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- ISOMORPHISMS OF STABLE STEINBERG»GROUPS*‘%

L1 Fu’aN*®

Abstract R
_.In[2] the author discussed the isomorphisms between two unstable Steinberg groups Stm (A): .
_and Sty (R) over commutative rings. The aim of the present paper is to determine the isomor- . .,
phisms between two stable Steinberg groups St(A) and St(R), and the 1somorphlsms between' o
“the eorrespondmg stable hnea.r groups. i

§1. Introduction

Let R be an associative ring with "ident;ity; “and VV,'," = R™ the free (right) R-module
of rank n. . Regard V,, as a submodule of V;i4y via Voy1 =V, @ R. ' Under the standard

‘basis of V;,, one has Autr(V;) & GL,(R), and GL,(R) can be viewed .as a subgroup of

GLu+1(R) in a natural way. Let GL(R) = lim GL.(R) be.the direct limit.of the GLx(R);
called .the stable general linear group over ‘R.. GL,(R) can also be viewed.as a subgroup
of GL(R). Let E,(R) be the subgroup of GL,(R) generated by all elementary matrices
eij(a) = 1+ae;;(1 < 4,5 < n,i# j;a € R). The stable elementary group E(R) is the direct
limit of the E,(R).. By the Whitehead lemma, E(R) is just the commutator subgroup of
GL(R) (cf [1]). Define K;(R) = GL(R)/E(R). Then, one has an exact sequence of groups
1—-*E(R)—->GL(R)——>K1(R)—->1 R (1 1)
For n > 3, the Stemberg group of dimension 1 over R, Stn(R), is the group generated by
the symbols z;;(a)(1 < 4,7 < n,i # j,a € R) subject to the following Steinberg relations
Tij (a')wn (b) = @y (a +b), 4
[mig(a),za(®)] = malab),i £ 1, T ay
[oii(@), zu(®)] = Li#land j £k.)
Define the canomcal homomorphlsm
: ¢n . Stn(R) - n(R)" .

which sends z;;(a) to e;;(a). On the other hand, one has the canonical 'homomorphism
Stn(R) — Stnq1(R) sending x;;(a) to z:(a). Let the stable Stemberg group St(R) be the
dlrect limit of the Stn(R) and

¢ = lim b St(R) - E(R).
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Denote K3(R) =Ker¢. Then the following sequence of groups
1— Ky(R) —» St(R) —» E(R) — 1 - (1.3)

is exact.’ Steinbergl®! and Milnorl3 have proved that ¢ : St(R)'— E(R) is a universal central
extension, and K2(R) is just the center of St(R).

. For two groups G and H, denote by Iso(G, H) the set of isomorphisms from G onto H.
Let A be another associative ring with identity. ; . _

Theorem 1.1. There is a natural 1-1 correspondence between Iso(St(A), St(R)) and
Iso(E(A), E(R)). ;

Proof. Let A : S’t(A) — St(R) be a group 1somorph1sm Then, A'maps K5 (A), the center
of St(4), onto K, 2 (R), the center of St(R). Thus, by the exa,ct sequence (1. 3) A naturally
induces an 1somorph1sm from E(A) to E’(R) Conversely, assume A : F(A)— E(R) is a
group isomorphism. Then, A can be naturally and uniquely lifted to an isomorphism from
St(A) to St(R), since St(A) and St(R) are respectively universal central extensions of E(A)
and E(R).

IR TR, §2 Some Lemmas ‘ o .

. By Theotem 1:1, the determination of T so(St(A) S't(R)) is equivalent to that of I so(E(A),
' E(R)) Throughout this section; A'and R are commutative rings,’and A : E(A) — E(R) is
a group isomorphism. Denote by max(R) the set of maximial ideals of R. ;

» Lemma 2.1..- {E(R)NGL(R, M)|M € max(R)} is the set of maximal normal subgrotzps
of E(R), where.GL(R, M):is the: principal congruence subgroup of level M, i.é., the kernel
of the canonical homomorphism GL(R) - GL(R/M). ;

Proof. :Let M € max(R). Then, E(R) 0 GL(R, M) is a makimal normal subgroup of
E(R), since the quotient group E(R)/(E(R)N GL(R, M)) is isomorphic to E(R/M) which
is a simple group Conversely, assume J is an arbitrary maximal normal subgroup of E(R).
By a theorem of Bass ([1], Chap V Theorem (2 1)) there is a unique ideal I of R such
-that RN - JR :

C E(R HeNg G’L('R"I),

where E(R, I) is the elementary congruence, subgroup of level I, i.e., the normal subgroup of
E’(R) generated by all e;;(b)(é # ],b € I). Since N # E(R), I # R. Thus, there is an M €
‘max(R) containing I. Hence, N C E(R)NGL(R, M). It follows that N E(R)ﬂGL(R M )
by the maximality of N.

