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STATIONARY SOLUTIONS OF THE RELATIVISTIC
VLASOV-MAXWELL SYSTEM OF PLASMA PHYSICS
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Abstract

The authors consider the stationary relativistic coupled system consisting of Vlasov’s equa-

. tion for the distribution function of charged particles and Maxwell’s equations for the electric

and magnetic fields of a plasma. With different tools of nonlinear functional analysis the ex-

istence of solutions is proved, in which, according to different geometries and symmetries, the
distribution function depends on one, two or three independent integrals of the motion.
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51. Inti'oduCt'ion'
The present paper is part of a mathematical description of a collisionless plasma consid-
ered as a collection of many fast moving charged particles whose collisions are neglected and
which interact only by their charges. The basic equations for the time development of the

species of electrons consist of the following system of partial differential equations which is
now called the Relativistic Vlasov-Maxwell System (RVMS)

8uf +90uf —q(B+-9xB)=0, (11)
%atE - curlB = ——-%E], - | '. (1.2)

i—c%B +curl E =0, (1.3)

- div E = 4mp, - : R

divB=0. - (1)

Here f = f(t,z,v) > 0 denotes the distribution function of the electrons depending upon the

time ¢ > 0, the space coordinate ¢ = (y, 2, ¢3) € IR3 and the momentum v = (1)1,’!)2,'!)3) €
3 v

IR®, E = E(t,z) and ‘B = B(t,z) are the electric and magnetic fields and 9 : ——————\/m

is the relativistic speed of a particle, g and m denote the charge and mass of a particle, ¢ is

the speed of light and p = p(t,«) and j = j(,«) are the local charge and current densities.

; Manuscript received March 4, 1993
' *Mathematlsches Institut der Unlver31tat Munchen, Theresmnstr 39 8000 Munchen 2 Federal Repubhc
" of Germany . :




254 ' . CHIN. ANN. OF MATH. Vol.14 Ser.B

These two quantities are related with f through

p(z) =g / f(z,v) dv,
. Y -

ite) =g [ o e, 0)dv.
RS
The associated initial value problem with a prescribed distribution fp
f(O,a:,'v) = fo(d),’U) '

has received much attention in recent years. In the classical setting, R.T. Glassey and W.A.
Strauss have shown that a local solution is actually global if there exists an a priori bound
for the support of f(t,z,v) in the momentum variable on the interval of its existencel®!, or
more generally, if the kinetie energy density | |

[ 40217 f6,2,0) o

A _ A
stays bounded*?, These results were used by R.T. Glassey, J. Schaeffer and W.A. Strauss
to obtain the existence of global classical solutions for small initial datal® or nearly neutral
datal'l]l, G. Rein considered a class of global solutions with a certain asymptotic behavior
of the resulting solutions("], Global existence of classical solutions for general initial data is
still an open problem. Global existence of distributional solutions were proven by P.L. Lions
and R. Di Pernalt?l, In contrast to the classmal sxtuatlon, there is no unlqueness result for
these weak solutions.

The present paper is concerned with the existence of stationary solutlons of the RVMS

in several geometric configurations arising from known solutions of Vlasov’s equation (1.1),
that is, from three known integrals of the associated system of ordinary differential equations

& =19,
. 1
v—q(E+— ¥ x B).

Let us denote by ® = P(z) and A = A(z) the scalar and vector potential associated with
Maxwell’s equations (1.2)-(1.5). A first integral is the energy density:

‘ E(z,v) = ®(z) + V1 + 2
We get a second integral if we assume that ® and A are cylindrically sjmmetric, that is, they
only depend upon r(z) := \/m and z := z3 (but not upon ¥ in cylindrical coordinates
r,9, z), namely A ‘ ‘

| F(r,2,) = (b + Ap(r,2)).
(Subscﬁpts 7,9, z denote the components .of a vector in IR® in the local coordinate system
(er(z), es(x), e2(z)).) If we assume that ® and A are translational invariant, such that they
do not depend upon z, then the quantity .
P(r,9,v) :=v, +A (r,19)

is a third mtegral _These integrals are well known in plasma physics. In a recent note P.
Degond has set up the form of systems of equations whose solution might lead to the con-
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struction of stationary solutions of the RVMS!®!. In fact, the determination of a distribution
f as a solution of Vlasov’s equation in one of the following forms

Case 1) f=¢(E), Case2) f=pEF), Case3) f=¢,F, P)

requires the solution of one semilinear elliptic equation in Case 1), of a system of two
semilinear elliptic equations (one containing a singular term for » = 0 ) in Case 2) and
.a system of three ordmary differential equations of second order (one again contammg a
s1ngular term) in Case 3), subject to suitable boundary conditions.

