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EXISTENCE OF DISCONTINUOUS SOLUTIONS FOR A
DOUBLY DEGENERATE ELLIPTIC EQUATIONS ON R~

WANG JuNyU*

Abstract

It is demonstrated that under the hypotheses I-III the problem
{ div((k(U) + s)IDUlM‘lDU) £z}, U) + U in JRN N>1, (1)
U(0) > 0,U(z) >0 on IRN U(z) ~ 0as |a;| — oo ()

for each fixed € > 0 has mﬁmtely many distinct radially symmetric solutions Uy = V¢(|z[) such -

that Ve(s), sV ~1(k(Vz(s)) + €)|V/(s)|M~1V{(s) € C[0, +00) N C1(0,+00),
{ (VT R(Ve () + )V ()M TV (5)). = 8V T (f(5, Ve(s)) + Ve(s)) for s> 0, (L.3)e.
Vz(0) = B > 0, V() 2 0 for s > 0, and Ve(+00) = 0, ' (1.4)

where B is a positive number chosen arbitrarily, which extends the result in {3]. In particular,
" the author proves that Up(z) := Vo(|z[) is a weak solution of the problem (1.1)o~(1.2).

§1. Introductlon

In this paper we demonstrate the existence of mﬁmtely many radlally symmetrlc, contm-

uous solutions of the problem . . o
div((k(U) + €)|DUIM-*DU) = f(|z|,U) + €U in RN,N > 1, (1.1)e
{U(O)>0,U(a:)ZﬂonﬂN,U(w)—-—)Oas|a:|—-++oo, : 0 (1L2)

where D stands for the gradient operator, under the following hypotheses:

I. € > 0 is a small parameter and M > N — 1(> 0) is a given constant.

IL. k(t) is'a nonnegative continuous function defined on [0;+00).

III. s(N-UM+1)/M f(5 ) is a nonnegative continuous function defined on [0, +00) x
[0, +00) such that it is increasing in s for each fixed ¢ > 0, and"f(s,0) = 0 for all s > 0.

Our aim of studying the problem involving a small parameter ¢ is to determine solutions
for the limiting case € = 0, in which discontinuities may appear when the function k(t) has
intervals of degeneracy, and to ascertain its properties when solutions for the case € > 0 are
found. By an interval of degeneracy we mean a closed interval on which k() = 0. It must
be pointed out that the equation (1 1)o is of doubly degenerate elliptic type when k() has
Z€eros. ,

Solutions of the problem (1.1).-(1.2) are sometimes called “ground state”, a term bor-
rowed from the physical context (nonlinear field equatlons) in wheih the problem (1. 1) -(1.2)
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arises. In fact, the equation (1.1) is regarded as a steady state generalized diffusion equation
with absorption (see [1, 4]). A similar problem of the form

AU = f(U)in RY,N > 1
‘ | U(:v)>0m1RN U(m)—»Oas|a:|——>+oo . e
has been studied by authors under various restrictions on f(U) (see for mstance [2] and its

references). Moreover, in a recent paper [3] G.Citti proved that the quasilinear degenerate
elliptic equation : -

div(|DU|M-1DU) = f(U) in IRN 0<M<N-1

has infinitely many distinct radially symmetrlc solutrons under some restrictions on f(U),
applying the critical point theory of LJusternlk-Schmrelmann type.

