Chin. Ann. of Math.
14B: 2(1993), 189-196.

WAVELET DECOMPOSITIONS IN L2(IR?)

.. WU ZHENGCHANG?

Abstract
Let {V} }k—-— o be a multiresolution analysis generated by a function ¢(x) € L?(IR?). Under

this multiresolution framework the key point for studying wavelet decompositions in L2(IR2) is

to study the properties of Wy which is the orthogonal complement of Vo in V1 : Vi-=Vo @ Wp. .
In this paper the author studies the structure of Wy and furthermore shows that a box splme ,
of three directions can generate a wavelet décomposition of 'L2(IR?). - e ; )

§1. Introduction

Recent years the wavelet decompositions in L? (IR“’) have drawn a ot of attentlons It is
not surprising that the hteratures about wavelets' grow rapidly smce ‘the wavelet decompo-
sitions show its power both ‘in the field of pure mathiematics and in its a.pphcatlons S

It is natural and necessary to conmsider the general wavelet decompos1t10ns in 'L2(IR?)
(s >1). In this paper we study the case s = 2. One reason for studying this case is that the
case s = 2 may, be most important, in practical applications among the multi-dimensional
cases. In addition the wavelet decompositio‘ns in higher dimensions (e.g. s > 4) should be
dealt with in a different way from the case s = 2 (as explamed in a special case in [9]). We
hope that it would be studied in the forthcommg paper

“‘Here is the outlide of this paper. In §2 some notations and lemmas are g1ven In §3
we study the wavelet decompositions in L2(IR?). In §4 we discuss the orthogonal wavelet
decompositions in L2(/R?). The result which we obtained contains the main theorem in [9].
Finally as a consequence of our theorem in §3, we claim that box splines of three directions
generate wavelet decompos1t10ns 1t is well known that in the case s=1 B-sphnes generate
wavelet decompos1t10ns whlch were w1dely apphed in some practlcal ﬁelds We beheve that
the box sphnes would play an 1mportant role in wa.velet decomposmons in the case § = 2 a,s.
B-sphnes do in the case s=1.

§2. Prehmmarles - B B ‘
Throughout thls paper we use the standard multi-indices. The deﬁmtlons of the summa-
tion over multi-indices and the convergence of multlple:serles in some metric sense are as
usual (for example cf. 7, 10}). |
Let ¢(z) € L?>(IR?) be a funciton with compact support and

¢k.7(w) ¢(2k$ .7)’ ke Z,J E Z
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We consider a multiresolution analysis generated by ¢(z);

~CcVoacWVheVWic

- Vie="span{gi;(z), €2} (oo (2.1)
where the closure is in the sense of L?(IR?). For the detail about the multiresolution analysis
see [6,8]. For our purpose here we emphasize the following conditions:

(1) {¢(x — j)}jez2 constitute an uncondltlonal basis of Vb,
(2) in the sense of L? (see (2.1)) L
#(@) = Z aa$(2z — a) - o (22
E i ; ezz TR RIS L

for some coefﬁclents aa Wthh have exponentlal decay . -

Tliese requirements are not. ‘much restrictive for practical purposes[4] v

Here a sequence {aq }aez2 i8 called exponential decay if there are constants L(> 0), A(>0)
such that

|aal < Lexp(=Alaf),

Where lof = |i] + |5 for a = (i,5) € 2°..
Remark Instea,d of (2) we can con31der (2 2) for some such a,a that {aa} €. 12 Then
the relevant proof in the followmg should be mod1ﬁed sllghtly Wlthout dlﬁicultles
- Let Wo be the orthogonal complement of VE, in V1 B :
clo e WN=VweW, . . ... (23)
To obtain wavelet decomposrtlons in: L?(IR?) the key point is'to study the structure of
Wo. In the case s =1 it is’ clear[6 8 that there is a functlon 1,b(a:) € LZ(R) such that
When s > 1, the situation is dxﬂ‘erent In our case (s = 2) we w1ll clalm that there exlst
functlons zﬁ(')(w) (z =1, 2 3) such that , .
o -:.\W'-span{zp(‘)(a:-r) rezz},z-l 2 3
- Wo == Woi + Woz + Wos, a
Whlch obv1ously glves the structuré of Wo. Then in terms of the ‘miltiresolution analysis a
dense system in L? (R2) is constructed in'a standard wayls] It provides ‘so-called wavelet
decompos1t10ns Hence the main goal of this paper focusés’ on the study of the structure of
Wo.
Now we introduce some notations. :
Let @2 = {z = (21,22) : % €C,j=1,2} be'a 2-d1mensmnal complex space. D denotes '
thexopenpolydlsc e e e : EC
D= {2 (21;2) €C?: |zl < 1, ='1,2},
and 8D denotes the boundary of D: o
oD ={z= (zl,zz) ed'z lz,l =1, Jj=1, 2}
When z = (21,22) € 0D, we often write
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where w = (w1,ws) € IR
Let o = (0,0), e; = (1, 0), ez = (0 1), es = (1,1), E = {ep, e1,62,€3}. The type of the