By Lemma 2.1, the isomorphism' A : E(A) - E(R) yields a 1-1 correspondence between
ma,x(A)andma.x(R) J o M,such that - . ; R

T A - ME(A)NGL(A, J)) = E(R)nG’L(R M)

Thus, A induces an 1somorph1sm of quotlent groups, A: E(A/ J) = E(R/M )s which has
been made clear. ST

Lemma 2.2. There exist a ﬁeId 1somorphrsm g: A/ J— R/ M, and an infinite mvertrble
matrix g over R/M, such that e1ther . : o . .

A(z) = ga®g~! forall ¢ € E(ALJ),
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or o S
A(z) = g#%g~" foraHa:GE(A/J)

where & is the transpose inverse of x.
~ Proof. See [4], Theorem 5.3.

* Consider now the image of En(A) under A. Obviously, there is a smallest integer N(n)
such that A(E,(A)) € En(n)(R), and N (n) < N(m) whepever n < m. For M ‘€ max(R),
let rar : E(R) — E(Raz) be the group homomorphism induced by the locahzatlon R— RM _

Lemma 2. 3 Let M € max(R) Then there exists a set of matrzces N :

L (e M) € CLy(Rain 2 4},
such that either | R
(rag © e (1) = g(m, M)ess (Lg(m, M) (2

fora11n>4 1<z,J<n,%¢J,OF o
| ‘ (rMoA)ez,(l) - g(n, M)eji(- 1)g(n,M)- S (2 2)

for aﬂ n > 4 1 < z, j < n, 1% j. Moreover, (2.1) and (2.2) cannot occur s1mu1taneously, .
_ Proof. Use Lemmas 2.1 and 2.2, and proceed as in Sections 3-5 of [5].

. Denote R = H RM ‘Then, one has a canonical embeddmg R. . R’ 1e R can
' M emax(R) '
‘ be regarded as an extensron of R “Thus, GL,,(R) - G’Ln(R) I GL,,(RM) For
- "Mé€max(R) .’
n >4, let g(n) H (n, M )€ GLN(,,)(R), where g(n, M) is given by Lemma 213 !
MGmax(R) A Co
Lemma 2.4, There is an 1dempotent s m R such that _ T
ey = a(m)fes; (1)s + %( 1)(1 - S)IQ(n) @23

hoids for alln > 4,1 <4,j<n,i#j.
Proof. Let S; (resp. S2) be the product of the RM where M is so that (2.1) (vesp. (2.2))
in Lemma 2.3 holds. Then, R = 8; x 8,. Denote by s the 1dent1ty of 51 Since Aeu(l) is’

completely determined by the set

« {(rse © Ness 1M € max(®)),
it follows that (2.3) holds from Lemma 2.3. It can be proved that s belongs to R by usmg
the method in Section 6 of [5].

‘Write R = Ry x Ry where Ry = Rs and Ry = R(1—s). Then, GL(R) = GL(Rl)x GL(Rg). _
The idempotent s of R determines a generalized contragradient automorphism k of GL(R):
. k(m1,%2) = (21,52)

for all (a:l, z2) € GL(R1) X GL(Ry). Clearly, k(GLn(R)) = GL,(R) and k(En(R)) En(R) '
On the other hand, for any M € max(R), either R; or R is contained in M since s(1—s) =
OGM Ifs¢M thenl—-s-Om RM, andRM (R1)n, where M = MNR;. So’ '
Mlemax(Rl) MEmax(R) o
] , . v . L. 88M . .
Slmﬂa,rly, Rz = S2 Use the same letter k to denote the generalized contragra.dlent auto- -
morphism of GL(R) determined by s. Evidently, k% = 1.
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Applying & to the two sides of (2.3), one obtains

