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ISOMORPHISMS OF STABLE STEINBERG GROUPS* **

L i F u ’a n *

Abstract
In [2] the author discussed the isomorphisms between two unstable Steinberg groups St„%(A) : 

and Stn(R) over commutative rings. The aim,of the present paper is to determine the isomor­
phisms between two stable Steinberg groups St(A) and St(R), and the isomorphisms between 
the corresponding stable linear groups.

§1. Introduction
Let R be an associative ring with identity, arid Vn =  R ^  the free (right) Л-module 

of rank n . ; Regard Vn as a submodule of VJ,+i via Vn+i .=. Vn ф R. Under the standard 
basis of Vn, one has AutR{Vn) =  GLn(R), and GLn(R) can be viewed as a subgroup of 
GLn+i(R) in a natural way. Let GL(R) — VimGLn(R) be the direct limit of the GLn{R), 
called the stable general linear group over R. GLn(R) can also be viewed as. a subgroup 
oi GL(R). Let En(R) be the subgroup of GLn(R) generated byallelem entary matrices 
d j(o) =  l  +  aeij(l < i , j  < n ,i  Ф j^a £ R). The stable elementary group E(R) is the direct 
Kmit of the En(R). By the Whitehead lemma, E(R) is just the commutator subgroup of 
GL(R) (cf. [1]). Define Ki(R) == GL(R)/E{R). Then, one has an exact sequence of groups

1 -* E(R) GL(R) -> Ki(R) -> 1. ' (1.1)

For n >  3, the Steinberg group of dimension n over R, Stn(R), is the group generated by 
the symbols Xij(a)( 1 <  i , j  < n,i ф j,a  £ R) subject to the following Steinberg relations

Xjj(ft)Я .(b) —— -f b),
I хц{а),хл{Ь))=хц{аЬ),гф1, V (1.2)

[х^[а),хы(Ь)] =  1,* ф l and j  ф k.t 
Define the canonical homomorphism

Фп • Stn(R) —> En(R)

which sends хц (a) to eij(a). On the other hand, one has the canonical homomorphism 
Stn(R) —► Stn+i(R) sending Xij(a) to Xij(a). Let the stable Steinberg group St(R) be the 
direct limit of the Stn(R) and

ф =  lim фп : St(R) —► E(R).
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Denote K 2(R) =Кетф. Then the following sequence of groups

1 -► K2(R) -* St(R) -► E(R) ->1 (1.3)

is exact. Steinberg^ and Milhqr;^ have proved that ф : Rt(Rf^E{M ) is jauniversal central 
extension, and K 2(R) is just the center of St{R).

For two groups G and Я , denote by Iso(G,H) the set of isomorphisms from G onto Я . 
Let A be another associative ring with identity. , .

T heorem  1 .1 . There is a natural 1-1 correspondence between Iso(St(A), St(R)) and 
Iso(E(A),E(R)).

P roof. Let A : St(A) —> St(R) be a group isomorphism. Then, Л maps ^ ( .A ), the center 
of St(A), onto К 2(Й), the center of Si(R). Thus, by the ex$ct sequence (1.3), A naturally 
induces an isomorphism from E(A) to E(R). Conversely, assume A : E ( A ) >■ E(R) is a 
group isomorphism. Then, Л can be naturally and uniquely lifted to an isomorphism from 
St(A) to St(R), since St(A) and St(R) are respectively universal central extensions of E(A) 
and E(R).

/ §2. Some Lemmas
By Theorem 1.1, the determination of Jso(<S't(A), St(R))is equivalent to that of Iso(E(A), 

E(R)). Throughout this section, A and R are commutative rings, and A : E(A) —> E(R) is 
a group isomorphism. Denote by тах(Я ) the set of maximal ideals oi R.
' L em m a 2 .1 . {E(R)C\GL(R, M)\M e  тах (Я )}  is the set of maximal norinal subgroups 

o£ E(R) ‘, where, GE(R, M) is the principal congruence subgroup of level M, i.e., the kernel 
of the canonical homomorphism GL(R) -♦  GL{R/M).

