Chin. Ann.	of Math.
14B: 2(1993	3).237-244.

no senare stand a fer o construction de esta de la serie de la senare de la senare para esta esta de la second A serie de la seconda de la
a contra 200 grafia Antonio Constanti a constanti della constanti della Children (della constante dal provinci Generale constante constante di constante di constante della constatta della della della constante constante con
LARGE DEVIATION PROPERTY FOR RIEMANNIAN
BROWNIAN MOTION ON A COMPLETE MANIFOLD**
we were concerned as the open of the concerned of the set of the s
una sekas kuna anal maka meka sakana una aka mpunapan nu pakanana intaa matata da kabama ta kamba kabama ta ka
so to provide a section of the QIAN 'ZHONGMIN'' White a section of the last
an an the Alarma Medica and all a fin Arthony deal componing souther a south comparison
is el com la table : el cel iber de l'iteren per la facto d'accor a coi accesse el el constructo di constructo Abstract
Let M be a connected, complete Riemannian manifold with Ricci curvature bounded from

below, p(t, x, y) be the transition density function of the Riemannian Brownian motion, and for each $\epsilon > 0$, $(P_{\epsilon,x})$ be the diffusion measure family associated with the transition density function $p(\epsilon t, x, y)$. In this paper, it is shown that $(P_{\epsilon,x})$ has strongly large deviation properties, as $\epsilon \to 0$.

Suppose that (M, g) is a d-dimensional, noncompact, connected and complete Riemannian manifold which is stochastically complete, Δ is the Laplace-Betrami operator. The Riemannian Brownian motion (X_t) on M is the manifold-valued diffusion process associated with the infinitesimal generator $\frac{1}{2}\Delta$ (see [5]). That is, let p(t, x, y) denote the minimal fundamental solution of the heat equation $\frac{1}{2}\Delta - \frac{\partial}{\partial t}$, then the Riemannian Brownian motion (X_t) is a continuous Markov process with the state space M and the transition density function p(t, x, y) with respect to the Riemannian volume measure. In particular, (X_t) is conservative under the assumption that M is stochastically complete. Let Ω denote C([0,1];M) with the topology of uniform convergence on the time interval [0,1], \mathcal{F} be its Borel σ -field. For each $\epsilon \in (0,1]$, denote by $(P_{\epsilon,x})_{x\in M}$ the diffusion measure family on (Ω, \mathcal{F}) associated with the process $(X_{\epsilon}(t))_{0\leq t\leq 1}$, where $X_{\epsilon}(t) \equiv X(\epsilon t)$. Then M. I. Freidlin and A. D. Wentzell^[3] proved that $(P_{\epsilon,y})$ has strongly large deviation property as $\epsilon \to 0$ and $y \to x$, under the additional condition that M has bounded geometry and Δ is locally uniformly elliptic. More precise, M. I. Freidlin and A. D. Wentzell proved the following (see Theorem 3.2 in [3])

Theorem. Assume that M has the following "bounded geometry" property: There is a positive number r_0 , and for every ball $B(x,r_0) \subset M$, there is a chart $\phi_x: B(x,r_0) \to R^d$ satisfying the uniform quasi-isometry condition

$$C_0^{-1}d(y,z) \le |\phi_x(y) - \phi_x(z)| \le C_0 d(y,z), \tag{1.1}$$

 $\forall x \in M, \forall y, z \in B(x, r_0)$, with a constant C_0 independent of x, Moreover, assume Δ is locally uniformly elliptic operator with constant ellipticity $\mu > 0$. Then $(P_{\epsilon,y})$ has strongly large deviation property (see Theorem 3.1).

ر در الأولىيي. مراجع الأولى الم

s all the said well as a second to be a second to be the second tradition of the second of the second second se

Manuscript received June 25, 1990. *Department of Applied Mathematics, Shanghai Institute of Railway Technology, Shanghai 200333, China. **Project supported in part by the National Natural Science Foundation of China. By the Rauch comparison theorem^[2], and by use of normal coordinates with respect to $x \in M$, the property (1.1) holds if the sectional curvatures of M are bounded from above and from below, and if the injectivity radius at each $x \in M$ is larger then a positive constant.