summation Y F(e) always means E F(e;).
ecE =0

For sequence {aq4}a¢cz2 We formally introduce its symbol
a(z) = ‘ Z @ 2%,
. _ acz?
and its subsymbol (e € z?)
ae(z) Z Get2a2%.
acz?
Here 2 = (1, 22). . ;
" The symbol of a sequence is useful notion for treatlng sequences!®l, The relatlon between
the symbol and the subsymbol is described in the following lemma.
Lemma 2.1. Suppose {aa}aezz ell,z€ 06D. Then

: a(z) Zz ae(zz) (2.4)
R ey Lo eEE . o T fL
Conversely P
ae(zz) =27 D (-1 "a((-1"%). @)

ceeB

Proof. (2.4) is obvious. Let € € E. From (2.4) it follows that.

Yo (-1)*%a((-1)%2) =D (=1)*2D (- )“Z°a (22)

ecE eel ecE
—Zz ae(zz)Z( 1“( ~1)? (2.6)
e€E B T3
Noting S R A
Z( l)e.e = 46éo,é,»:’ o . , (2.7)
2€E .

we obtain (2. 5) from (2.6), (2.7).
Let o € 22,

/ ¢w)¢a: ‘a)d:z:}

and the symbol of {74} be I(z). Since ¢(x) has compact support supp(v) = {a 'ya 75 0}
is a finite set. We have
Lemma 2.2. For z € 8D hoIds I (z) >0,
Proof. First we show
Y, |¢(w+21ra)|2 —I(z oo
a€z? v

where w = (w;,w2) € R?, 2z = (e"’i" e"‘z>.

Let
0)= [ HREie, F6) = O™
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we have S T S
| “(u)‘=l<$(w+u)l2.¢ S ¢ X.)
- Now by the Poisson Summation formula -' o
> |¢(w+2m>|2 —I(z2> e @)
. acz?
Suppose S e
| C = {Ca}aes? €1, S(w)= ) Coe™™
. : o€z?
Note the periodicity of S(w). Then o
1 2 2 .
agz:z Cadlz - 2) (2@2 / JS@P T ot awe)fae (210

a622
Tt is obvious that )

5 IS(W)IZdw =||C I3
(27I') 0, 1r]

From (2.9) we know I(z) > 0 (2 e 3D) because {q‘:(a: j),j€z?}isan uncondltlonal ba51s
of Vb S

§3 Main Result
In order to describe our main result set
LG = I a(-1)a),
@) (z) = 2~ I((- 1)%2)a((-1)*2),
B = 2 (-1) " 2)a((-1)2).
It is obvious that we can write b®2 as follows
' 09 (2) =Y b8z, zeaDz_lzs

acz?
where the coefficients bg) have exponential decay. Then we define - o “
P9 (z) = Z b(’)¢(2a: a), i=1,2,3
 a€2? v
- Now we are in'a posmon to prove the followmg
Theorem 3. 1. Suppose R

Sae A 6
eckE o . 3
for z € 0D. Then
(1) Wo = Wo, + Woz + Wos, Wbere v .
Woi = span{«ﬁ(‘)(m a) ac€ zz},

(2) for C = {Ca}aez2 € l IRE

Z Cotp¥(z — @)

o€z?

A||C||12 <

. < B”C”[z,z = _la 21 3,
L2 o
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where A, B (0 < A< B) are constants, P . o
Proof. First we claim '¢(’) (:1:) € Wo In view of orthogonal decompos1t10n (2 3) thls is
equivalent to - : STy s

v .

