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Abstract ......  '
Let M  be a connected, complete Riemannian manifold with Ricci curvatuife bounded from' 

below, p(tyx,y)  be the transition density function of the Riemannian Brownian motion, and 
for each e >  0, (P*,®) be thediffusion measure family associated with the transition density 
function p(etj x, y). In this paper, it i&showttthat (Pe,®)has strongly large deviation properties, >, 
as e —► 0.

§1. Introduction : - ;i d
Suppose that (M,g) is. a d-dimensipnal, noncompact, connected and complete Riemahn- 

ian manifold which is stochastically complete, Д is the Lapiace:Betrami operator. The Rie­
mannian Brownian motion (Xt)  on,M  is the manifold-vahied diffusion process associated 
with the infinitesimal generator1 |Д  (see [5]). That is, let p{t,x,y) denote the minimal fun­
damental solution of the heat equation |  Д —-Ц, then the Riemannian Brownian motion {Xt) 
is a continuous Markov process with the state space M- and ,the transition density function 
p{t,x,y) with respect to the Riemannian volpme measure.,In particular, (Xt) is conservative 
under the assumption that M  is stochastically complete. Let Cl denote C([0,1]; M) with 
the topology of uniform convergence on the time interval [0,1], T  be its Borel cr-field. For 
each 6 e  (0, 1], denote by (Pe,x)xeM the -diffusion measure family on (Cl,/F) associated with 
theprqpess (Xe(t))o<t<i, -whei$.Х-€{$)-э$X(et)r..Then-M,’h Freidlin and■■A.- D. Wentzellf3) 
proved that (Pe,y) has , strongly lqrge deviation prqpcrty as e -+; 0 and. у ж, under the 
additional condition that M  has bounded geometry and Д  is locally uniformly ,elliptic. More 
precise, M. I. Freidlin and A. D. Wentzell proyedithe following (see Theorem 3.2 ip [3]) 

Theorem . Assume. that, M  has „ the following “bounded geometry” property: /There is 
a positive number rq, and for every ball В(х,г0) С M, there is a chart фх:В(х,г0) —> Rd 
satisfying the uniform quasi-isometry condition ’ "

. v ,: СоЫ(у, г} < \Фх(у) ~ ФхШ<Соф(у,г), (Ц )

Ух e М, Уу, z е B(x,ro), with a. constant Со independent of х, Moreover, assume Д  • is 
Ideally uniformly elliptic operator with'constant ellipticity p > 0. Then{P£ty) has strohgly 
large deviation property (see Theorem 3.1).
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By the Rauch comparison theorem^, and by use of normal coordinates with respect to 
x e  M, the property (1.1) holds if the sectional curvatures of M are bounded from above 
and from below, and if the injectivity radius at each x € M  is larger then a positive constant.

In this paper, we prove that (Pe,y) has strongly large deviation property as e —* 0 and 
у —> x provided that the Ricci curvature is bounded from below. We mainly use the 
heat estimates established by Peter Li and S.T.Yaut7! and the comparison theorems for the 
solutions of stochastic differential equations to prove above result. We note that under the 
condition (1.1), the volume Vol(By(l)) of a unit geodesic ball centered at a point у € M 
is larger than a fixed positive constant independent of y. On the other hand, there are 
complete Riemannian manifolds with Ricci curvatures bounded from below ( even non­
negative) satisfying inf Vo1(jEL(1)) — 0.y£M

Remark. It was proved by R.Azencott (see Grandes deviations et applications, in Lecture 
Notes in Mathematics 774) that (Pe,*) has large deviation property as e —> 0.

§2. Several Facts
In this section, we assume that (M,g) is a connected, complete Riemannian manifold 

(without boundary) with Ricci curvature bounded from below, and assume that Ricc(M) > 
—(d — 1 )fc2, fc > 0 is a constant.

Theorem  2.1 (Com parison theorem  for th e  heat kernel). Let M(d, —fc2) denote 
the d-dimensional space form with constant section curvatures —fc2, and pk be the heat 
kernel of M(d, -fc2) which solves the heat equation |Л  -  щ on M(d, -fc2), given by

Pk(t,x,y) = Sk(t,dk(x,y)) (2.1)

for x,y & M(d, -fc2), where dk denotes the distance in M (d , -fc2) and

£k: (0,oo) x [0,oo) —► R.