In this paper, we prove that $(P_{\epsilon,y})$ has strongly large deviation property as $\epsilon \to 0$ and $y \to x$ provided that the Ricci curvature is bounded from below. We mainly use the heat estimates established by Peter Li and S.T.Yau^[7] and the comparison theorems for the solutions of stochastic differential equations to prove above result. We note that under the condition (1.1), the volume $\operatorname{Vol}(B_y(1))$ of a unit geodesic ball centered at a point $y \in M$ is larger than a fixed positive constant independent of y. On the other hand, there are complete Riemannian manifolds with Ricci curvatures bounded from below (even non-negative) satisfying $\inf_{y \in M} \operatorname{Vol}(B_y(1)) = 0$.

Remark. It was proved by R.Azencott (see Grandes deviations et applications, in Lecture Notes in Mathematics 774) that $(P_{\epsilon,x})$ has large deviation property as $\epsilon \to 0$.

§2. Several Facts

In this section, we assume that (M,g) is a connected, complete Riemannian manifold (without boundary) with Ricci curvature bounded from below, and assume that $Ricc(M) \ge -(d-1)k^2$, $k \ge 0$ is a constant.

Theorem 2.1 (Comparison theorem for the heat kernel). Let $\mathcal{M}(d, -k^2)$ denote the d-dimensional space form with constant section curvatures $-k^2$, and p_k be the heat kernel of $\mathcal{M}(d, -k^2)$ which solves the heat equation $\frac{1}{2}\Delta - \frac{\partial}{\partial t}$ on $\mathcal{M}(d, -k^2)$, given by

$$p_k(t,\overline{x},\overline{y}) = \mathcal{E}_k(t,d_k(\overline{x},\overline{y}))$$
(2.1)

for $\overline{x}, \overline{y} \in \mathcal{M}(d, -k^2)$, where d_k denotes the distance in $\mathcal{M}(d, -k^2)$ and

$$\mathcal{E}_k$$
: $(0,\infty) \times [0,\infty) \to R$.

Then

$$p(t, x, y) \ge \mathcal{E}_k(t, d(x, y)) \tag{2.2}$$

for all $(t, x, y) \in (0, \infty) \times M \times M$, where p(t, x, y) denotes the transition density function of the Riemannian Brownian motion on M, and d(x, y) denotes the geodesic distance from x to y, respectively.

For the upper bound of the heat kernel, we have

Theorem 2.2. For any $\delta \in (0, 1)$, there are constants $C(d, \delta)$ and $C(\delta)$ such that

$$p(t, x, y) \le \frac{C(d, \delta)}{V_x^{\frac{1}{2}}(\sqrt{t})V_y^{\frac{1}{2}}(\sqrt{t})} \exp\left(-\frac{d^2(x, y)}{2(1+\delta)t} + C(d)\delta k^2 t\right)$$
(2.3)

for all $(t, x, y) \in (0, \infty) \times M \times M$. Moreover, $C(d, \delta) \to \infty$ when $\delta \to 0$. Here $V_x(\sqrt{t})$ denotes the volume of the geodesic ball centered at x of radius \sqrt{t} .

For the proofs of Theorems 2.1 and 2.2, we refer to I. $Chavel^{[2]}$ and Peter Li and S. T. $Yau^{[7]}$, respectively.

Lemma 2.1^[10]. (1) For a fixed point $x_0 \in M$, let $\rho(x) = d(x, x_0)$. Then there exists a constant C depending only on n, k and $B_{x_0}(1)$, such that

$$V_x(1) > e^{-C\rho(x)}$$
 (2.4)

where $\overline{V}(R)$ denotes the geodesic ball of radius R in $\mathcal{M}(d, -k^2)$.

