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ISOMORPHISMS OF STABLE STEINBERG GROUPS* **

L i F u ’a n *

Abstract
In [2] the author discussed the isomorphisms between two unstable Steinberg groups St„%(A) : 

and Stn(R) over commutative rings. The aim,of the present paper is to determine the isomor
phisms between two stable Steinberg groups St(A) and St(R), and the isomorphisms between 
the corresponding stable linear groups.

§1. Introduction
Let R be an associative ring with identity, arid Vn =  R ^  the free (right) Л-module 

of rank n . ; Regard Vn as a submodule of VJ,+i via Vn+i .=. Vn ф R. Under the standard 
basis of Vn, one has AutR{Vn) =  GLn(R), and GLn(R) can be viewed as a subgroup of 
GLn+i(R) in a natural way. Let GL(R) — VimGLn(R) be the direct limit of the GLn{R), 
called the stable general linear group over R. GLn(R) can also be viewed as. a subgroup 
oi GL(R). Let En(R) be the subgroup of GLn(R) generated byallelem entary matrices 
d j(o) =  l  +  aeij(l < i , j  < n ,i  Ф j^a £ R). The stable elementary group E(R) is the direct 
Kmit of the En(R). By the Whitehead lemma, E(R) is just the commutator subgroup of 
GL(R) (cf. [1]). Define Ki(R) == GL(R)/E{R). Then, one has an exact sequence of groups

1 -* E(R) GL(R) -> Ki(R) -> 1. ' (1.1)

For n >  3, the Steinberg group of dimension n over R, Stn(R), is the group generated by 
the symbols Xij(a)( 1 <  i , j  < n,i ф j,a  £ R) subject to the following Steinberg relations

Xjj(ft)Я .(b) —— -f b),
I хц{а),хл{Ь))=хц{аЬ),гф1, V (1.2)

[х^[а),хы(Ь)] =  1,* ф l and j  ф k.t 
Define the canonical homomorphism

Фп • Stn(R) —> En(R)

which sends хц (a) to eij(a). On the other hand, one has the canonical homomorphism 
Stn(R) —► Stn+i(R) sending Xij(a) to Xij(a). Let the stable Steinberg group St(R) be the 
direct limit of the Stn(R) and

ф =  lim фп : St(R) —► E(R).
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Denote K 2(R) =Кетф. Then the following sequence of groups

1 -► K2(R) -* St(R) -► E(R) ->1 (1.3)

is exact. Steinberg^ and Milhqr;^ have proved that ф : Rt(Rf^E{M ) is jauniversal central 
extension, and K 2(R) is just the center of St{R).

For two groups G and Я , denote by Iso(G,H) the set of isomorphisms from G onto Я . 
Let A be another associative ring with identity. , .

T heorem  1 .1 . There is a natural 1-1 correspondence between Iso(St(A), St(R)) and 
Iso(E(A),E(R)).

P roof. Let A : St(A) —> St(R) be a group isomorphism. Then, Л maps ^ ( .A ), the center 
of St(A), onto К 2(Й), the center of Si(R). Thus, by the ex$ct sequence (1.3), A naturally 
induces an isomorphism from E(A) to E(R). Conversely, assume A : E ( A ) >■ E(R) is a 
group isomorphism. Then, Л can be naturally and uniquely lifted to an isomorphism from 
St(A) to St(R), since St(A) and St(R) are respectively universal central extensions of E(A) 
and E(R).

/ §2. Some Lemmas
By Theorem 1.1, the determination of Jso(<S't(A), St(R))is equivalent to that of Iso(E(A), 

E(R)). Throughout this section, A and R are commutative rings, and A : E(A) —> E(R) is 
a group isomorphism. Denote by тах(Я ) the set of maximal ideals oi R.
' L em m a 2 .1 . {E(R)C\GL(R, M)\M e  тах (Я )}  is the set of maximal norinal subgroups 

o£ E(R) ‘, where, GE(R, M) is the principal congruence subgroup of level M, i.e., the kernel 
of the canonical homomorphism GL(R) -♦  GL{R/M).