Then

p(t,x,y)>£k{t,d{x,y)) (2.2)

for all (t,x,y) € (0, oo) x M x M, where p(t,x,y) denotes the transition density function of 
the Riemannian Brownian motion on M, and d(x,y) denotes the geodesic distance from x 
to у  respectively.

For the upper bound of the heat kernel, we have
Theorem  2.2. For any 6 € (0,1), there are constants C(d,8) and C(8) such that

C(d,6) _ (  d2(x,y)
P(t,x, y ) <

V/(Vi)Vy2(Vt)
exp

( - 2(1 +  8)t + C(d)8k2t
)

(2.3)

for all (t , x, y) € (0, oo) x M x  M. Moreover, C(d,6) —> oo when 8 -* 0. Here Vx{\ft) denotes 
the volume of the geodesic bell centered at x of radius \ft.

For the proofs of Theorems 2.1 and 2.2, we refer to I. Chavel^ and Peter Li and S. T. 
YauW, respectively.

Lemma 2.1110!. (1) For a fixed point xq € M, let p(x) = d(x,xo). Then there exists a 
constant C depending only on n, к and BXo( 1), such that

Vx(l) > e ~ Cp(xl (2.4)
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(2) For 0 < r < R

Vx(R) <  2^1 (2.5)
. , . . M r )  ~ '

where V(R) denotes the geodesic ball of radius R in M(d, - k 2).
Now we can prove the following Theorem 2.3, which is an improvement of the famous S 

R. S. Varadhan’s theorem. 5 * 1
Theorem  2.3t9l

lim 21 In p(t, x, y) =  ~d2(x,y) (2.6)
;  ̂.

uniformly on the geodesic, ball B(xo, r) for any xo £ M ,r > 0.
Proof. By Theorem 2.1, we know

lim.inf 2tlnp(t,x , y) > ~d2(x,y)

uniformly over x,y £ M  such that d(x,y) ,is bounded. By Theorem 2.2 and Lemma 2.1 we 
get

m21 Inp(t, x, y) <21 In C(d, 6) 4- 2f In
V(Vi)

+  2tCd{xyX(i) +,2tC(6)Sk2 -2 d2{x,y)

Hence we have

lim sup2tlnp(t,x,jf) >  —d2(x,y) 
t—»o. (

uniformly on B(xq,r), for any xq £ M,r  >  0. ,  ̂ /
Now we turn our attention to the Riemannian Brownian motion. Let Q =  C([0,1];M) 

with the topology of uniform' convergence on [0, 1], x(t) be the coordinate process and P, Tt 
be the natural сг-field. It is well known that for each x £ M, there is a unique probabil­
ity measure Px on (fl,.F), such that ,x(t),et,Px) is a strongly Feller continuous,
Markov process with the transition density function p(t,x,y). For each e > 0, denote by 
P€>x the diffusion measure family on (ft,.F) associated with the transition density function 
Pz(t,x,y)=p(et,x,y).

For each x £ M, consider the radial process p(x{t)) =  d(x(t),x). By Kendall [6], there is 
a standard Brownian motion (with initial value zero) /?* over the filtered space (Q,,P,Pt ,Px) 
and a nondecreasing process Lt with initial value zero which increases only when x(t) belongs 
to the cut-locus C(x) of x, such that

p(x(t)) =  & +  £ Ap(x(s))ds -  Lt. s ,, , „ ,

By the comparison theorem for Laplacian’s (see [10]), we have

Дрг < (n - l )kc6thkp y- ' (2.8)

in the w^ak sense; For-any r >  0, let 7* be the process oh [0,1] deterinhied by the stochastic 
differential equation * - •

l a d —1 f* . ,
; It = : - Pt +  —7T~ / k coth k'iads.r 2 Jq .