Now we can prove the following Theorem 2.3, which is an improvement of the famous S. . . . R. S. Varadhan's theorem.

Theorem $2.3^{[9]}$.

$$\lim_{t\to\infty} 2t \ln p(t,x,y) = -d^2(x,y)$$

Mar Sherry R. Bard uniformly on the geodesic ball $B(x_0, r)$ for any $x_0 \in M, r > 0$. **Proof.** By Theorem 2.1, we know

$$\liminf_{t \to 0} 2t \ln p(t,x,y) \geq -d^2(x,y)$$

uniformly over $x, y \in M$ such that d(x, y) is bounded. By Theorem 2.2 and Lemma 2.1 we get , . . ¹

$$2t\ln p(t,x,y) \leq 2t\ln C(d,\delta) + 2t\ln rac{\overline{V}(1)}{\overline{V}(\sqrt{t})} + 2tCd(x,x_0) + 2tC(\delta)\delta k^2 - rac{d^2(x,y)}{(1+\delta)}.$$

Hence we have

$$\limsup_{x \to 0} 2t \ln p(t, x, y) \ge -d^2(x, y)$$

uniformly on $B(x_0, r)$, for any $x_0 \in M, r > 0$.

Now we turn our attention to the Riemannian Brownian motion. Let $\Omega = C([0,1]; M)$ with the topology of uniform convergence on [0,1], x(t) be the coordinate process and $\mathcal{F}, \mathcal{F}_t$ be the natural σ -field. It is well known that for each $x \in M$, there is a unique probabily ity measure P_x on (Ω, \mathcal{F}) , such that $(\Omega, \mathcal{F}, \mathcal{F}_t, x(t), \theta_t, P_x)$ is a strongly Feller continuous, Markov process with the transition density function p(t, x, y). For each $\epsilon > 0$, denote by $P_{\epsilon,x}$ the diffusion measure family on (Ω, \mathcal{F}) associated with the transition density function $p_{\epsilon}(t, x, y) = p(\epsilon t, x, y).$

For each $x \in M$, consider the radial process $\rho(x(t)) = d(x(t), x)$. By Kendall [6], there is a standard Brownian motion (with initial value zero) β_t over the filtered space $(\Omega, \mathcal{F}, \mathcal{F}_t, P_x)$ and a nondecreasing process L_t with initial value zero which increases only when x(t) belongs to the cut-locus C(x) of x, such that

$$\rho(x(t)) = \beta_t + \frac{1}{2} \int_0^t \Delta \rho(x(s)) ds - L_t.$$
(2.7)

By the comparison theorem for Laplacian's (see [10]), we have

$$\Delta \rho \leq (n-1)k \coth k\rho \tag{2.8}$$

in the weak sense. For any r > 0, let γ_t be the process on [0, 1] determined by the stochastic a phile is a feature and the concepter with the effective advector of the second press of differential equation

$$\gamma_t = \frac{1}{r}\beta_t + \frac{d-1}{2}\int_0^t k \coth k\gamma_s ds.$$
(2.9)

and the second second and a

$$P_x(\sup_{s\in[0,t]}\rho(x(s)) \ge r) \le P_x(\sup_{s\in[0,t]}\gamma_s \ge 1).$$
(2.10)

Theorem 2.4. Let $\alpha = (2(d-1)k \coth \frac{k}{4})^{-1} \wedge 1$, which is a positive constant depending only on d and k. There exists a constant C depending only on d, such that

$$P_x(\sup_{s \in [0,t]} d(x(t), x) \ge r) \le C \exp(-\frac{r^2}{Ct})$$
(2.11)

for all $(t, x) \in (0, \alpha] \times M$.