(b - -a), «p@(w»—o Yeest . @9)
) (@) € Vi (3.3)

From ‘the definitions of ¢(’) (2),.(3.3) is obvious, e
. By (2 2) and the deﬁmtlons of ¢(’) (a:) we know that (3 2) 1s equlva.lent to jl \‘} .

et 1Ha = Z Z aﬁbo 70_2a_ﬂ = aEZ IR R
" Bez29ez? .
Taking the symbol of {H,} equivalently we should show
DI ae<z)b<"(z)ze_e<z) 0, z€dDi i c. (34)
i . ) eGEEGE T F i e e ;
By Lemma 2. 1 ) ' | e
> <z2>b<*><z2)fe o(#).
ecEecE
=Xy (Z DT %« o z>) D o
e€EZcE \e*€E . e e
2t 3 D) z)a« 99 Sk (3)
e*cE

By the definitions of 5()(z) one can: prove that (3.4) follows .from (3 5). Thus %®)(z) €
Woli = 1,2,3).
Now we show that for ¢ (z)(i = 1, 2 3) we can ﬁnd sequences {C( ) }(z = 0 1 2 3) W1th

exponential decay, which satisfy - - nid
Y2z —e) =Y COudla = a)F 2 2 oD, yMz—-a), - (3.6)
a€z? i=l agz?
where e € E. , T S O
We know that (3.6) is equivalent to - .. .. . \ S S I
e= | S 0O, 2 O | 5025 "
et = | T a<z>+z§:c, =00 35
a€z? -t z=1 a€Z2 R A ;
where z = (e""%l,e"i%z). It follows that
2° = CO(z"%)a(2) + 'Y CO(z2)b0(z). - (3.7)
L i=1
Take é € E, then from (3.7) S R ;

« 1>ez>e c<°><z-2)a<< 1>ez>+Zc<'><z-2 b")(( 1)62)

namely

(- 1)“—2—60(0)( 2)a(( 1)ez)¥ z‘eC(*)(‘_z)b(*)(( Dy

i=1"
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By Lemma. 2.1 and (2 7) we obtain the equa.tlons whlch are equivalent to (3 7)

c<°>(z-1)a(( 1)ez) + EC(’)(z"l)b(’)(( 1)ez) 460ps, €=ep,e1,€2,63.  (3:8)
i=1 ’ .
Let A(z) denote the coefficient determma.nt of (3 8). If

- AR #0 ‘- (39)
in a nelghborhood of 8D, the equations (3.8) (about unknown C(‘) (z 1) i=0,1, 2,3) are
* solvable; furthermore the solutions ct) (z"l)(z =0,1, 2,3) a.re analytic in a neighborhood of
dD. Hence there exist sequences {C( Yoez2(i=0,1, 2, 3) w1th ‘exponential decay such that

C(’)(z“l) = Z C x>
) a622 : . ,
for z € OD. From the above discussion we know thit the sequences {Ca' }aez2 are what
we want to find. Thus it remains to verify (3. 9) By the definitions-o f b(*) (z) the dlrect
calculation shows . :
A = ~1(=%) Z(I (( 1)"’2)0(( 1)e ).
" e€E

From Lemma 2.2 and: the hypothesis (3.1) we know A(z) #0, =z € BD namely A(2) #0
in a neighborhood of dD by the continuity as required..
Next we show that if sequences d(¥) = {d(’)} €l?(i=0,1,2,3) sa.tlsfy

Z d(°)¢(w a) +E Z d(')zlf(’)(a: Q) = oo (810)

a€z? i=1 acz?

then d¥) = 0,.4=10,1,2,3.
In fact using Founer transform, from (3 10) we have

d(°>(z2)a(z)+Zd<=>(z2)b<'>(z) 0, 260D, = (3.11)

o g=]

where d(‘)(z) is the symbol of the sequence {d( )} :
Respectively taking (—1)0z, (—1)%2, (—1)%2, ( —1)*3zin (3. 11), we obtaln the equations
about the unknown d(‘) (2%):.

d<°> (z*)a(z) + Z d® (zz)b(’)(z) 0,

$=1

dO(2%)a((~1)*2) + Zd(i)(zz)b(i)((—l)e‘_z) =0,

5 | (3.12)
d©(22)a((- l)e“z)-!-Zd(’)(zz)b(‘)(( 1)%22) =0, o
’ z—I
d<°>(z2)a(( 1)e3z)+2d(")(z )6 ((~1 )e3z) 0 (z€aD).
=1