Utlhzmg only the theory of ordlnary differential equations ‘and the Schauder Fixed Point
Theorem, we demonstrate in this paper that the problem (1.1).-(1.2) for each fixed & > 0
has infinitely many distinct radrally symmetnc solutions of the form

Ud(z) = Ve(s),s = [a] = (a3 + 2§ + - + 23)/2,
such that V;(s), sV=1(k(V.(5)) + e)lV’(s)lM Wi(s) € C’[O +00) NCH(0, +00), and
[s" = (k(Ve (s)) + €)|V'(8)IM"1V'(8)]' = sV1(f(s, Ve (S)) +eVe (s)) for s > 0, (1 3)e
{V(O) B > 0,Ve(s) 2 >0on [0, +oo), and V. (+o0) = R, ' (1.4)
where B is a positive number chosen arbitrarily, under the hypotheses I—III the functlon
Ve(s) pointwise converges to a limit Vp(s) as ¢ | 0, the limit Up(z) := Vp(|z|) is called a so-
- lution of the reduced problem (1.1)o-(1:2); the solution Vo(s) has jump points (discontinuity
points of the first kind), when the function k(t) possesses at least one interval of degeneracy
in [0, B], and there is a one-to-one correspondence between the collection' of all intervals of
degeneracy in (0, B) and the set of all jump points appearing in Vb(s) Vo(s) satisfies the
equation (1.1)o at all of its continuity points, while at each of its Jump points Vp(s) must
satisfy certain jump conditions. - : '

§2 Analy81s

A function U(z) is sald to be a solutlon of the problem (1 1) (1 2) w1th e>0 1f
 (a) Ue() € C(RN) N CHBM\{0}), | 3 |
(b) U.(0) > 0, U(m)>OonRNU(a:)——>0as|w|—>+oo, -
(e) (k(Ue(2)) + €)| DU(z)|M~* DU (z) € CY(RN\{0}) X -~ X Cl(IRN \{0}), and
(d) div((k(Ue(w)) +£)| DU ()|~ DUe()) = £ (|, Ue (w)) + eUe(z) in RV\{0}.
If the solution U, (z) pointwise converges to a limit Up(x) as € | .0, then the limit is called a -
solution of the reduced problem (1.1)o-(1.2). '
- .By looking for solutions of:the form

Uz)=V(s), s= |-'0I,
we arrive at the boundary value problem (1.3)e~(14).
By a solution of the boundary value problem (1.3).- (1 4) with ¢ > 0 We mean a nonneg—"

ative function V.(s) satisfying the following conditions:
(a) Ve(s) € C[0,+00) N C*(0, +00),
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(b) V.(0) = 0, Vi (so0) = T T
(e SN (R(Ve (s))+s)|V’(s)|M 1V'(s) € C[O +oo) nOl(o +oo), and
@ (1 3). holds for all s > 0. © :

If the solution V,(s) pointwise converges to a limit Vo(s) as ¢ | 0, then Vo(s) is said to be a.
solution of the reduced boundary value problem (1.3)p-(1.4).

»Obv1ously, if Vo(s) is a solution" of *(1.3).-(1:4) and Vb(s-) is'a solution of the reduced
problem (1.3)¢-(1.4), then U.(z) := V. (|z|) is a solution of (1.1).-(1.2) and Up(z) := Vo(|z|)
a solution of the reduced problem (1.1)9-(1.2). So we shall consrder only the boundary value
problem (1. 3),s (1:4) in the seqtiel. S S SheEre

Remark. A solution of the reduced problem (1.1)o-(1.2) isa weak solutlon of the elliptic
problem (1.1)o-(1.2) in the following sense: for any ¢(z) € CH(RN\{0}) '

L. (DUEHCH DD DTe) + S T =0 @
In fact, 1f Ue (:z:) isa solutlon of (1.1).-(1. 2), then for any ¢(:L') € C} (RN \{0}) : ‘v
| / [D¢($)(k(U (fv)+€)lDU (fv)lM IDU (w))+(f (val U( ))+€U (w))¢($)ldf'«'— .