ale i presso

Proof. Consider the solution γ_t of the stochastic differential equation (2.9). Define a sequence of stopping times

$$T_{0} = \inf\{t > 0; \gamma_{t} > 1/2\},$$

$$T_{1} = \inf\{t > 0; \gamma < 1/4\},$$

$$T_{2m} = T_{0} \circ \theta_{T_{2m-1}},$$

$$T_{2m+1} = T_{1} \circ \theta_{T_{2m}},$$

$$T = \inf\{t \ge 0; \gamma_{t} = 1\}.$$

It is easy to see that $\gamma_t \leq 1/2$ on $[T_{2m-1}, T_{2m}]$, hence T is in one of the intervals $[T_{2m}, T_{2m+1}]$, but $\gamma_t \geq 1/4$ on $[T_{2m}, T_{2m+1}]$. Thus we have

$$\gamma_T - \gamma_{T_{2m}} = \frac{1}{r}(\beta_T - \beta_{T_{2m}}) + \frac{d-1}{2}\int_{T_{2m}}^T k \coth k \gamma_s ds.$$

Noting that $\gamma_T = 1$, we get

化树枝素 植物的 人名英格兰人姓氏

ar en el Antonio II (p. 1917) 1 de Maria II (n. 1917) 2 antonio Maria II (n. 1917)

$$1 \leq \frac{1}{2} + \frac{1}{r}(\beta_T - \beta_{T_{2m}}) + \frac{d-1}{2}Tk\coth\frac{k}{4}$$

hence we have

1 Bartin St.

$$\sup_{s\in[0,t]}\frac{2}{r}|\beta_s|\geq \frac{1}{2}-\frac{d-1}{2}tk\coth\frac{k}{4}$$

1.67

1.1

on $\{T \leq t\}$. Hence for any $t \in (0, \alpha]$, we have

$$egin{aligned} & \sup_{[0,t]} \gamma_s \geq 1) = P_x(T \leq t) \ & \leq P_x(\sup_{s \in [0,t]} |eta_s| \geq rac{r}{8} \ & \leq C \exp(-rac{r^2}{Ct}) \end{aligned}$$

for some positive constant. Using 2.10, we get (2.11).

§3. Strongly Large Deviation Property

In this section, we assume that M is a connected, complete Riemannian manifold which is stochastically complete. For any $\omega \in \Omega \equiv C([0, 1]; M)$, define

$$I(\omega) = \frac{1}{2} \int_0^1 |\dot{\omega}(t)|^2 dt \le +\infty,$$
(3.1)

10 E. C. 20

No.2

where $\dot{\omega}$ denotes the generalized derivatives of ω . Then I is a rate function on Ω , that is, for any $K \ge 0$, $\{\omega: I(\omega) \le K\}$ is a compact subset of Ω . It is well known that

$$\frac{1}{2}d^2(x,y) = \inf_{\substack{\omega:\omega(0)=x\\\omega(1)=y}} I(\omega)$$
(3.2)

and easy to check that for $0 \le t_1 < t_2 < \cdots < t_n \le 1$

$$\inf_{\substack{\omega(t_i)=x_i\\i=1,\cdots,n}} I(\omega) = \frac{1}{2} \sum_{i=1}^{n-1} \frac{d^2(x_{i+1}, x_i)}{t_{i+1} - t_i}.$$
(3.3)

Now we can state the strongly large deviation property for the Riemannian Brownian motion in a small time interval.

Theorem 3.1. Assume that

 $(1)\lim_{t\to 0} 2t\ln p(t,x,y) = -d^2(x,y) \text{ uniformly on } B(x_0,r) \text{ for any } x_0 \in M, r > 0.$

(2) There are constants $\alpha \in (0, 1], C > 0$ such that

$$P_x(\sup_{s\in[0,t]}d(x(t),x)\geq r)\leq C\exp(-\frac{r^2}{Ct})$$

for all $(t, x) \in (0, \alpha] \times M$.

