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Let M be a connected, complete Riemannian manifold with Ricéci curvature boundéd from': "~
_ below, p(t, a:,y) be the transition den51ty functron of the Rigmannian Browman motion, and .
" for each’e’> 0, (P.,;) be the diffision measure family associated ‘with thé transition déhsity

function p(ét; ¢, y). In this paper, it is shown:that ( P:,;)‘has strongly large deviation properties, - - :
as e — 0.

- §1. Imtroduction it i et

Suppose that (M ) 9) 1s a d—d1mensmnal noncompact connected and complete Rlemann-
1an ma,mfold wh1ch is stochastlcally complete, Ai 1s the Laplace-Betraml operator The R1e-
manman Browman motlon (Xt) on. M Is. the mamfold-valued d1fl'us1on process assoc1ated
with the 1nﬁn1tes1mal generator 1A (see [5]) That | 1s, let p(t a:,y) ‘denote the minimal fun-
damental solution of the heat equatlon in- Bt’ thén the Riemannian Brownian motion (Xt)
is a continuous Markov process with the state space-M-and the transition density function
p(t;z,y) with respect to the Riemannian volume measure..In particular, (X;) is conservative
under the assumption that M is stochastlcally complete Let © denote C([0,1]; M) with
the topology of uniform convergence on the time interval [0,1], F be its Borel o-field. For
each € € (0,1], denote by (P ;)zenr the diffusion ‘measure family on (2, F) associated with
the. process (Xe(£))oxt<t, Where Xe(t) = Xi(et): - Then M. L. Freidlin and A: D. Wentzelll*)
proved that (F.,) has strongly large deviation praperty as € —:0 and:y —: z, under the
additional condition that M has bounded geometry and A is locally uniformly elliptic. More
precise, M. L. Freidlin and A. D. Wentzell proved:the following: (see Theorem-3.2 in. [3])

Theorem. - Assume .that. M has.the:following ‘bounded geometry” property: There is
a positive number 1o, and for every ball B(z, ro) C M there is & chart qﬁm B(z,ry) — R?
Satisfying the uniform’ quasi-isometry < condztzon R N

- Co ld(yaz)<l¢w(y) ¢w(z)l Od(ysz)a R (11)

......

Ve € M, Vy,z € B(z,7o), with a.constant Cy independent of z, Moreover, ‘assume ‘Niis
16cally uniformly elliptic operator. with constant ‘ellipticity i > 0.-“Then: (P ,y) has: strongly
large dewatzon property (see Tbeorem 3. 1)
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By the Rauch comparison theorem!?!, and by use of normal coordinates with respect to
" 2 € M, the property (1.1) holds if the sectional curvatures of M are bounded from above
and from below, and if the m3ect1v1ty radius at each z € M is larger then a posmve constant.

In this paper, we prove that (Pe,y) has strongly large deviation property as ¢ — 0 and
'y — = provided that the Ricci curvature is bounded from bélow. We mainly use the
heat estimates established by Peter Li and S'.T.Yau["’] and the comparison theorems for the
solutions of stochastic differential equations to prove above result. We note that under the
condition (1.1), the volume Vol(B,(1)) of a unit geodesic ball centered at a point y € M
is larger than a fixed positive constant independent of y. On the other hand, there are
complete Riemannian manifolds with Ricci curvatures bounded from below ( even non-
negative) satisfying mf Vol(B 1)) =0.

Remark. It was proved by R.Azencott (see Grandes deviations et a.pphcatlons, in Lecture
Notes in Mathematlcs 774) that (P ,m) has large deviation property as € —.0.