P roof. Let M  е .т а х (Я ). Then, \E(R) П GL(R, M) is a maximal normal subgroup of 
Я(Я), since the quotient group E(R)/(E(R) П GL(R, M)) is isomorphic to E(R/M) which 
is a simple group. Conversely, assume N  is an arbitrary maximal normal subgroup of E{R). 
By a theorem of Bass ([1], Chap. V, Theorem (2.1)), there is a unique ideal I  of R such 
that : )_ •

E(R,I) C N C GL{R,I),

where E(R, I) is the elementary congruence subgroup of level I , i.e., the normal subgroup of 
E(R) generated by all еу(Ь)(г ф j, b e  I), Since N ф E(R), I  ф R. Thus, there is an M e  
тах(Я ) containing I. Hence, N  C E(R)r\GL(R,M). It follows that N  =  E(R)f)GL(R,M) 
by the maximality of N. i

By Lemma 2.1, the isomorphism Л : E{А) 4-* E(R) yields a 1-1 correspondence between 
max(A) and та х (Я ), J  M , such that . , ,

v  Л(Я(А) П GL(A, J)) =  E(R) П GL(R, M).

Thus, A induces an isomorphism of quotient groups, A : E{A/J) —► E(R/M), which has 
been made clear. > .

L em m a 2 .2 . There exist a held isomorphism а : A /J  —> R/M, and an infinite invertible 
matrix д over R/M, such that either

A(x) = д х ^ д 1 for all x € E(A/J), . . -
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or

Л(ж) =  gxag~l for all x eE(AfJ),

where x is the transpose inverse of x.. , :
P roof. See [4], Theorem 5.3.

' Consider now the image of En(A) under Л. Obviously, there is a smallest integer N(n) 
such that A(En(A)) С Ещп)(Я), and N(n) < N(m) whenever a < m . For M j€  тах(Д ), 
let гм  : E(R) —» E(Rm)  be the group homomorphism induced by the localization Д —> Rm - 

L em m a 2 .3 . Let M  €  max(jR). Then there exists a set of matrices

{д(п,М) e ОЬщп)(Ям)\п >  4},

such that either

(rM о Л)еу(1) =  g(n, M)eij(l)g(n) M)~l (2.1)

for all n >  4 ,1  <  i , j  < n, i ф j , or
(rM о Л)еу(1) =  g(n,M)ej i(-i)g (n ,M )-1 , (2.2)

for all n >  4 ,1  < i , j  < п ,1 ф  j . Moreover, (2.1) and (2.2) cannot оссдг simultaneously.: 
P roof. Use Lemmas 2.1 and 2.2, and proceed as in Sections 3-5 of [5]. ,
Denote R =  J ]  Дм- Then, one has a canonical embedding. Д ,1 е .,  Д  can

M  6max(R)
be regarded as an extension of Й ."Thus, '<3Ln(R) C GLn(R) =  f j  GLn(Rjrf). For

■ ' ’ . ; ■' , ■ M€max(R)

n >  4, let g(n) =  П  g{n, M) e GLN(n)(Д ), where g(n,M) is given by Lemma 2,3. ’
М бтах(Л)

L em m a 2 .4 . There is an idempoteni s in R Such that
Лву.(1) = g(n)[eij(ljs +  е^ (-1 )(1  -  % ( n ) -1 , (2.3)

holds for all n > 4, 1 < i , j  < n , i Ф j.
P roof. Let Si (resp. S2) be the product of the Rm where M is so that (2.1) (resp. (2.2)) 

in Lemma 2.3 holds. Then, R =  Si x £ 2- Denote by s the identity of Si. Since A ey(i) is 
completely determined by the set

{(гм  °  h)eij(l)\M  €  т а x(R)},

it follows that (2.3) holds from Lemma 2.3. It can be proved that s belongs to R by using 
the method in Section 6 of [5].

Write R =  Ri x R2 where R\ — Rs and R2 =  Д (1—s). Then, GL{R) — GL(Ri) x GL(R2). 
The idempotent s of R determines a generalized contragradient automorphism к of GL(R):

... k(x i,z2) =  {xi,x2)
for all (xi,x2) 6  GL(Ri)xGL(R2). Clearly, k(GLn{R)) == GLn(R) and k(En(R)) =  En(R). 
On the other hand, for any M  € тах(Д ), either Ri or R2 is contained in M  since s ( l  -  s) == 
0 e M. If s ф M, then 1 -  s =  0 in Rm , and Rm =  (Ri )m, where Mi =  M  П R i. So

R i — j j  (Ri)mi =  J J  Rm ~ Si.
Mi€max(Ai) Memax(R)

■ s£M • , ,

Similarly, R2 = S2. Use the same letter J? to denote the generalized contragradient auto­
morphism of GL(R) determined by s. Evidently, k2 =  1.
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Applying к to the two sides of (2.3), one obtains

(к о Л)еу ( 1) =  fc(5 (n))ei;,(l)A:(5 (n)_1).