Letting €. l 0 we get (*) Here we. have used the facts that both Ue(:tz) and Y. (m)
(k(Ue(z)) + €)|DU(z)|M 1 DU, () are uniformly. bounded.and Ye(m) p01ntw1se converges to '
a limit Y5(z) as ¢ | 0, which will be proved in the sequel. - e T ST

~ Let V(s) be a solution of (1.3).-(1.4). If it is strlctly decreasmg, ‘then ‘the' fasiction
s = Z(t), inverse to t =.V(s), exists, Z(B).= 0, V(Z(t)) =.t in (0, B}, and V’(Z(t)) =
l/Z' (t)<0in (0 B).. Insertlng s.= Z(t) into (1. 3)5 and then puttlng : .

 Wiyi= 2N kO + o),

we formally obtam a two-pomt boundary value problem of the form | »

Z'(t) = ~g(N- 1)/M(t)W_1/M(t)(k(t)+e)1/M m 0, B), [ (21)5 .

W'ty =—Z' () Z¥ @) (Z(8), ) +et) in'(0,B), = oo (22)

W(0)=0, Z(B)=0. P LT e (28)0)

§3. Two-Point Boundary Value Problem’ (2:1). (2 2) (2. 3)0 -

As the endpoint ¢.=.0 is singular for the two-point boundary value problem (2 1)5 (2 2)€
(2.3)0, we need to consider the two-point boundary. value problem without. singularity -1

Z'(t) = —ZWN=DM W YM @) k() + )M in(0,B, - (2.1).
S W) =-ZW)2" O (Z¢E)t) +et) n (0,8, - (22
W) =h>0, ZB)=0. . 23

- It is clear that a pair (Z(t); W(¢)) is a solution of the two-point boundary value problem
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(2.1).-(2. 2)5 (2.3), with h > 0, if and only if it is a solution of the system

( e

Z@t) = (TW)(t) (/ PW"I/M(s)(k(s) +e)1/Mds) y D= M—-—%ﬂ > 0, (3 1)
| W) =ww= / (TWYN DM G (5) k() 4 )M
U (@w)e)s)+es)ds +hfortel0,Bl. . (3D
MoreoVer, for any subinterval [a, b] of [0, B], we have - -' X

Z(t) (TW)(t) -—( f PW’I/M(S)(’C(S)+€)1/Md8+Z"(b)) ,Z(b)'—T(TW)(b),(&l)a

Wit = ()0 = [ w00 -4 () s

1 ‘ (f((TW)(s) 8) + es)ds +W(a)fortefab. . = (32aw
Lemma 3.1. The equation (3.2)n, h > 0, has at least one solution W (t;¢, h) > h.
Proof. Defise a mapping ¢ : X — X by the right hand side of (3.2), where - = =

) = {w(t) € C[O B] 0 < h < w(t) < (dh)(8)}-
By the hypotheses I, IT and III, it is readlly verified that the mappmg ¢isa compactly
continuous mapping from X:into X. The Schauder Fixed Point Theorem tells us that in
the set X the mapping ¢ has at least one fixed point, denoted by W(t g, h), which is clearly

a solution of the equation (3.2), with & > 0.

Lemma32 Ifh1>h2>0, thep L

0< W(t €,h1) = W(t;¢,hs) < by — hg on [0, B].

Proof. We first prove ‘that W(t; e, hi) — W(t;e, hs) >0 on [0, B]. If not, then thefe will
be a point ¢t = A € (0, B] at which W(A4;¢,h;) — W(A4;¢&,hy) < 0. There are two cases.

Case (i). W(B;e,h1) — W(B;e,he) < 0. We can elect the endpoint ¢ = B as the point
t = A. Because W(0;e¢, hl) W(O g, hz) h1 ~hy >0, there is a pomt t=a€ (0 B) such
that 5

PR W(a;e,hl) - W(a; &, h'g) 0 and W(t;e, hl) W(t;e hz) <0in (a,B].
Wheice it follows by (3.2)a5 that
| 0> W(Bse,ha) - W(Bie,ha)
(¢aW( & m))(B) - (¢aW( &,h2))(B) 2

whlch isa contradlctlon ,
-Case (u).-«._W(B,»-e,-hl)- W:(Bje, hg) >0. We may without:loss of generality assume that
there s an*interval (a; b) (0, B}, which contains the point ¢ = A, such that :