§2. Several Facts

In this section, we assume that (M,g) is a connected, complete Riemannian manifold
(without boundary) with Ricci curvature bounded from below, and assume that Ricc(M) >
—~(d - 1)k?, k > 0 is a constant. | : :

Theorem 2.1 (Comparlson theorem for the heat kernel). Let M(d, ~k?) denote
the d-dimensional space form with constant section curvatures —k?, and py be the heat
kernel of M(d, -kz) wlnch solves tbe heat equatzon A~ £ on M(d —k? ) gzven by

Pk(t %,7) = Ex(t, di (3, y)) . | (2 1)
forz,j € M(d kz), where di denotes the distance in M(d,-k?) and

Ex: (0,00) % [0,00) — R.
Then R ]
: p(t z,y) 2 &ty d(z,y) o (22
for all (t,z,y) € (0,00) x- M x M where p(t, ,y) denotes the transition density function of
‘the Riemannian Brownian motion on M, and d( ,Y) denotes the geodesic dzstance from x
to y; respectively. ' : :

For. the upper bound of the heat kernel we have ' : :
Theorem 2.2 For any. 6 € (0,1), there are constants C(d, 6) and C(6) such that

C( y ) : 2( ,y) 2 o .
p(t,z ,y) Vw (\/')Vz(\/_) exp ( 20 +0) +C(d) k t) _,(2.3)
- for all (t,2,y) € (0,00) X M.x M. Moreover, C’(d 8) — 00 when § — 0. Here V,,(v/t) denotes

the volume of the geodesic ball centered at x of radius \/_

For the proofs of Theorems 2.1 and 2.2, we refer to L. Chavel and Peter Li and S. T.
Ya,ur"l respectively.

Lemma 2.109. (1) For a fixed point x9 € M, let p(:z:) d(z, a:o) Then there exists a
constant C dependmg only on ™ Ic and By, (1), such that :

V(1) > €0, . L (24
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- (2) For0<r<R: . , . o
| v(®) V(R
o SR Velr) T V()
Where V(R) denotes the geodes1c ball of radius R in M(d )
~~Now we can ‘prove the followmg Theorem 2 3, wh1ch is'an 1mprovement of the famous S.
R. S. Varadhan’s theorem. ~ * = v He e " e
. Theorem 2.3°],

hm 2tlnp(t ,y) v—dz(:i: y) | (2.6)

un1form1y on the geodesm ba,II B(a:g, r) for any zo € M r>0.
Proof. By Theorem 2.1, ‘we know

_ lut];;%lf 2tInp(t,z,4) > —dz(w, y)

uniformly over z,y € M such that-d_(a:., y) is ‘bounded. By Theorem 2.2 and Lemma 2.1 we
get !

| V()
%) )

ot +2th(a: m0)+2t0(5)6k2 - (1(+,;/))

2t lnp(t z,y) <2tln C(d 6) %2t In;

Hence we have

vli'-msu:p2tlnp'(t,_ z,y) > ~d*(z,y)

uniformly on B(zg,r), for any zo e M r > 0. _— S
Now we turn our attention to the Riemannian Brownian motion. Let ﬂ C([O 1]; M )
with the topology of uniform convergence on [0,1], z(t) be the coordinate process and F,
be the natural o-field. It is well known that for each & € M, there is a unique probabil-
ity measure P, on (2, F), such that (Q F,F,%(8),04, P) is a strongly Feller continuous,
Markov process with the transition density function o(t, a:,y) For each ¢ > 0, denote by
P, .. the diffusion measure family on (Q,F) assocxated w1th the transn‘,lon, dens1ty functlon
pe(t, z,y) = plet, z,y).
~ For each ¢ € M, consider the radlal process p(z(t)) =. d(a:(t), ). By Kendall [6], there is
a standard Brownian motion (with initial value zero) 8; over the filtered space (Q,F,F, Py)
and a nondecreasing process Ly with initial value zero which increases only when z(t) belongs
to the cut-locus C(x) of z, such that '

p(w(t)) = ﬁt + f Ap(m(s))ds - Lt IR TPCR (2;7)
By the comparison theorem for Laplacian’s (see [10]), we have _

in' the wéak sense. Forrany r > 0 let 7 be the process on [0 1] determlned by the stochastlc
differential equation BRI e ; ey SRR SRS

o "f‘ﬁt + —_— / kcoth kysds. (2.9
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By a comparison theorem for solutions of stochastic differential equations (see Ikeda and
Watanabel!), we get

Py( sup P(w(s)) 2r)<P ( sup 7 2 1). (2 10)
s€lo,g] . Tl -

. Theorem 2.4. Let a = (2(d - l)k coth E)-t A1, which isa posmve constant dependmg
.only on d and k. There exists a constant C depending only on d such that. . .., - -