The determmant of (3.12) is also A(z). Since A(2) #0, 2 € 8D, it follows that
dO(z%) = 0; z—-O 1,2,3,2 € OD.
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Hence.d®) =0, =0,1,2,3. -
~ Thus the.conclusion. (1). has:been proved..:: SERTE i e
. Finally we will show that {¢®)(z — a)}aezz satlsfy the conclusron (2) of the theorem Let-
C ={Cs}ucz2 € 1%2. We.should show that there exist-constants. A and B- (0 < A < B) such

Alcle s Z C ¢<e>(w o s'?Buoiutél )
) a€z? ‘L2 o ' S
It is clear that (3 13) is equlvalent to -
| 0<4g Z |¢(‘)(w+ 27ra)|2 < B BN A )

: : a€z2
(see the ‘pro6f of Eemma, 2.2).
Noting the constructlons of 1/;(’)(:5), we have

PIRURICE 27ra)|2 e E 6 (( 1)*’»z)|2 ( Z |¢ +me + 27f°‘)|2)

a€z? ecE , 0€22
=2ty |b(’)((—1.)CZ)I-2I((-.1.)"~Z) »
‘ ecE
- -,—2“4ZII(( 1)eZ)a(( 1)“z)|21(( 71)%2), zeaD
. B .

In view of the condrtlon (3 1), Lemina 2.2 and the compactness of 8D we know that there
exist constants A (A > 0) and B (B.> A) which satlsfy (3 13) Thus we complete the proof
of the theorem | S
§4. Further Results . L
Suppose that q,‘)(w) generate the multrrbsolutlon analysm studled in’ the above sectlons If
ln addltlon 3 o o S AT @ . cat Y
B f ¢(a:)¢(a: a)dx 600,, a e z
~Wwe can obtain more about this important case in wavelet decomposrtlons

Theorem 4.1. Suppose qS(a:) generate the multzresolutron analyszs descnbed above In
addition suppose S S S

/ ¢(w)ﬂdm = 6oa, “ae 22 S o _;_j;(%;;_;;li)"é
'and a(z) is a real function (z € 6D) ‘Then we have =~ e e e
(2) (1!1(‘)(%) 1/)"’(36 a)) = 60,,, a'ez?,i=1;23"
(3) @(2), 9@ —a)) =0,a € Zz, i 95], i, ] =1, 9, 3
@F e
Here ':,b(“) (a:) are deﬁned asin Theorem 3.1 Thus we have o
7 Wo = Wo1 69 Woz ® Wos, WOz = Span{z,b(’)(:c oz) o€ Zz};-“:-v" :
Proof By Theorem 3.1. The detalls are omltted .
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Finally as a consequence of Theorem 3.1 we show that in the case ¢ = 2 box splines of
three directions generate wavelet decompositions. It is well:known that in the case $ =1 the
wavelet decémpositions which are:obtairied with use of the B-splines were widely applied in
practical fields. ' We believe that in the case s =2 the wavelet decompositions generated by
box splines will play an important role as B-splines do in the case s = 1.

A detailed knowledge of box spline theory can be ga,med from [2,5]. Let o' = (0, 1),

_:L' = (1 0), 3 = (1,1). Box sphnes of three directions xl 22, &3 are

B(x) B((BI(D, : 7“71 mzy ,ZB x 2" ',”a;s) -
It is known that B(x) generates a multiresolusion analysisi®l. By Theorem 3 1 it is clear
that the wavelet decompositions can be obtained if B(x) satisfy the condition (3.1). Now
we will venfy it. It is obvious that we only need to consider the simplest case B; (z), =
B(z|z!, 22, 23).
For the box sphne By (z) there ex1sts a sequence {aa}aezz sa,tlsfymg

Bl(w) > wBi(2e=a).

PR

a€z? o
Letz—(zl,zz)-(e"'* s ).
‘ ' 1 = e—iwz! 1= e,—iw;z?l:‘ f1- g—iwa®
Bl(w) ( iw - a:l )( iw-a:2 )( w - :L'3 ’
ey =B L ).
#B1(%)

By some calculation we can obtain Z (I (( l)ez)a(( l)ez))2 # 0. Hence the condltlon (3 1)

is satisfied by By(z).
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