4.2. • Let Z(t) be. a decreasing continuous function defined in(0, B] with 
Z(B) =  0. A function t =  F (s) is said to be a generalized inverse function of the function 
s = Z(t), i f it satisfies the following conditions:

(i) V (s) is a decreasing, possibly multiple-valued function defined on [0, -boo) with V (0) =  
В and F(+oo) =  0, and

(ii) the restriction ofV(s) to [0, Z(0+)) is strictly decreasing so that Us inverse function 
is exactly the function Z(t), where Z(0+) =  lim Z(t); when Z(0+) is finite, V(s) is defined
to be zero for s > Z(0+).

In the s-t plane, as far as graphs of such two functions s =  Z(t) and t = F (s) are 
concerned, the continuous curve s — Z(t) is exactly the part of the continuous curve t  — V(s) 
in the region [0, Z(0+)) x (0, В]. For example, if Z(t) =  0 in (0, B], then V(s) — B — BH(s), 
where H(s) is a multiple-valued Heaviside function, that is, H(s) =  0 for s < 0, H(s) = 1 
for s > 0, and H(0) =  [0,1]. The fact is the foundation for all the arguments in the ensuing 
paragraphs.

We now prove that the boundary value problem (1.3)e—(1.4) has a  solution K (s). 
Theorem 3.1 shows that the two-point boundary value problem (2.l ) e-(2.2)6-(2.3)o for 

each fixed s > 0 has a unique solution (Ze(t),We(t)) and as p J. 0 the function Zs(t) 
converges to the function Z0(t) uniformly on [«5, B] for any S e  (0, B). As the function Ze(t) 
is a decreasing continuous function defined in (0,B] with Z(B) =  0, its generalized inverse 
function V(s) exists and automatically satisfies the conditions in (1.4).

Lemma 4.1. As £ |  0 the function Ve{s) pointwise converges to the function Vo(s). 
Proof. The lemma follows from the fact that as e |  0 the function Ze(t) converges to 

the function Zo(t) uniformly on [6, B] for any 6 € (0,2?).
Lemma 4.2. For each fixed e > 0  the function Ve(s) is a solution 6f the boundary value 

problem (1.3)e-(1.4).
Proof. When e > 0, We(t) >  0 in (0, B\, Z'e(t) < 0 in (0 ,5), and Z?(0+) =  -oo. 

Whence it follows that the inverse function of Ze(t) exists and is exactly the restriction of 
Уе(в) to [0, Ze(0+)). Hence, !

Ze(Vs(s)) =  s in [0,Z,(0+)),

V:(s) =  l/Z'e(Ve(s)) < 0 in (0, Zs(0+)), and lira V^s)  =  0;Sj#e(0“b)

if Ze(0+) is finite,

F g ^ —Oon [Ze(0+),+oo).

This shows tha t Ve(s) e  С ^  +оо) П C'1(0, +oo).
The equality (2.l ) e can be rewritten as

+ е) |г '( « ) Г "  =  W,(t) for aU t e  [0,B]. (2.1);

Substituting the function t = Ve(s) into the equalities (2.1); and (2.2)e yields

sw- 1( i(v ;( s ) )+ e ) |v ; '(» ) l" -1v .'W  =  - » ' . « ( « ) )  in [o ,z ,(o+ )), 

W ',(V,(s))VM  = - s N- l (f(s,V,{s))+eV,(s)) in (0 ,Z ,(0+ )),
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and hence

(«"-‘ (В Д М ) + e ) | V . W )  4- е В Д )  ш (0,Zi(0+));

when Ze(0+) is finite, all the above equalities read 0 =  0 on [Ze(0+), +oo), and as s f Ze(0+) 
the right hand sides of the above equalities, approach to zero without exception. This 
shows that the function sN~1(k(Ve(s)) + e)|V'£/(s)|M -1VE/(s) is continuous on [0,+oo) and 
continuously differentiable in (0 ,+oo) and the equality (1.3)* holds everywhere in (0,+oo). 
In one word, the function Ve(s) is a solution of the boundary value problem (1.3)e-(1.4).

Lemmas 4.1 and 4.2 point out th a t the function Vo(s) is a solution of the reduced boundary 
value problem (1.3)o-(1.4). We now investigate some properties of the solution Vo(s).

Let {[dj,bj]’, j  =  1,2,•••} be the collection of all intervals of degeneracy possessed by 
the function k(t) in [0, 5]. It follows from (2.1)o that the function Z'Q(t) has in [0,5] the 
same intervals of degeneracy as the function k(t). Clearly, Zo(t) =  Sj — constant on [aj,bj], 
Zo(aj -  0) =  Sj, and Zo(bj +  0) =  Sj, j  =  1,2, • • •. This shows that the point s = Sj, 
j  =  1,2, • • •, is a jump point of the function Vo(s), where

V0(sj) =  [aj, bj], V0(sj -  0) =  bj, and V0(sj +  0) = a,-, j  =  1,2, • • • . (4.1)

Note that

(0, Zq(0+)) =  Zo{Eq) U Zq(E+),

where Zo(Eo) is a null set, which contains all jump points of Vq(s) and on which Vq (s) =  —oo, 
and Zq(E+) is a set in which V0'(s) <  0. Repeating the arguments in the proof of Lemma 4.2, 
we can conclude that in each connected component of the set Zo(E+), Vq(s) is continuously 
differentiable and siV-1fc(Fo(s))|Vr0,(s)|M~1F0'(.s) is also continuously differentiable, and the 
equality (1.3)o holds everywhere. This shows that Vo(s) satisfies, in the classical sense, the 
equation (1.3)0 in the open set (0, +oo)\Z0(5 0). Integrating the equation (2.2)o over [dj,bj] 
gives the equality W0(aj) = Wo{bj), namely

= o, j  =  1,2, • ■ ■ . (4.2)

Moverover, the solution Vo(s) can be represented by

Vq(s) =  В  + ^ ( а , -  -  bj)H(s -  S j )  +  J Vq (t)dt for all s € [0, +oo). (4.3)

We summarize the results above in the following statement.
T heo rem  4.1. The boundary value problem (1.3)e-(1.4) for each fixed e > 0 has a 

solution Vs(s) and the reduced boundary value problem (1.3)o-(1.4) has a solution Vo(s)- 
Moreover, the solution Vo(s) can be represented by the formula (4.3),where {\(ij,bj];j =  
1,2, • • •} is the collection of all intervals of degeneracy possessed by the function k(t) in [0, B], 
U{s =  Sj} is the set of all jump points ofVo(s), and Vo(s) satisfies the jump conditions (4.1) 
and (4.2) at each of its jump points. From the formula (4.3), we conclude that if and only 
i f  the function k(t) has at least one interval of degeneracy in [0, B) discontinuities appear in 
V0(s) and there exists a one-to-one correspondence between the collection of all intervals of 
degeneracy possessed by k(t) in [0,5] and the set of all jump points appearing in V0(s).

Clearly, Ue(x) := Vs(\x\) is a radially symmetric solution of the problem ( l . l )e—(1.2) and 
Uq(x) := Vo(|m|) is a radially symmetric solution of the reduced problem (1.1)q- ( 1.2), in
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which discontinuities appear if and only if k(t) has at least one interval of degeneracy in 
[О, В]. Without doubt, there are infinitely many such solutions.
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