Po( sup d(o(t)2) 27) < Cexp(—-——) o (21
for aII (t,z) € (0,0] x M.
Proof. Consider the solution -y, of the stochastic dlfferentlal equatlon (2 9) Deﬁne a
sequence of stopping times : :
" Ty =inf{t > 0y > 1/2),
Ty =inf{t >0 < 1/4}, +
| Ty =Ty 00y,
T2m+1 Ty 0 Oriom,
= inf{t > O:y; = 1}.
It is easy to see that 'yt < 1/20n [sz_1, Tom)s hence T'is in one of the intervals [Ty, T2m+1]
but y; > 1/4 on [Ty, Tom+1). Thus we have -

¥r —'71*2,,, (ﬂT - Bry,.) + 1-2—1 TT k coth ky,ds.
Notmg that 'yT = 1 we get | ' o
S (ﬂT ﬁT,m)+ koot f,
heiite we have'~ s B
S S P

selo ™
on {T' < < t}. Hence for any t € (0, ), we have s
P(supfys>1) P(T<t)
o8 [ ] 4 :
o s‘P;(st[ip]lﬁsl z.fi)'A. )

< C exp(— ——)
for ‘some positive constant. Usmg 2.10, we get {(2.11).
§3 Strongly Large Deviation Property
In this.section, we. assume that M is-a.connected,.complete Rlemanman mamfold which

is stochastlcally compléte For any w € Q = C([0,1); M), define

Iw) =5 fo Jo()Pdt < oo, (3.)
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where @ denotes the generalized derivatives of w. Then I is a rate function on £, that is,
for any K > 0, {w: I(w) < K} is a compact subset of . It is well known that

. -d2(w, )= nf Iw) . - (3:2)

'--’(1)—;D : B )
and ea.sy to check that for0<t1 <t2< <t <1 _
: nf. [(w) ly nz—:l d ($¢+1,$,) Coe - {3 3)

me T 2 g b o

~ Now we can state the strongly la.rge dev1atlon property for the R,lemanma.n Browma.n
motion in a small time interval.

Theorem 3.1. Assume that -

(l)hm 2tInp(t, z, y) = —d*(z,y) umform]y on B(a:o,r) for any o € M,r>0.

(2) Tbere are constants a € (0,1],C > 0 such that
r?
Py( sup d(z(t),z) 2 7)< C exp(—-*) -
. 8€[0,8]
foral](ta:)e(Oa]xM :
Then (P.;) has strongly large deviation property with rate function I, that is , for any
closed subset C' C €} and open subset G C 2, we have

limsup Pey(C) < = fnf T(w), - (34
limint Pey(G) 2 = inf 1(), (3.5)

where C,; = {w € C:w(0) = z}. '

We say a complete Riemannjan manifold. M has strongly large deviation property if
(3.4) and (3.5) hold for (P.,), where (P, ;) denotes the diffusion measure family associated
with the transition density function p(et, z,y), and p(t,z,y) denotes the ‘heat kernel of the
manifold M. Then Theorems 2.3 and 2.4 imply the followmg B

Theorem 3.2. If M is a connected, complete Riemannian manifold with Ricci curvature
bounded from below, then M has strong]y large deviation property.

‘We can follow the idea given by S. R. S. Varadhan® to prove Theorem 3.1,'so'we wﬂl
merely outline the proof giving details only at'those pomts where new difficulties arise. - -

Let m:0 =% < t; < -+-'< t; =1 be a partition of the’ tlme mterva.l [0 1], denote by Tw -'
the map: Q@ — M x --. x M defined by :

Thw= {w(to), e yw(ta)} v .(36)
Then for any Borel set A C Mx:--x] M, we have _ ) .
Py(T;'4) = / Hpe(t] = tj-1,Yi~1, y;)d%a (3.7)
v j=1 .