It is the purpose of the present paper to prove the existence of solutions for the result-
ing equations with the boundary conditions of a perfect conductor and thus to get three
essentially different families of the stationary RVMS.

The existing literature is not yet very rich in the topic addressed here. However, if we
formally let B = 0 or let ¢ — 0ol!% then we obtain the well known (felativistic) Vlasov-
Poisson system of equations denoted by (R)VPS. Stationary solutions of the RVPS have
been constructed in [4] and for the classical VPS in [2] and [3]. These articles have in-
fluenced the present investigation. For two species of particles and for given distribution
functions depending only upon the energy, G. Rein has recently proven the existence and
uniqueness of stationary solutions of the RVMS by variational methods!!8l. The articles of J.
Dolbeault[6] of F. Poupaud!*® and of the Russian School at Irku‘csk[3l3 14] contnbute further
to an expandmg theory ' :

§2. Formulation of the Problem

Let  C IR3 be a domain with boundary 82 € C'. For the sake of simplicity we let
g =m = c =1 and consider the following system of equations:

8, f — (E(@) + 9 x B(z))yf =0, ' C ('_2.1)_'
curl B(z) = 4nj(z), | (2.2)

curl E(z) =0, (2.3)

div E(z) = 4mp(z), (24)

5)

o divB(z) =0, z€Quve R® (2.
‘together with '

m) :;f/f(m,v)dv, (2.6)
R3

i(z) = /ﬁf(m,v) dv, z€q. (2.7)
. ES ,
We shall impose the boundary conditions of an 1dea1 conductor, that is,
| E(z) x v(z) =0, . - (2:8)
(B(w),u(z)) =0, z¢€oQ, . (29)

where v(z) is the outer normal in 2 € Q. A triple of functions (f, E, B) with f € C(Q] x
RHNCYQ x R3), f >0, f(x,-) € L*(IR?) for € Q and E, B € C*(Q)® satisfying the
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equations (2.1)-(2.9) will be called a stationary solution of the RVMS on Q. We shall have
to relax these conditions in certain situations. We introduce the scalar potential ® and the
vector potential A by

E(z) = —8,8(x), ) | o (2.10)

_ " B(z) =curlA(z) . . - (2.11) .
with the Lorentz gauge - o |
| | dvA@=0. | (2.12)
Then (2. 10) implies (2.3), (2 11) implies (2.5), (2. 4) is equlva,lent to o
~A®(z) = dnp(z) ' ' ©(2.13)

in view of (2.12) and the well known rela,tlon curl curlA = 8,divA—AA, (2.2) is equivalent
to o o
—AA(a:) 4rj(z). (2.14)

The boundary conditions (2.8) and (2 9) are satisfied if ® and A satisfy
®(z)=0a, z€0Q, - (2.15)
(curl A(z), v(z)) =0, z€dN . ’ (2.16)

for a constant o € IR®. We observe that if for given p and j the potentials ® € C*(Q)NC?(Q)

and A € C*(Q)% N C?(Q)? satisfy (2.13)-(2.16) then the fields E, B € C(R)% N C(2)3 given

by (2.10)-(2.11) satisfy (2.2)-(2.9). We find solutions f of (2.1) in three different situations.
Case 1. Let A=0. The energy density

E(z,v) == \/1+v2+<1>(a:)

obviously satisfies (2.1). Hence for any ¢ € C*(R), f(z,v) := ¢(€(x,v)) is a solution of
(2.1). If f(z,-) € L*(IR®) for all z € Q, then

dmp(z) = 47r/f(w v)dv = 47r/<p(\/1+v2 + ®(z)) dv
R3
— h,(8(a)
with

ho(€) = (4r)? / ot + &)t/ — Ldt. 2.17)

Furthermore,

j(m)“—"/’l')f(m,?))d’v:/ﬁcp(v_1+92+¢(w))dv=

R? R?
‘because the integrand is odd in v. Hence our choice A = 0 is compatlble with (2 14) and
(2.16). We deduce: To get a stationary solution of the RVMS in Case 1, it is sufficient to
solve the problem

—A® = h,(®) inQ,

2.18
T ®d=a  ond - ( )
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for & > 0, with h,, defined by (2.17). A solution will be given by Theorem 3.3 in Section 3.