Then $(P_{\epsilon,x})$ has strongly large deviation property with rate function I, that is, for any closed subset $C \subset \Omega$ and open subset $G \subset \Omega$, we have

$$\limsup_{\substack{\epsilon \to 0 \\ \psi \to \pi}} P_{\epsilon,y}(C) \le -\inf_{\omega \in C_x} I(\omega), \tag{3.4}$$

$$\liminf_{\substack{\epsilon \to 0 \\ y \to x}} P_{\epsilon,y}(G) \ge -\inf_{\omega \in G_x} I(\omega), \tag{3.5}$$

where $C_x = \{ \omega \in C : \omega(0) = x \}.$

We say a complete Riemannian manifold M has strongly large deviation property if (3.4) and (3.5) hold for $(P_{\epsilon,x})$, where $(P_{\epsilon,x})$ denotes the diffusion measure family associated with the transition density function $p(\epsilon t, x, y)$, and p(t, x, y) denotes the heat kernel of the manifold M. Then Theorems 2.3 and 2.4 imply the following

Theorem 3.2. If M is a connected, complete Riemannian manifold with Ricci curvature bounded from below, then M has strongly large deviation property.

We can follow the idea given by S. R. S. Varadhan^[9] to prove Theorem 3.1, so we will merely outline the proof, giving details only at those points where new difficulties arise.

Let $\pi: 0 = t_0 < t_1 < \cdots < t_n = 1$ be a partition of the time interval [0,1], denote by T_{π} the map: $\Omega \to M \times \cdots \times M$ defined by

$$T_{\pi}\omega = \{\omega(t_0), \cdots, \omega(t_n)\}.$$
(3.6)

Then for any Borel set $A \subset M \times \cdots \times M$, we have

$$P_{\epsilon,y}(T_{\pi}^{-1}A) = \int_{A_y} \prod_{j=1}^n p_{\epsilon}(t_j - t_{j-1}, y_{j-1}, y_j) dy_j, \qquad (3.7)$$

where $A_y \equiv \{(y_0, \dots) \in A : y_0 = y\}.$

Lemma 3.1. Let $A \subset M \times \cdots \times M$ be a closed subset and $C = T_{\pi}^{-1}A$. Then

$$\limsup_{\substack{\epsilon \to 0 \\ \omega \in C_x}} \epsilon \ln P_{\epsilon, y}(C) \le - \inf_{\omega \in C_x} I(\omega).$$
(3.8)

÷ ,

•

. .

. . .

.

.

Proof. If A is bounded, then using (2.6) and (3.3), one can easily check that (3.8) holds. Since $d(x(t), y) \leq d(x(t), x) + d(x, y)$, we have

$$P_{\epsilon,y}(\sup_{s\in[0,1]}d(x(t),x)\geq r)\leq P_{\epsilon,y}(\sup_{s\in[0,1]}d(x(t),y)\geq r/2)$$

for any $x, y \in M$ such that $d(x, y) \leq r/2$ and r > 0. Hence for any $\epsilon \in (0, \alpha], r \geq 1$, we have

 $\sup_{d(y,x)\leq 1/2}P_{\epsilon,y}(\sup_{s\in[0,1]}d(x(t),x)\geq r)\leq C\exp(-\frac{r^2}{C\epsilon}).$

Choose a constant r > 0 such that $\frac{r^2}{4C} > \inf_{\omega \in C_r} I(\omega)$. Denote

$$A_1 = A \cap \overline{B(x,r)}, \ \ A_2 = A \cap \overline{B(x,r)}^c.$$

Then A_1 is a bounded set. Hence we have

$$\limsup_{\substack{\epsilon \to 0 \\ y \to x}} \epsilon \ln P_{\epsilon,y}(T_{\pi}^{-1}A_1) \leq -\inf_{\omega \in C_x} I(\omega)$$

and the second second

and

2. 5

all and the

1 . 11

$$\begin{split} \limsup_{\substack{\epsilon \to 0 \\ y \to x}} \epsilon \ln P_{\epsilon,y}(T_{\pi}^{-1}A_2) &\leq \limsup_{\substack{\epsilon \to 0 \\ y \to x}} \epsilon \ln P_{\epsilon,y}(T_{\pi}^{-1}B(x,r)^c) \\ &= \limsup_{\substack{\epsilon \to 0 \\ y \to x}} \epsilon \ln P_{\epsilon,y}(\sup_{s \in [0,1]} d(x(s),x) \geq r) \\ &\leq -\frac{r^2}{4C}. \end{split}$$

terne and the second Thus we have proved (3.8) since

$$P_{\epsilon, \boldsymbol{y}}(C) \leq P_{\epsilon, \boldsymbol{y}}(T_{\pi}^{-1}A_1) + P_{\epsilon, \boldsymbol{y}}(T_{\pi}^{-1}A_2).$$