(ko Aei(1) = k(g(n))es;(1)k(g(n) ™).
After replacing the original k(g(n)) by g(n), we see that the equahty '

R (ko A)eu(l) g(n)e,,(l)g(n) -1 . e (2.4)
holdsfora.lln>4 1<i,j<mji#j. Yoo
“Assume'm > 1 > 4. One sees, by (2 4), that g(n)’lg(m) commutes with all €ij (1)(1 <

0 B where cisa scalar matrlx of order

n. The equality (2.4) will not change if we replace c“1 g(m) by g(m). Thus, there is a set of
matrrces

{gn) € GLN(n)(R)In 2 4}

such that (2.4) holds, and g(n) and g(m) have the same ﬁrst n columns, and g(n)’ ar
g(m)"1 have the same ﬁrst‘. n rows whenever m > n. Thrs means that {g(n)ln > 4} is
compatible in some ‘sense. ' ‘ : :

An infinite ma.tnx is sa1d to be column-finite (resp: row—ﬁnrte) if each of its columns (resp.
rows) ‘'has only a finite iumber of nonzero entries. Now construct an mﬁmte matrix g over
R ‘whose first n columns are the same as those of g(n)for all n > 4. By the compatibility in
the above sense, g is well-defined, and column-finite. (We say that g is glued by the columns
of the g(n).) ‘Similarly, construct an infinite matrix G whose first n ‘rows are the same as
those of g(n)~!. G is also well-defined, and row-ﬁnlte By the constructlon, Gg=1 where 1
is the infinite identity matrix. Although one does not know, at the moment, whether gG =1
(whrch will be proved in Theorem 3.1), anyhow, (2.4) can be rewritten as

(ko A)ei;(1) = lfl"géij:G,’ L (2.5)
for allé 9é J- S | .
Lemma 2.5. There is an injective homomorphism of rings; c: A — R, such that
(ko Meij(@) = g(n)esj(o(a))g(m) ™ (26)
holds for all n >4,1<4,j<n,i # j, and a € 4, or in ‘other wo.'rds,‘ .: o | o
(ko A)eij(a) = 1+0,(a)g.eijG_' o o ‘(2_.'7)l

for-all s’ ;éj, andaGA

Proof. Let a € A. Since e;j(a) commutes with all epq(l) (p#jand g# z), applying
the isomorphism & o A, one sees, by (2.5), that (ko A)e;;j(a) commutes with all 1 + gequ
(p # 7 and g # i) It follows that (k o A)e;j(a). = g(n)e;;(o(a))g(n)=2 for some a(a) €R.
But, o(a) belongs to R just as the element s in.Lemma 2.4 does. By using the Steinberg
relations and the fact that koA is an isomorphism, one derives that o : A — R is an injective
homomorphism of rings. S o

Remark. It follows from Lemma 2:2 that the homomorphrsm o given by Lemma 2.5 is
compatible with the 1-1 correspondence between max(A) and max(R), i.e., if J € max(A4)
corresponds to M € max(R), then ¢(J) € M;.and (A —J) C R— M. Thus, ¢ induces a
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homomorphism-A; — Rjs. Their product . ce
Z= H Ay’ H Ry =R
JEmax(A) '. M Gmax(R) ' '

is also denotéd by 0. '

- $3."Main Results

"Theorem 3.1. ‘'Let A and R be commutatwe rings, and Iet A E(A) - E(R) be a
group 1somorplusm Then, there exist - '

(i) a ring isomorphism o : A — R, .

(ii) a generahzed contragradzent automorplusm k of E(R) determmed by an rdempotent
iR, and " . Lo
(iii) an infinite mvert1b1e matnx g over R wluch is both cqumn—ﬁmte and row—ﬁmte, such
that ‘ o '

| | (koMey(@ =geslol@)g™ . (3)
hoIds for-all ¢ # I, and a€ A or in other words, R _
g GoMp=grg™ @

for all z € E(A). .