Case 2. Here we assume {2 to be cylindrically symmetric, that is, invariant with respect to
all rotations about the z3-axis Z. We use cylindrical coordinates (7,9, z), 7(z) 1= \/22 + 3,
z := w3 for z € Q. For x € Q\Z define the local vector basis :

e,(a:) = ;%5 - (#1,22,0), eg(z):= ;(];—5 (——mz,é:l,o), e.(z) :=(0,0,1).

Any vector function K : Q\Z — B3 has a decomposmon K(z) = K (z)e, ($)+K19 (w)e,; (z)+
K,(z)e,(z) with

K, (z) := (K(z), er(2))
Ks(z) := (K(z), e5(2))
K.(z) = (K(z),e.(z))

We define K to be cylindrically symmetnc, if K, K9, K, are invariant with respect to all
rotatlons about Z, that is

K,=K,(r,z), Ks=Ky(r,z), K,=K,(rz)

do not depend upon 9.

Lemma 2.1. If ® and A are cylindrically symmetric, then
F(z,v) = r(z)(vs(z) + As(r, 2))

is a solution of (2.1) and for v € IR3, F(-,v) is cylindrically symmetric.

| It follows from Lemma 2.1, that for any ¢ € C1(IR?), ¢ > 0, the function f := (&, F) is
a solution of (2.1). If f(z,-) € L'(IR3) for all z € {2, then

| 4mp(z) = 4w / f(z,v)dv
R3

= 4r / (VI 2 + (), r(z)(vs + As(2))) dv
R
= hw(r(w), q)(a:), Aﬂ(m))7

dmjs(z) = 47r/1“;f(a:,v) dv

RS
—4r / 89 W(V/1 1 0 + B(), r(x)(vs + As(x))) dv
B3

= 872 / / ﬁw(\/l + 93 + g2 + ®(x), () (ve + Ag(z))) g dgdvy
k]
RO _

- gzp(r(m)’ (I)(:E), A'ﬂ(w))
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with-

hy(r,€,m) = 87r2//so( 1+ 95 +¢2 + &, r(vg + 1)) gdg dug,

R 0 . , , ‘
7§, :=87r2//-——w——¥ A/1+v234+¢2+&r(ve + dgdv
» g‘P( ’6 7’) L mm‘p( 9 T4 6) ( 9 ?7))‘1 q Uy
after introducing cylindrical coordinates (g = y/v2 +v2,v,vg) with the axis given by ey.
The substitution ¢ := £4/1 + v3 + ¢? yields the unified representation
. +vP-1 .
(C)eem=sr [ [ ({)ote+ertcrnyasar (2.19)
¥ . R_JFT .

Furthermore

‘ .71'('7;) = /737' f(m,v) dv

. EA

= / Uy <p(\/1 + v2 + 02 + v2 4 8(z), 7(z) (ve + As(2))) dvrdvyduy,
R? S
=0 (2.20)

because the integrand is odd in vy, and for a similar reason,
=0 (2.21)

We now express —AA(z) = curicurlA(:z;) in the system (e,(z),es(z),e,(z)). It is well
known that '

(curl4), = ;1:8,9Az ~8,Ay,
(curl A)y = 8,4, — 0, 4A,, (2.22)
(curl 4), = = (8,(rA9)) - %a,,A,,.

If A is also cylindrically symmetric, then 89A, = 9Ay = 834, = 0. Hence
- (AA)r = '—az(azAr - a'rAz),
' 1 A
— (AA)y = 8,(~0:49) ~ 8,(=0,(rAs)) = ~AAs + 3,4 (593
_(A4), = %(a,(r(azA,, —8,4,))).

Let us now choose A, = A, = 0 and Ay to be cylindrically symmetric. This is compatible
with (2.12) because | o

div A(e) = 10,(rA,(2)) + -0 Ao(0) +B,A(s) = 0.

As for (2.11) our choice implies

—(A4), =0=1j,, —(AA).=0=7,
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with (2.23), (2.20), (2.21). Equation (2.13) and the remaining part of (214) now read.