For any positive intergal number n, denote by π_n the partition: $0 = t_0 < t_1 < \cdots < t_n = 1$ with $t_i = \frac{i}{n}$, and by $x_n(t)$ the process such that $x_n(t_i) = x(t_i)$, and join the successive ones by geodesics (which is well defined because M is complete). Using the same method, we can define a $\omega_n \in \Omega$ such that $x_n(t; \omega) = x(t; \omega_n)$. 5 Sec. the product of the

and the second states and a

Lemma 3.2. For any $\delta > 0$,

$$\limsup_{n \to \infty} \limsup_{\epsilon \to 0} \sup_{x} \epsilon \ln P_{\epsilon,x} \{ \sup_{t \in [0,1]} d(x(t), x_n(t)) \ge \delta \} = -\infty.$$
(3.9)

Proof. Using Corollary 2.4, by the same method used in the proof of Lemma 3.2 in [9], we can prove the lemma. In fact, one can easily check S LAS MARY

$$\sup_{t \in [0,1]} d(x(t), x_n(t)) \leq 2 \sup_{0 \leq j \leq n-1} \sup_{t_j \leq t \leq t_{j+1}} d(x(t), x(t_j)).$$

1 2.

Qian, Z. M. LARGE DEVIATION PROPERTY FOR RBM

For any positive intergal number $n > \frac{1}{\alpha}$, using Markov property we have

$$P_{\epsilon,x}\left(\sup_{t\in[0,1]}d(x(t),x_n(t))\geq\delta\right)$$

$$\leq P_{\epsilon,x}\left[\sup_{0\leq j\leq n-1}\sup_{t_j\leq t\leq t_{j+1}}d(x(t),x(t_j))\geq\delta/2\right]$$

$$\leq \sum_{j=1}^{n-1}P_{\epsilon,x}\left[\sup_{t_j\leq t\leq t_{j+1}}d(x(t),x(t_j))\geq\delta/2\right]$$

$$\leq n\sup_x P_{\epsilon,x}\left(\sup_{t\in[0,\frac{1}{n}]}d(x(t),x(0))\geq\delta/2\right)$$

$$\leq nC\exp\left(-\frac{n\delta^2}{4C\epsilon}\right).$$

Now (3.9) follows immediately.

It is a routine matter to prove the upper bound (3.4) by using (3.8) and (3.9) (see [9]). For completion, we outline the proof as follows.

Let $C \subset \Omega$ be a closed set. For any $\delta > 0$, set

$$C_{\delta} = \{ \omega \in C : d(\omega(0), x) < \delta \},\$$

$$C_{\delta}^{\delta} = \{ \gamma : \sup_{t \in [0,1]} d(\gamma(t), \omega(t)) < \delta \text{ for some } \omega \in C_{\delta} \},\$$

$$I^{\delta}(\omega) = \inf_{\substack{\gamma : \sup_{t \in [0,1]} d(\gamma(t), \omega(t)) < \delta}} I(\gamma),\$$

$$\alpha_{\delta} = \inf_{\omega \in C_{\delta}^{\delta}} I(\omega).$$

It is easy to see that $\omega \in C_{\delta}$ implies $I^{\delta}(\omega) \geq \alpha_{\delta}$. We have