Proof. Section 2 has given ‘an injective homomorphlsm of ringgs 0 : A - R, and a
generalized contragradient automorphxsm k:of E(R) determined by an-idempotent s in R,
and two infinite matrices g and G over R, such that (2 6) and (2 7) hold. Here, gis column-
finite, and G is row-finite, and: Gg = 1. :

Apply Lemmas 2.1-2.5 to. the isomorphism A~} E(R) - -E(A) One obtams an in-
jective homomorphism 7 : R — A, a generalized contragradlent automorphlsm k' of E(A)
determined by an idempotent ¢ in A, and mﬁmte matrxces h and H over A such that '

o (k' o A™V)ey; (r) h,(n)eZJ ('r('r))h(n)~ o
holds for all n > 4,1<i,j<m,i#jandr € R, ie., (K oA V)e;;(r) =1+ 'r('r)he;,H for
all ¢ # j and r € R. Here h is glued by the columns of the h(n), and H is glued by the Tows
of the h(n)~!, and Hh = 1.

Fix an n > 4. (2 6) implies that (ko A)w g(n)w g(n) 1 holds for all z€ E, (A), e
A@) = k(g(n))(@”s + 57 (1 ~ 5))k(g(n)™?). |
For any = € E,(A), and any m large enough,
ot +3(1 ) =k'(z) = (K o A™" 0 A)(e)= = (k' o A’l )k(g(m)) (s + 37 (1~ 8))k(9(n) 1)]
 =hmk(@m)] s + 7 (1~ o) Do) ) hm) .
It follows that 7(s) = t, and o and 7 are both’ isomorphisms, and 7 -—o ' Moreover,

;. 0)
h(m) [k(g(n))]" is equal to. 0 4 |» where c 1s a scalar matrix of order n This shows that,

for all m large enough, h(m) a,nd c[k(g(n) 1)]" have the same first n rows, and h(m)"
and ¢1[k(g(n))]” have the same first » columns. Thus, the infinite’ matrix h glued by
the columns of the h(n) is not only column-finite but also row-finite, so is H. Moreover,
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Hh = hH = 1. Similarly, g and G are both column-finite and row-finite, and Gg = ¢gG =-1;
ie., G =g~1. Hence, (2.7) can be rewritten as (3.1). o

Since there is a natural 1-1 correspondence between I so(St(A),St(R)) and Iso(E(A),
E(R)), every isomorphism from St(A) to St(R) has also been made clear. In particular, for
the g in Theorem 3.1, gz;;(r)g~! makes sense, and | |

k(zi5(r)) = (zii(rs), zji(+=n(1 = 8))) € St(Ry) x St(R,) = St(R).

By using Theorem 3.1, every isomorphism from GL(A) to GL(R) can also be determined.

Theorem 3.2. Let A and R be commutative rings, and let A : GL(A) — GL(R) be a
group isomorphism. Then there exist

... (i) a ring isomorphism . : A — R,

(ii) a generalized contragradlent automorphxsm k of GL(R) determmed by an 1dempote11t
in R, and. o :

(iii) an infinite mvert1b1e matnx g over R Whmh is both cqumn-ﬁmte and row-ﬁmte, such
that (ko A)z = gz°g~! for all z € GL(A).

Proof. Since E(A) and E(R) are the commutator sibgroups of GL(A) and GL(R)

respectively, A induces an isomorphism from E(A) to E(R). By Theorem 3.1, one obtains

suitable o, k and g, such that (ko A)y = gy°g~! for ally € E(A). Now, zyz~! € E(A) for
any ¢ € GL(A) and y € E(A) Therefore,

o e e = (ko Naw ) = (ko @ s ko Y.
Thus, (m“l)" “1(koA)(w)g commutes with all y° GE(R) This 1mphes that( “1)‘,"g‘-1-(k.0.

| A)(=)g =1, ie., (ko A)z = gz7g~".

Corollary 3.1. Let A and R be commutative rings. Then,
_ Iso(St(A) St(R)) o Iso(E(A), E(R)) 2 Iso(GL(A), G’L(R))

I11 partrcu]ar, Aut(Si(R)) = Aut(E(R)) Aut(GL(R)) ' ’

Proof. Tt follows from Theorems 1.1, 3.1 and 3.2.

Corollary 3.2. Let A and Rbe commutatwe rings. Then the following statements are
equivalent. _ ‘

(i) AR. T (ii) St(A) & St(R)

(iii) E(A) = E(R). (iv) GL(A) = GL(R).

. Here, (i) is an isomorphism of rings, and (ii)~(iv) are isomorphisms of groups.

Proof. It follows from Theorems 1.1, 3.1 and 3.2,
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