W (a; e, h1) = Wi(a;e, ha) = W(b;e,h1) — W(b;e,hg) =0,
CW(te, h1) = W(t;e, ho) <0in (a,b), and W (2; e,hl) W(t; e, hg) >0on [b B]
Hence W’(b g,h1) > W'(b;e, hy), ice., Z(b;e,h1) > Z(b;e, hz), because | ¢
Wb &; hy)= ZN-NMAD/M (b e b )(F(Z (b€, hj), b) +€b)W =M (b; ¢, by) (k(b) +€)HM,
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where Z(t;e; h;) = (TW (e, h;))®); 7= 1,2. Here it has been used-that- the funétion
sNANMAD/M (f(s. b) + €b) is strictly increasing in s > 0.-Whence it follows by (3.2), that
0> WAie )~ W(Aie,ha) = (W (36, hl)x‘A‘) —j-‘("atW‘(-’:s;ha)')(A)’ 20,

wh1ch is also a contradiction.

This shows that W (t;e, hl) W (t;e, hz) >0.on [0, B] From the assertlon proved above
'1t follows by (3 2)n that W(t €, h1) Wit £ hs) < hy — hy on [0} B]..

In very much the same way, we can prove the followmg two lemmas

Lemma 8.3. For each fixed h > 0 the solution W(t;¢, h) is incréasing in € > 05; '

Lemma 3. 4. The equatzon (3 2)p, h'>0, has at most one solution W(t;e, h).

“Lemmas 31, 3. 2 and 3. 4 assert that the equatlon (3 2)p, b >0, has a umque solutlon
W(t €, h) > h and the’ solutlon ‘W (t; e, h) converges to a limit, denoted by W(t;e 0), uni-
formly on [0, B] as h | 0. Insertmg the solution W(t;e, h) into the equatlon (3:2)n and then
letting h | 0 yields the equahty (3. 2)0, which shows that the uniform limit W(t;e 0) > 0 is
a solution of the equatlon (3.2)0, by the Monotone Convergence Theorem.

Put W, (t) =W (t ¢,0) 'and Z, «(t) = (TW )(t). Tt is easy to check that the pair (Z @),
We (t))is a umque solution of the’ two-pomt boundary value problem (2 1)5 (2 2)5 (2 3)o-

Lemma 3. 2 1mp11es that for any h>0 '

o ’_ W(t00)<W(t0h)<W(t00)+h on[OB]
Lemma 3 3 tells ns that :for fixed h >0 there exists an €5 > O such'that.” - - = -
S W(te B S W, sh,h) <W(t 0 h)+h on [0 B]
whenever ¢ € (0 €n), and hence
- W(0,0) < W(t;e,0) < < W(t eh, ) < W(t,O 0)+2h on [0 B]

whenever € € (0,¢3). This shows that as ¢ | 0 the function W,(t) converges to the function
Wo(t) -uniformly on [0;B].  Whence it follows by (3.2)o that as € |0 the function Z, (t)
converges ‘to the function Zy(¢) uniformly on {6, B] for any.0 < § <:B.- SOy
We summarize the results above in the following statement. I T
Theorem 3.1. Under the hypotheses 1, II and 111, the two-pomt boundary Value
problem (2.1).~(2.2).~(2.3)o for each fixed € > 0 has a unique solution (Z.(t), We(¢)), where
both Z.(t) and ~W,(t) are:decréasing and continuously differentiable in (0, B]. Moreover,
as € tends to zero, the function W,(t) converges to the function Wo(t) umform]y on [0, B]
and the function Z.(t) converges to the functmn Zo(t) umform]y on [6, B] for any 6 € (0 ‘B).