P roof. Let M  е .т а х (Я ). Then, \E(R) П GL(R, M) is a maximal normal subgroup of 
Я(Я), since the quotient group E(R)/(E(R) П GL(R, M)) is isomorphic to E(R/M) which 
is a simple group. Conversely, assume N  is an arbitrary maximal normal subgroup of E{R). 
By a theorem of Bass ([1], Chap. V, Theorem (2.1)), there is a unique ideal I  of R such 
that : )_ •

E(R,I) C N C GL{R,I),

where E(R, I) is the elementary congruence subgroup of level I , i.e., the normal subgroup of 
E(R) generated by all еу(Ь)(г ф j, b e  I), Since N ф E(R), I  ф R. Thus, there is an M e  
тах(Я ) containing I. Hence, N  C E(R)r\GL(R,M). It follows that N  =  E(R)f)GL(R,M) 
by the maximality of N. i

By Lemma 2.1, the isomorphism Л : E{А) 4-* E(R) yields a 1-1 correspondence between 
max(A) and та х (Я ), J  M , such that . , ,

v  Л(Я(А) П GL(A, J)) =  E(R) П GL(R, M).

Thus, A induces an isomorphism of quotient groups, A : E{A/J) —► E(R/M), which has 
been made clear. > .

L em m a 2 .2 . There exist a held isomorphism а : A /J  —> R/M, and an infinite invertible 
matrix д over R/M, such that either

A(x) = д х ^ д 1 for all x € E(A/J), . . -



No.2 Li, F. A. ISOMORPHISMS OF STABLE STEINBERG GROUPS 185

or

Л(ж) =  gxag~l for all x eE(AfJ),

where x is the transpose inverse of x.. , :
P roof. See [4], Theorem 5.3.

' Consider now the image of En(A) under Л. Obviously, there is a smallest integer N(n) 
such that A(En(A)) С Ещп)(Я), and N(n) < N(m) whenever a < m . For M j€  тах(Д ), 
let гм  : E(R) —» E(Rm)  be the group homomorphism induced by the localization Д —> Rm - 

L em m a 2 .3 . Let M  €  max(jR). Then there exists a set of matrices

{д(п,М) e ОЬщп)(Ям)\п >  4},

such that either

(rM о Л)еу(1) =  g(n, M)eij(l)g(n) M)~l (2.1)

for all n >  4 ,1  <  i , j  < n, i ф j , or
(rM о Л)еу(1) =  g(n,M)ej i(-i)g (n ,M )-1 , (2.2)

for all n >  4 ,1  < i , j  < п ,1 ф  j . Moreover, (2.1) and (2.2) cannot оссдг simultaneously.: 
P roof. Use Lemmas 2.1 and 2.2, and proceed as in Sections 3-5 of [5]. ,
Denote R =  J ]  Дм- Then, one has a canonical embedding. Д ,1 е .,  Д  can

M  6max(R)
be regarded as an extension of Й ."Thus, '<3Ln(R) C GLn(R) =  f j  GLn(Rjrf). For

■ ' ’ . ; ■' , ■ M€max(R)

n >  4, let g(n) =  П  g{n, M) e GLN(n)(Д ), where g(n,M) is given by Lemma 2,3. ’
М бтах(Л)

L em m a 2 .4 . There is an idempoteni s in R Such that
Лву.(1) = g(n)[eij(ljs +  е^ (-1 )(1  -  % ( n ) -1 , (2.3)

holds for all n > 4, 1 < i , j  < n , i Ф j.
P roof. Let Si (resp. S2) be the product of the Rm where M is so that (2.1) (resp. (2.2)) 

in Lemma 2.3 holds. Then, R =  Si x £ 2- Denote by s the identity of Si. Since A ey(i) is 
completely determined by the set

{(гм  °  h)eij(l)\M  €  т а x(R)},

it follows that (2.3) holds from Lemma 2.3. It can be proved that s belongs to R by using 
the method in Section 6 of [5].

Write R =  Ri x R2 where R\ — Rs and R2 =  Д (1—s). Then, GL{R) — GL(Ri) x GL(R2). 
The idempotent s of R determines a generalized contragradient automorphism к of GL(R):

... k(x i,z2) =  {xi,x2)
for all (xi,x2) 6  GL(Ri)xGL(R2). Clearly, k(GLn{R)) == GLn(R) and k(En(R)) =  En(R). 
On the other hand, for any M  € тах(Д ), either Ri or R2 is contained in M  since s ( l  -  s) == 
0 e M. If s ф M, then 1 -  s =  0 in Rm , and Rm =  (Ri )m, where Mi =  M  П R i. So

R i — j j  (Ri)mi =  J J  Rm ~ Si.
Mi€max(Ai) Memax(R)

■ s£M • , ,

Similarly, R2 = S2. Use the same letter J? to denote the generalized contragradient auto
morphism of GL(R) determined by s. Evidently, k2 =  1.
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Applying к to the two sides of (2.3), one obtains

(к о Л)еу ( 1) =  fc(5 (n))ei;,(l)A:(5 (n)_1).