(2.9)
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By a comparison theorem for solutions of stochastic differential equations (see Ikeda and 
Watanabe^l), we get

Px{ sup p(x(s)) > r )  < Px( sup 7e > 1).
«€[0,tJ S6[0,t]

(2.10)

Theorem  2.4. Let a  (2(d — l)fccoth | )  1Л 1, which is a positive constant depending
only on d and k. There exists a constant C depending only on d, such that

ГPx( sup d(x(t),x) > r ) <  C exp(—— )
s€[0,i] - O t

(2.11)

for all (t, x) G (0, a] x .M.
Proof. Consider the solution 7< of the stochastic differential equation (2.9). Define a 

sequence of stopping times

TQ-  inf{t >  0:7* > 1/ 2},

: ' Tx =  inf{t > 0:7 < 1/4},

Tim ~ T 0 O вт2т_1,
Tlm+1 = Tx O 0T2th,

T  =  inf{t > 0:7< — 1}.

It is easy to see that 7t < 1/2 on [T2m_ i , Tim], hence T is in one of the intervals [Tim, ?2m+i], 
but 71 >  1/4 on [Tim,Tim+i]- Thus we have

j ^ f T
7t — 7r2m =  ~(Pt ~ 0т2т) + '—o~ I ; fccothk^ads.

Noting that 7 r =  1, we get

hence we have

.  l l A l S 1 " - - 1
-e[o,t] r

oh {T < t}. lienee for any i £ (0,a], we have

sup -|/3e| >   ---- ——tfccoth
Я A

Px( sup 7s > 1) =  PX{T < t)
s€[0,<]

< PX( sup Щ  > l )
s€[0,<] о

s c e x p ( - ^ )
for some positive constant. Using 2.10, we get (2.11).

§3. Strongly Large Deviation Property

In. this section, we assume that M  is a connected, complete Riemannian manifold which 
is stochastically comjjldte. For any w e l l s  C([0,1];M), define
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where w denotes the generalized derivatives of u>. Then I  is a rate function on ft, that is, 
for any К  > О, {ш: I(w) < K}  is a compact subset■ of. ft. It is well known that

\ d 2{x,y) =  inf J(w) (3.2)& w:u/(0):s*w(l)=y
and easy to check that for 0 <  Ц < £2 <  * • • <  tn < 1

ri~l

t=l,
inf I(u>) =  J V
l.-V ,» • . \*ssl

d2(xi+x,Xj) 
ti+1 — ti

(3.3)

Now we can state the strongly large deviation property for the Riemannian Brownian 
motion in a small time interval.

Theorem  3.1 . Assume that
(1) lim 2tlnp(t,x,y) =  —d2(x,y) uniformly on B(xo,r) for any xq € M,r > Q.
(2) There are constants а € (0,1], C >  0 such that

T2Px( sup d(x(t),x) > r) < Cexp(—f~) 
ee[o,t]

for all (t , x) € (0, а ]х  M.
Then (Pe,x) has strongly large deviation property with rate function I , that is , for any 
closed subset С C ft and open subset G C ft, we have

lim sup Pe>y (C) < €-*0 y—*x
-  inf I(u>), (3.4)

UminfPe^G) > г- inf I(w), 
wee*

(3.5)
. y - * x

where Cx *= {w € C : w(0) =  x}-
We say a complete Riemannian manifold M has strongly large deviation property if

(3.4) and (3.5) hold for (P£)I), where (Pe,x) denotes the diffusion measure family associated 
with the transition density function p(et,x,y), and p(t, x, y) denotes the heat kernel of the 
manifold M. Then Theorems 2.3 and 2.4 imply the following

Theorem  3.2 . IfM is a connected, complete Riemannian manifold with Ricci curvature 
bounded from below, then M has strongly large deviation property.

We can follow the idea given by S. R. S. Varadhant9! to prove Theorem 3.1, so we will 
merely outline the proof, giving details only at those points where new difficulties arise.

Let 7г: 0 == fo < < ! ' < • •  • <  tn — 1 be a partition of the time interval [0,1], denote by T„ 
the map: ft -+ M  x • • • x M  defined by

7U; =  {w(fo), • • • ,w(t„)}. (3.6)

Then for any Borel set A С M  x • • • x M, we have

f nPt>y(T~lA) =  /  П р е(Ъ - t j -u y j -u y ^ d y j ,
^AV 1 = 1

(3-7)

where Ay s  {(y0, • • •) e  A: y0 =  y}.
Lem m a ЗД . Let A С M x ■ ■ • x M be a closed subset and С — Т~гА. Then

lim supelnPe^C ) < — inf 1{ш).
€-+o w€Ox
y —*x

(3.8)
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Proof. If A  is bounded, then using (2.6) and (3.3), one can easily check that (3.8) holds. 
Since d(x(t),y) < d(x(t),x) + d(x,y), wehave

Pe,y( sup d(x(t),x) > r ) <  Pe;y( sup dixit), у) > r /2) 
se[o,i] se[o,i]

for any x,y E M  such that dix,y) < r/2 and r >  0. Hence for any e € (0,a], r > 1, we have

* ; T
sup Pe>yi sup d{x{t),x) > r ) <  Cexp ( - — ).