'§4. Radlally Symmet-r.lc: S.olutlons
Let us begin with the following two definitions.: A e
Definition 4.1. Let k(t) be a nonnegative continuois function defined on [O B] Put
Eo={te[0,B]; Ic(t).-.O} and Ey ={t€0,BLk(t) >0} ... ... ..

Each connected component of the set Eq which: is not an. isolated point set is called an
interval of degeneracy in [0 B] and each connected component of tbe set E+ an interval of
non-degeneracy in'[0, B]. ‘ P
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- Definition 4.2. .- Let Z(t) be. a decreasing continuous function defined in.(0, B] with
Z(B) =0. A function t. = V(s) is said to be a generalized inverse function of the function
s = Z(t), if it satisfies the following conditions:

(i) V(s) is a decreasing, possibly mu1t1p1ava1ued function deﬁned on [0 +oo) w1th V(O)
B and V(+oo) 0, and

* (ii) the restriction of V(s) to [0 Z (0+)) is str1ct1y decreasmg so that its inverse , function
is exactly the function Z(t), where Z (0+) hm Z(t); when Z (0+) is ﬁmte, V(s) 1s defined

to be zero for s > Z (0+) v

In the s-t plane, as far as graphs of such two functlons s=Z(t) and t = V(s) are
concerned, the continuous curve s = Z (t) is exactly the part of the contmuous curve t=V(s)
in the reglon 0,2 (0+)) x (0, BJ. For example, if Z(t) = 0in (0, B], then V(s) = B—BH(s 8),
where H(s) is a multlple-valued Heaviside functlon, that is, H(s) = 0 for s < 0, H(s) = 1
for s > 0, and H(0) = [0,1]. The fact is the f0undatlon for all the arguments in the ensumg
paragraphs.

. We now prove that the boundary value problem (1 3)—(1. 4) has a solutlon V (s)
| Theorem 3.1 shows that the two-pomt boundary value problem (2. 1) ~(2.2)¢-(2.3)o for
. each fixed ¢ >0 has a unique solution (Z.(t), Wa(t)) and as £ 1 0 the function Z(t)
converges to the function Zo(t) uniformly on [6 B] for any § € (0, B). As the function Z, <(t)
is a decreasing continuous function defined in (0, B] with Z (B) =0, its generalized inverse
~ function V(s) exists and automatically satisfies the conditions in (1.4).

Lemma 4.1. Ase | 0 the function V(s) pointWise‘ converges to the function Vy(s).

Proof. The lemma follows from the fact that as ¢ | 0 the functlon Z(t) converges to
‘the function Zo(t) uniformly on [6, B} for any 6 € (0, B). o

. Lemma 4.2. For each fixed ¢ > 0 the function V, (s) isa squt1on of the boundary value

* problem (1.3).~(1.4). S

Proof. When.c > 0, W.(t) > 0 in (0 B], Z’(t) < 0in (0 B), ‘and Z;(O+)
Whence it follows that the inverse function of Z(t) ex1sts and is exactly the restriction of
V(s) to [0 Z.(0+)). Hence, - :

( 5(8)) =sin [0,Z(0+)),

V’(s) = 1/Z’ (V;(s)) <0in. (0 Z. (0+)), ‘and hr(n+) VI(s) =

if Z (0+) is ﬁmte, L
/A (s) -0 on [Z (0+) +oo)

~ This shows that V,(s) € C[0, +00) N €1(0, +00).
The equality (2.1) can be rewritten as

- ZNY ) (k(t) +e)|Z’(t)|“M- = W,(¢) for all t € [0, B] - H(24)]
Substituting the function ¢ = V;(s) into the equalities (2.1); and: (2.2)3 yields
N1 (k(Ve(s)) + ©)|VZ (&) M1V (s) = =We(Ve(s)) in [0,Z:(0+)),