After replacing the original k(g(n)) by g(n), we see that the equality

.. (* 0 A)fij(l)-== 0 (n )e y (lM n )-1  :• (2-4)

holds for all n >  4 ,1  <  i, j  <  n, г ф j.
Assunae га >  n >  4. One sees, by (2.4)', that g{n)~lg(m) commutes with all e y ( l ) ( l  <

i , j  < n ,i Ф j). Thus, g(n)~1g(m) is equal to ^  ^  , where c is a scalar matrix of order

n. The equality (2.4) will not change if we replace c~lg(m) by g(m). Thus, there is a set of 
matrices

{<?(n) €  GLN(n)(R)\n > 4 }

such that (2.4) holds, and g(n) and g(m) have the same first n columns, and gin)'1 and 
g(m )-1 have the same first n rows whenever m > n. This means that {g(n)\n > 4} is 
compatible in some sense.

An infinite matrix is said to be column-finite (resp: row-finite) if each of its columns (resp. 
rows) has only a finite number of noflzero entries. Now construct an infinite matrix g over 
R whose first n columns are the same as those of g(n) for all n > 4. By, the compatibility in 
the above sense, g is well-defined, and column-finite. (We say that g is glued by the columns 
of the g(n).) Similarly, construct an infinite matrix <? whose first n rows are the same as 
those of g in )'1. G is also well-defined, and row-finite. By the construction, Gg =  1 where 1 
is the infinite identity matrix. Although one does not know, at the moment, whether gG =  1 
(which will be proved in Theorem 3.1), anyhow, (2.4) can be rewritten as

(fc о Л)е^(1) =  1 + geijG , ' ' (2.5)

for all i Ф j . , ?

L em m a 2 .5 . There is an injective homomorphism of rings, <r : A -+ R, such that

ik о A )ey(a) =  ^(п)е0 (<т(а))^(та)-1 (2.6)

holds for all n >  4, 1 <  i , j  < n, i ф j ,  and a e  A, or in other words,

, , • ; (fcoA )ey(a) =  l  +  cr(a)geijG . .. .. (2.7)

for all гф  j , and a e A.
P roof. Let a € A. Since ey(o) commutes with all epg(l)  ip ф j  and q ф г), applying 

the isomorphism к о A, one sees, by (2.5), that (fc о A)eij(a) commutes with all 1 +  gepqG 
(p Ф j  and q Ф i). It follows that (к о A)eij(a) =  s'(n)eiJ(cr(a))gf(n)_1 for some a(a) e  R. 
But, а(а) belongs to R just as the dement s in Lemma 2.4 does. By using the Steinberg 
relations and the fact that ко A is an isomorphism, one derives that <y : A —► R is an injective 
homomorphism of rings. ■

R em ark . It follows from Lemma 2.2 that the homomorphism <r given by Lemma 2.5 is 
compatible with the 1-1 correspondence between max(A) and тах(Д ), i.e., if J € max(A) 
corresponds to M  €  max(R), then &iJ) С M, and <r(A — J) C R — M. Thus, a induces a
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homomorphism A j —> Ям- Their product

Л =  J |  A j -* [ |  Rm =  R
J6max(A) Мбтах(Я)

is also denoted by <r. !

§3. Main Results
T h eorem  3 .1 . Let A and R be commutative rings, and let A : E(A) —> E{R) be a 

group isomorphism. Then, there exist
(i) a ring isomorphism о : A —► R,
(ii) a generalized contragradient automorphism к of E(R) determined by An idempotent 

in R, and
(iii) an infinite invertible matrix д over R which is both column-finite and row-finite, such 

that

(к о Л)е^(а) =  де^{о{а))д~х {3.1)

holds for all г Ф j , and a e  A, of in other words,

(к о A)x =  gx°g~l (3.2)

for all x e  E(A).
P roof. Section 2 has given an injective homomorphism of rings о : A —*■ R, and a 

generalized contragradient automorphism к of E(R) determined by an idempotent s in R, 
and two infinite matrices g and G over R, such that (2.6) and (2.7) hold. Here, g is cqlumn- 
finite, and <7 is row-finite, and Cr# =  1.

Apply Lemmas 2.1-2.5 to the isomorphism A- 1 E(R) -> E(A). One obtains an in
jective homomorphism т : R -* A, a generalized contragradient automorphism k' of E(A) 
determined by an idempotent t in A, and infinite matrices h and H  over A, such that

(к1 о Д-1 )е^(г) =  h(n)ejj(T(r))/i(n)-1

holds for all n >  4, 1 <  i, j  < п ,1 ф  j  and r € R, i.e., (к1 о к~1)ец{г) =  1 +  r(r)he$jH for 
all г Ф j  and r e  R. Here h is glued by the columns of the h(n), and H is glued by the rows 
of the h(n)~x, and Hh =  1.