P

wherevAyi = {(yo,-*) € A: yo = y}
Lemma 3.1. Let AC M x --- x M be a closed subset a.nd C= T"lA Then

hmsupeln P, y(C) < - mf I(w).: : (3.8)

!I'*W
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- Proof. If A is bounded, then using (2.6) and (3. 3), one can. eas11y check that: (3 8) holds.
Since d(z(t),y) < d(z(2), £) + d(z,y); we have : SR

Poy( sup d(x(t),7) > ) < Pey( sup d(a(t),y) > 7/2)
s€f0,1] ' s€lo,1]
for any z,y € M such that d(a; y) < r/2 and r>0. Hence for any €€ (O a], r > 1 we have

sup P y( sup d(m(t)aw) 2 T) < CexP("_)
)<z eel)]

BESRCN

Choose a constant 7 > 0 such that % > inf I{w). Denote

o

A1 AnB(IB,’I‘), Az AnB(w, ) .
Then A; is a bounded set. Hence we have .

hmsupelnPey(T 1A1)<— 1(1512 I( )

U—""'
and

limsupeln P (T, Az) < hmsupelnP,y(T 1B(z,r)°)

0
= hmsupelnP€ 4(sup d(z(s),z) > 7)
s€fo.1]
y—vm
2
r
L =, ..
S o

Thus we have proved, (3,8) since
Pey(C) < Pey(T; A1) + Poy(T M Ag).

.~ For any positive intergal number' n,.denote by 7rnA the pa,rtitien:} O=tr<t1 <+ <tp=1

with t; = £, and by z,(t) the process such that z,(t;) = z(t;), and join the successive ones

by- geodesms (which:is well defined because M is complete). Using the same method, we can
define a w, €  such that :r:n(t w) = z(t;wy). . ;

‘Lemma 3.2. For any 6 > 0,

hmsuphmsupsupelnPw{ sup d(a:(t),:vn(t)) > 6} = (39)
tegfo,1] ; :

Nn-—>00 e-—»O @

Proof. Using Corollary 2.4, by the same method used i in the proof of Lemma 3.2in [9],_
we can prove the lemma In fa.ct one can easﬂy check -

sup d(z(t),zi(t))' <2 sup = “sup -d(z(t),z(t;)).
t€fo,1] ' 0<j<n—1t;<t<ti41. .
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For any positive intergal number n > 1, using Markov property we have = |
P, . ( sup d(z(t),z.(t) 2 6)
tef0,1] .

SPez [ sup supl d(w(t)aw(tj)).?. 6/2]

0<jSn—1t;<t<tj41
-1

<ZP”,

Jj=1

<nsup P.. ( sup d(a(t),2(0) 2 5/2)
telo, ] ]

2
_‘<nCexp ( né )

'_ Slip d(ﬁ(t),m(ta)) > 5/2}

4Ce
Now (3. 9) follows immediately.
It is a routine matter to prove the upper bound (3.4) by using (3 8) and (3. 9) (see [9])
For completion, we outline the proof as follows.
Let C C Q be a closed set. For any § > 0, set
= {w € C:d(w(0),z) < 6},
= {v: sup d(y(t),w(t)) < 8 for some w € Cs},
tel0,1)
Pw= inf I(v),
( ) ¥:8UPte(0,1] d(v(t)w(t))<é (’Y)
a5 = inf I(w).
. _ % wléng (w) ’
It is easy to see that w € Cj implies I’ (w) > a5 . We have
Pey(C) = Pey(Cs) S.Pe,y(Is(w) 2 as)

<P, (w: sup] d(w(t),wn(t)) 2 6) + Pey(I(wn) > ag)
tefo,1 :

for any 6 > 0,n and y such that d(y,z) < §. We note that

{I{wn) = a5} = { > Z d2.(w(t_1 w(t.1+1)) > a&} .

j=1 tit1 — t

Using (3.8), we get
hmsupelnP ,y(I(wn) >a5) < —ap

1/"’-""

for any n. Using (3.9), we have |
lim sup elm P, ,(C) < —as

!l"’"’

for any 6 > 0. Letting 6§ — 0 in above inequality, we get the upper bound by the fact that

hm s = 1nf I(w).

-0
On the other hand, the lower bound is a consequence of Theorem 3 2 (3.9) and the upper

bound (3.4) (see the proof of Lemma 3.4 of [9)).
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