After replacing the original k(g(n)) by g(n), we see that the equality

.. (* 0 A)fij(l)-== 0 (n )e y (lM n )-1  :• (2-4)

holds for all n >  4 ,1  <  i, j  <  n, г ф j.
Assunae га >  n >  4. One sees, by (2.4)', that g{n)~lg(m) commutes with all e y ( l ) ( l  <

i , j  < n ,i Ф j). Thus, g(n)~1g(m) is equal to ^  ^  , where c is a scalar matrix of order

n. The equality (2.4) will not change if we replace c~lg(m) by g(m). Thus, there is a set of 
matrices

{<?(n) €  GLN(n)(R)\n > 4 }

such that (2.4) holds, and g(n) and g(m) have the same first n columns, and gin)'1 and 
g(m )-1 have the same first n rows whenever m > n. This means that {g(n)\n > 4} is 
compatible in some sense.

An infinite matrix is said to be column-finite (resp: row-finite) if each of its columns (resp. 
rows) has only a finite number of noflzero entries. Now construct an infinite matrix g over 
R whose first n columns are the same as those of g(n) for all n > 4. By, the compatibility in 
the above sense, g is well-defined, and column-finite. (We say that g is glued by the columns 
of the g(n).) Similarly, construct an infinite matrix <? whose first n rows are the same as 
those of g in )'1. G is also well-defined, and row-finite. By the construction, Gg =  1 where 1 
is the infinite identity matrix. Although one does not know, at the moment, whether gG =  1 
(which will be proved in Theorem 3.1), anyhow, (2.4) can be rewritten as

(fc о Л)е^(1) =  1 + geijG , ' ' (2.5)

for all i Ф j . , ?

L em m a 2 .5 . There is an injective homomorphism of rings, <r : A -+ R, such that

ik о A )ey(a) =  ^(п)е0 (<т(а))^(та)-1 (2.6)

holds for all n >  4, 1 <  i , j  < n, i ф j ,  and a e  A, or in other words,

, , • ; (fcoA )ey(a) =  l  +  cr(a)geijG . .. .. (2.7)

for all гф  j , and a e A.
P roof. Let a € A. Since ey(o) commutes with all epg(l)  ip ф j  and q ф г), applying 

the isomorphism к о A, one sees, by (2.5), that (fc о A)eij(a) commutes with all 1 +  gepqG 
(p Ф j  and q Ф i). It follows that (к о A)eij(a) =  s'(n)eiJ(cr(a))gf(n)_1 for some a(a) e  R. 
But, а(а) belongs to R just as the dement s in Lemma 2.4 does. By using the Steinberg 
relations and the fact that ко A is an isomorphism, one derives that <y : A —► R is an injective 
homomorphism of rings. ■

R em ark . It follows from Lemma 2.2 that the homomorphism <r given by Lemma 2.5 is 
compatible with the 1-1 correspondence between max(A) and тах(Д ), i.e., if J € max(A) 
corresponds to M  €  max(R), then &iJ) С M, and <r(A — J) C R — M. Thus, a induces a
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homomorphism A j —> Ям- Their product

Л =  J |  A j -* [ |  Rm =  R
J6max(A) Мбтах(Я)

is also denoted by <r. !

§3. Main Results
T h eorem  3 .1 . Let A and R be commutative rings, and let A : E(A) —> E{R) be a 

group isomorphism. Then, there exist
(i) a ring isomorphism о : A —► R,
(ii) a generalized contragradient automorphism к of E(R) determined by An idempotent 

in R, and
(iii) an infinite invertible matrix д over R which is both column-finite and row-finite, such 

that

(к о Л)е^(а) =  де^{о{а))д~х {3.1)

holds for all г Ф j , and a e  A, of in other words,

(к о A)x =  gx°g~l (3.2)

for all x e  E(A).
P roof. Section 2 has given an injective homomorphism of rings о : A —*■ R, and a 

generalized contragradient automorphism к of E(R) determined by an idempotent s in R, 
and two infinite matrices g and G over R, such that (2.6) and (2.7) hold. Here, g is cqlumn- 
finite, and <7 is row-finite, and Cr# =  1.