Fix an n > 4. (2.6) implies that (к о A)x =  g(n)x?g(n)~* holds for all x e En(A), i.e., 

A(x) = k(g(n))(xffs + $*(l-s))k(g(n)~1).

For any x e  En{A), and any m large enough,

xt +  x(l - 1) =к'(х) = (к' о Л-1  о Л)(ж) =  (к' о А- 1 ) ^ ^ ) ) ^ * ?  +  -  s))k(g(n)~x)]

=h(m)lk(g(n))]T[xffS +  х°(1 -

It follows that t(s) =  t, and a and r  are both isomorphisms, and r  =  cr-1 . Moreover, 

h(m)[ifc(</(n))]r is equal to ^  where c is a scalar matrix of order n. This shows that,

for all m large enough, h[m) and c[k(g(n)~1)]T have the same first n rows, and /i(m)-1 
and c~1[k(g(n))]T have the same first n columns. Thus, the infinite matrix h glued by 
the columns of the h(n) is not only column-finite but also row-finite, so is Я . Moreover,
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Hh =  hH =  1. Similarly, g and G are both column-finite and row-finite, and Gg — gG =  1, 
i.e., G = g~l . Hence, (2.7) can be rewritten as (3.1).

Since there is a natural 1-1 correspondence between Iso(St(A), St(R)) and Iso(E(A), 
E(R)), every isomorphism from St(A) to St(R) has also been made clear. In particular, for 
the g in Theorem 3.1, gx{j(r)g~1 makes sense, and

k(xij(r)) =  {xij(rs),Xji(-r( 1 -  s))) £  SRRt) x St(R2) =  St(R).

By using Theorem 3.1, every isomorphism from GL(A) to GL{R) can also be determined. 
T heorem  3.2. Let A and R be commutative rings, and let Л : GL(A) —► GL(R) be a 

group isomorphism. Then there exist
(i) a ring isomorphism <r : A -*  Ry
(ii) a generalized contragradient automorphism к of GL(R) determined by an idempotent

in R, and r
'' ■ ' i*** • ■ •* ■

(iii) an infinite invertible matrix д over R which is both column-Snite and row-finite, such 
that (к о Л)ж =  дхад~х for all x e GL(A).

P roof. Since E(A) and E(R) are the commutator subgroups of GL(A) and GL(R) 
respectively, Л induces an isomorphism from E(A) to E{R). By Theorem 3.1, one obtains 
suitable cr, к and g, such that (к о Л)у =  дуад~1 for all у e  E{A). Now, xyx~l e  E(A) for 
any x €  GL(A) and у € E{A). Therefore,

g(xyx~1)ffg~1 =  (kpA)(xyx~1) = (koA)(x)gy<Tg~l(koA)(x~1).
Thus, (x~1)ffg~1(koA)(x)g commutes with all y° e E(R). This implies that (x~1)<Tg~^(ko 
A)(x)'g =  1, i.e., (к о A)x = gx^g"1.

C orollary 3.1. Let A and R be commutative rings. Then,

Iso(St(A), St(R)) =  Iso(E(A),E(R)) *  Iso(GL(A),GL(R)).

In particular, Aut(St(R)) =  Aut{E{R)) =  Aut(GL(R)).
P roof. It follows from Theorems 1.1, 3.1 and 3.2.
C orollary 3.2. Let A and R be commutative rings. Then the following statements are 

equivalent. ,
(i) A * R .  (ii) St(A )*S t(R ).
(iii) E(A) =  E(R). (iv) GL(A) =  GL(R).

Here, (i) is an isomorphism of rings, and (ii)—(iv) are isomorphisms of groups.
P roof. It follows from Theorems 1.1, 3.1 and 3.2,

R e f e r e n c e s

[1] Bass, H„ Algebraic А-theory, Benjamin, New York, 1968,
[2] Li Fu’an, Isomorphisms of Steinberg groups over commutative rings, Acta Math. Sinica (New Ser.J, 5

(1989), 146-158. -
[3] Milnor, J., Introduction to algebraic if-theory, Annals of Math. Studies, 72, Princeton Univ. Press, 

Princeton, 1971.
[4] O ’Meara, О. T., A general isomorphism theory for linear groups, J. Algebra, 44 (1977), 93-142.
[5] Petechuk, V. M., Automorphisms of matrix groups over commutative rings, Math. USSR Sb., 45 (1983), 

527-542.
[6] Steinberg, R., Lectures on Chevalley groups (Notes prepared by J. Faulkner & R. Wilson), Yale Univ., 

New Haven, 1968.