$$P_{\epsilon,y}(C) = P_{\epsilon,y}(C_{\delta}) \le P_{\epsilon,y}(I^{\delta}(\omega) \ge \alpha_{\delta})$$
$$\le P_{\epsilon,y}\left(\omega: \sup_{t \in [0,1]} d(\omega(t), \omega_n(t)) \ge \delta) + P_{\epsilon,y}(I(\omega_n) \ge \alpha_{\delta}\right)$$

for any $\delta > 0, n$ and y such that $d(y, x) < \delta$. We note that

$$\{I(\omega_n) \ge \alpha_{\delta}\} = \left\{ \omega: \frac{1}{2} \sum_{j=1}^{n-1} \frac{d^2(\omega(t_j), \omega(t_{j+1}))}{t_{j+1} - t_j} \ge \alpha_{\delta} \right\}.$$

Using (3.8), we get

$$\limsup_{\substack{\epsilon \to 0 \\ y \to x}} \epsilon \ln P_{\epsilon,y}(I(\omega_n) \ge \alpha_{\delta}) \le -\alpha_{\delta}$$

for any n. Using (3.9), we have

$$\limsup_{\substack{\epsilon \to 0 \\ y \to \infty}} \epsilon \ln P_{\epsilon, y}(C) \le -\alpha_{\delta}$$

for any $\delta > 0$. Letting $\delta \to 0$ in above inequality, we get the upper bound by the fact that $\lim_{\delta \to 0} \alpha_{\delta} = \inf_{\omega \in C_x} I(\omega).$

On the other hand, the lower bound is a consequence of Theorem 3.2, (3.9) and the upper bound (3.4) (see the proof of Lemma 3.4 of [9]).

243

No.2

This completes the proof. In spray we doubt one on the second state to be a second to be a second second second

Acknowledgement. The author would like to express the deepest appreciation to Professors He Shengwu and W. A. Zheng for their encouragement.

REFERENCES

[1] Bismut, J. M., Large deviations and the malliavin calculus, Birkhäuser, 1984.

n an The Mark Age Score

- [2] Chavel, I., Eigenvalues in Riemannian geometry, Academic Press, Inc., 1984.
- [3] Freidlin, M. I. & Wentzell, A. D., Random peturbations of dynamical systems, Springer-Verlag, 1984.
- [4] Pei Hsu, Heat semigroup on a complete Riemannian manifold, Ann. of Prob. (to appear).
- [5] Ikeda, N. & Watanabe, S., Stochastic differential equations and diffusion processes, North-Holland and Kodansha, 1981.
- [6] Kendall, W. S., The radial part of Brownian motion on a manifold: a semimartingale property, Ann. of Prob., 15 (1987), 1491-1500.
- [7] Li Peter & Yau, S. T., On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 659-685.
- [8] Stroock, D. W., An introduction to the theory of large deviations, Springer-Verlag, 1984.
- [9] Varadhan, S. R. S., Diffusion processes in a small time intervals, Comm. Pure Appl. Math., 20 (1967), 659-685.

and the constrained to see the constrained of a

[10] Yau, S. T. & Schoen, R., Differential geometry (in Chinese), Academic Press, 1988.

Alexandra Marchael States

 $\left\{ \left\{ \left\{ {{{\boldsymbol{\lambda }}_{i}}^{T}} \right\} \right\} = \left\{ \left\{ {{{\boldsymbol{\lambda }}_{i}}^{T}} \right\} \right\} = \left\{ {{{\boldsymbol{\lambda }}_{i}}^{T}} \right\} = \left\{ {{{{\boldsymbol{\lambda }}_{i}}^{T}} \right\} = \left\{ {{{{\boldsymbol{\lambda }$

and the second secon

4.2

i propositi nel to penne di createren di a conservazione di compositi. El el della contra posto di conserva della survetto di contra servizione di conservazione di conservazione di c

 $\mathcal{L}_{\mathrm{eff}} = \sum_{i=1}^{n} \left[\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$

and the second second

adamenta gabaran da

este signification de la destruction. La constant de la cons

and a star in the second second in the second data and the second in the second second and an end of the second And second sets a second

a Article and A Beam and a state of the Article and Arti