W V())V2(s) = 8" 2(F(5, Ve(s)) +€Vals)) i (0,Z(04)),- -
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and hence . - _ : . :
(V7 (k(Ve(s)) + )V ()M TIVL(5)) = s H(f (s, Ve(8)) + €Ve(s)) im (0, Ze(0+));
when Z,(0+) is finite, all the above equalities read 0 = 0 on [Z.(0+), +00), and as s 1 Z.(0+)
the right hand sides of the above equalities. approach to zero without exception. This
shows that the function sV=1(k(V.(s)) + €)|V/(s)|M~1V!(s) is continuous on [0, +o00) -and
continuously differentiable in (0,+o00) and the equality (1.3). holds everywhere in' (0; +00).
In one word, the function V.(s) is a solution of the boundary value problem (1.3).~(1.4).
Lemmas 4.1 and 4.2 point out that the function Vp(s) is a solution of the reduced boundary
value problem (1.3)9-(1.4). We now investigate some properties of the solution Vo(s).
Let {[a;,b;];7 = 1,2,---} be the collection of all intervals of degeneracy possessed by
the function &(t) in [0, B]. It follows from (2.1)o that the function Zy(t) has in [0, B] the
same intervals of degeneracy as the function &(t). Clearly, Zy(t) = s; = constant on [aj, b;],
Zo(aj — 0) = s, and Zo(b; + 0) = s;, j = 1,2,---. This shows that the point s = s,
j=1,2,.+-,is a jump point of the function V;(s), where ' '

Vo(s5) = [aj,b5], Vo(sj — 0) = b;, and Vo(s; +0) = e,/ =1,2,--- . (4.1)
Note that ' ' ‘
(0, Zo(0+)) = Zo(Eo) U Zo(E..),

 where Zo(F)) is a null set, which contains all jump points of Vo(s) and on which V(s) = —oo,

and Zy(E, ) is a set in which V{(s) < 0. Repeating the arguments in the proof of Lemma 4.2,
we can conclude that in each connected component of the set Zo(Ey.), Vo(s) is continuously
differentiable and sV —1k(Vy(s))|Vy(s)|M~1V{(s) is also continuously differentiable, and the
equality (1.3)¢ holds everywhere. This shows that Vp(s) satisfies, in the classical sense, the
equation (1.3) in the open set (0, +00)\Zo(Eys). Integrating the equation (2.2)o over [a;, b;]
gives the equality Wy(a;) = Wy(b;), namely

— — 8=8;+0 .
SRV )IVE )MV T e = 0,5 =1,2,--. (42)
Moverover, the solution Vp(s) can be represented by
8
Vo(s) = B + Z(a,- —b;)H(s —s;) + / Va (t)dt for all s € [0, +00). (4.3)
. 0
J

We summarize the results above in the following statement.

Theorem 4.1. The boundary value problem (1.3).—(1.4) for each fixed ¢ > 0 has a
solution V,(s) and the reduced boundary value problem (1.3)o—(1.4) has a.solution Vy(s).
Moreover, the solution Vy(s) can be represented by the formula (4.3),where {[a;,b;];j =
1,2,---} is the collection of all intervals of degeneracy possessed by the function k(t) in [0, B],
U{s = s;} is the set of all jump points of Vy(s), and Vy(s) satisfies the jump conditions (4.1)
and (4.2) at each of its jump points. From the formula (4.3), we conclude that if and only
if the function k(t) has at least one interval of degeneracy in [0, B] discontinuities appear in
Vo(s) and there exists a one-to-one correspondence between the collection of all intervals of
degeneracy possessed by k(t) in [0, B] and the set of all jump points appearing in Vy(s).

Clearly, U,(x) := V(Jz|) is a radially symmetric solution of the problem (1.1).-(1.2) and
Uo(z) := Vo(|z|) is a radially symmetric solution of the reduced problem (1.1)p—(1.2), in
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which discontinuities appear if and only if k() has at least one interval of degeneracy in
[0, B]. Without doubt, there are infinitely many such solutions.
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