Apply Lemmas 2.1-2.5 to the isomorphism A- 1 E(R) -> E(A). One obtains an in­
jective homomorphism т : R -* A, a generalized contragradient automorphism k' of E(A) 
determined by an idempotent t in A, and infinite matrices h and H  over A, such that

(к1 о Д-1 )е^(г) =  h(n)ejj(T(r))/i(n)-1

holds for all n >  4, 1 <  i, j  < п ,1 ф  j  and r € R, i.e., (к1 о к~1)ец{г) =  1 +  r(r)he$jH for 
all г Ф j  and r e  R. Here h is glued by the columns of the h(n), and H is glued by the rows 
of the h(n)~x, and Hh =  1.

Fix an n > 4. (2.6) implies that (к о A)x =  g(n)x?g(n)~* holds for all x e En(A), i.e., 

A(x) = k(g(n))(xffs + $*(l-s))k(g(n)~1).

For any x e  En{A), and any m large enough,

xt +  x(l - 1) =к'(х) = (к' о Л-1  о Л)(ж) =  (к' о А- 1 ) ^ ^ ) ) ^ * ?  +  -  s))k(g(n)~x)]

=h(m)lk(g(n))]T[xffS +  х°(1 -

It follows that t(s) =  t, and a and r  are both isomorphisms, and r  =  cr-1 . Moreover, 

h(m)[ifc(</(n))]r is equal to ^  where c is a scalar matrix of order n. This shows that,

for all m large enough, h[m) and c[k(g(n)~1)]T have the same first n rows, and /i(m)-1 
and c~1[k(g(n))]T have the same first n columns. Thus, the infinite matrix h glued by 
the columns of the h(n) is not only column-finite but also row-finite, so is Я . Moreover,
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Hh =  hH =  1. Similarly, g and G are both column-finite and row-finite, and Gg — gG =  1, 
i.e., G = g~l . Hence, (2.7) can be rewritten as (3.1).

Since there is a natural 1-1 correspondence between Iso(St(A), St(R)) and Iso(E(A), 
E(R)), every isomorphism from St(A) to St(R) has also been made clear. In particular, for 
the g in Theorem 3.1, gx{j(r)g~1 makes sense, and

k(xij(r)) =  {xij(rs),Xji(-r( 1 -  s))) £  SRRt) x St(R2) =  St(R).

By using Theorem 3.1, every isomorphism from GL(A) to GL{R) can also be determined. 
T heorem  3.2. Let A and R be commutative rings, and let Л : GL(A) —► GL(R) be a 

group isomorphism. Then there exist
(i) a ring isomorphism <r : A -*  Ry
(ii) a generalized contragradient automorphism к of GL(R) determined by an idempotent

in R, and r
'' ■ ' i*** • ■ •* ■

(iii) an infinite invertible matrix д over R which is both column-Snite and row-finite, such 
that (к о Л)ж =  дхад~х for all x e GL(A).

P roof. Since E(A) and E(R) are the commutator subgroups of GL(A) and GL(R) 
respectively, Л induces an isomorphism from E(A) to E{R). By Theorem 3.1, one obtains 
suitable cr, к and g, such that (к о Л)у =  дуад~1 for all у e  E{A). Now, xyx~l e  E(A) for 
any x €  GL(A) and у € E{A). Therefore,

g(xyx~1)ffg~1 =  (kpA)(xyx~1) = (koA)(x)gy<Tg~l(koA)(x~1).
Thus, (x~1)ffg~1(koA)(x)g commutes with all y° e E(R). This implies that (x~1)<Tg~^(ko 
A)(x)'g =  1, i.e., (к о A)x = gx^g"1.

C orollary 3.1. Let A and R be commutative rings. Then,

Iso(St(A), St(R)) =  Iso(E(A),E(R)) *  Iso(GL(A),GL(R)).

In particular, Aut(St(R)) =  Aut{E{R)) =  Aut(GL(R)).
P roof. It follows from Theorems 1.1, 3.1 and 3.2.
C orollary 3.2. Let A and R be commutative rings. Then the following statements are 

equivalent. ,
(i) A * R .  (ii) St(A )*S t(R ).
(iii) E(A) =  E(R). (iv) GL(A) =  GL(R).

Here, (i) is an isomorphism of rings, and (ii)—(iv) are isomorphisms of groups.
P roof. It follows from Theorems 1.1, 3.1 and 3.2,
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