1/2 s6[0,l] , \  Ce' .

Choose a constant r > 0 such that ^  >  inf /(a;). Denote

A\ — А П 5(ж, r), 4̂.2 =  А П Р(ж, r) .

Then A\ is a bounded set.. Hence we have

lim sup e In P6>y(T“ M i) <  — inf /(w)
«—►o w€C«

• /  *• ■„ , y—*ar . • « f

and

lim sup e In Pe,y(T7r М 2) < limsup e In Р6)У(Т“ 15(ж, r)c)
6-+0
y —* x

e - f O
y—

=  lim sup e In Pe,y ( sup й(ж(в),ж) > r) 
se[o,i]€—+0 

y —* x

<
~ ■ 4C

Thus we have proved, (3,8) since

г (Por any positive ipfergal number n,.denote by irn the partition:. 0 =  to <  £1 <  • ’ • < tn. =  1 
with ti =  and by xn(t) the process such that ж„(£*) .= xik), and join the successive one? 
by geodesics (which is well defined because M is complete). Using the same method, we can 
define a wn E such that жп(£; ui) =  ж(£; шп).

-Lemma 3.2. For any 6 > 0,

hmsuplimsupsupelnPe)a;{ sup <£(ж(£),жп(£)) > 5} =  -oo. (3.9)
n-+oo e-+0 x <€[0,1] :

Proof. Using Corollary 2.4, by the same method used ip the proof of Lemma 3.2 in [9] , 
we can prove the lemma. In fact, one can easily check

sup dixit), Xrlit)) < 2 sup sup <£(ж(£),ж(£л)).
t€[0,l] 0<j<n-ltj<t<tj+i,
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For any positive intergal number n >  using Markov property we have

Pf.e,x I sup d(x(t),xn(t)) >  6
< *e[o,i) j

<Pe,x sup sup d(x(t),x(tj)) > 6 / 2

П—1

< £ * . »
3=1

sup d(x(t),x(tj)) > 6/2

<nsupPe>!B I sup d(x(t),x(0)) >  6/2 I 
* \*e[o,i] J

5иС ю ф( ~ Ш '
Now (3.9) follows immediately.

It is a routine matter to prove the upper bound (3.4) by using (3.8) and (3.9) (see [9]).
For completion, we outline the proof as follows.

Let С С  П  be a closed set. For any 6 >  0, set
Cs = {из € C: d(w(0), x) <  5},

Cg =  {7: sup d(j(t),w(t)) < 6 for some ш e Cs},
*6[0,1]

1*(из) =  inf 1(7),
rsup<€(0)1] d(7 (t),w(*))<6

as =  inf 1(из). 
wec|

It is easy to see that из € Cs implies Is(из) > as . We have

P.,v(C) = P.,p(Ce) > <*s)

< Pe,y ( из: sup d(u(t), wn(t)) >6)  + P6ty(I{ujn) > Ois 
\  <€[0,1]

for any 6 > 0,n and у such that d(y, x) < 6. We note that

■ 1 ' P  ^2(ш( Ь ) ^ ( / з + 1 ) )

Using (3.8), we get

limsupeln Ре>у(1(изп) > as) < -a s

{ / ( ^ n )  > « « } = < >  a s  > ■

+0

for any n. Using (3.9), we have

lim sup e In Pe,!/(<?) < —as
e -* 0  у r+x

for any 6 > 0. Letting 6 —► 0 in above inequality, we get the upper bound by the fact that
lim as =  inf 1(ш).s~* 0 wee* ’

On the other hand, the lower bound is a consequence of Theorem 3.2, (3.9) and the upper 
bound (3.4) (see the proof of Lemma 3.4 of [9]).
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This completes the.proof. , , rv ^  ■,< ,
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