—A® = hy(r,®,Ay),

QAM+%:%m@m)mn (224
We impose the }.)ounda,ry conditipns
2=0, As=0 ondf. | (2.25)
The fields E' and B are then rediscovered from <Ii-and A by the general formula.
(gM@»=a@,(gm¢n5%m¢;(ga¢p;@¢ (2.26)

and (2.22). If cylindrically symmetric solutions are continuously differentiable near z €
90\ Z, they satisfy the boundary conditions (2.15), (2.16). In fact, as for (2.16), we note that

grad Ag(z) = 8,A9(x) - e (z) + 0, As(z) - e,(z) is a scalar multiple of v(x) if grad Ay(x) # 0,
and we get with (2.22) and (2.25) for some c € IR

@mamwm=$hwmg@=a

If grad Ay(z) = O then curl A(z) = 0 with (2.22) and (2.25).
Note that (2.24) contains a singularity in thé term —“r‘-g? if QN Z # 0. In Section 4 we shall
first investigate the regular case QN Z = 0 (Theorem 4.2 gives the existence result). The
' singular case Q@ N Z # 0 requires further preparations and will be treated in Section 7 for
the case that Q is a ball about the origin (see Theorem 7.1).

Case 3. Now let ) be translation invariant with respect to z. Then we have

Lemma 2.2. If ® and A do not depend upon z, then
P(.’D,’U) = ’Uz(ﬂ?) + Az(wlawZ)

is a solution of (2.1),and for all v € IR3, P does not depend upon z.

An interesting case arises if € is both cylindrically symmetric and translation invariant,
- and ® and A are cylindrically symmetric and independent of z. Then r is the only remaining
variable. If ¢ € C1(IR3),¢ > 0, is a given function, then f := ¢(€, F, P) is a solution of
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(2.1). If f(x,-) € LY(IR3) for all z € Q , then
dmp(z) = 47r/f(w,v)dv
R : .
=4 / P(V1+v?2 + 8(z),r(z)(ve + As(2)),v; + 4s(z)) dv
R _

= hy(r(z), ®(z), As(z), A.(2)),

4rje(z) = 47r/1‘)19 f(:v,'v.).dv

R? » _
=4r / b9 p(V14+v2 + @(w),r(w)_(v,g + Ay(z)), v, + A,(z)) dv
ns

= 9(7(z), 8(2), Ao(2), A2(2)),

4mj.(z) = 47r/1‘)z f(z,v)dv

. R ] : . .
=4 / il ¢(\/1 + 0% + ®(z), 7(z)(vs + As(2)), v, + As(z)) dv
R : . . :

= ko (r(z), .@(w), Ay(z), A.(z)),

where
ho(r,€,m,€) := 4’"/‘P(\/1 +.’v,2‘+'v,29+v§+£,'r(vg+n),vz+C)d'vrd'u,9d'vz,
R3 .
\/1+v2+’019+v2+§,r('v,9+17),vz+C)
=4 dv, dvg d
yw(ﬁ&%Q 771}[ 9 \/1+’v2+'vﬂ+’02 9 AUz,
L TT o Tt 08+ &r(v +1), 0 +0).
k¢(r,_€,‘7l>’() :=v47r/ oV \/1;+'v,2.+v:,+'v§ z dv, dvgd'uz,

R3

and with the substitution ¢ := /1 + vz. +v2 + 1}2 one gets the unified representation

~ e(t+&,r(ve +1),v.+¢)
'(gq:)(r,&,n, —87r/ / ( ) NorTeET ey dt dvg dv,,.

1+‘u +'02

Furthermore, similarlly as _above

Jr(z) = / f(z,v)dv

R?
= / b <p(\/1 +v2 4+ 'vg + 02 + B(z), r(z) (v + As(2)),v, + A,(z)) dv,dvsdv,

Re | | o | :
=0. . - (2.21)

If we choosé_ A, =0 and Ay and A, to depend on r 6n1y, this choice is again compatible
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with (2.12) and it follows from (2.27) and (2.23) that

(—AA), =0 = j,.
Now (2.13) and the two equations remaining in (2.14) read
! 3
=2 =T = hy(r, @, 49, 42),
— A” - _4_1?_ é'g — g(P(fr’ Q, Ag,Az)’ } (2.28)
" A’
~ 4 ——T——k‘p(r,é Ay, Ay), )

where ()’ denotes differentiation with respect to r. We shall prove the ex1stence of solutlons ‘
®,As,A, € C?[0,R] in Section 6 ‘under the boundary condltlons ®'(0) = Ay(0) = AL(0) =
in connection with _ ‘
) B(0) = A3(0) = A,(0) =0 or b) B(E) = Ao(E) = A(R) =

(see Theorem 6.1). Of course, a vanishing derivative at 7 = 0 guarantees the C2-extendability
to functions of z in €; ®, Ay and A, are constant on 80 and hence (2.15) and (2.16) are
satisfied (see the above argument). |

With the methods presented here, further possibilities could be investigated, e.g. the
case f = p(&, P). Let us note that our distribution functions have the following interesting
property. '

Corollary 2.1. Any distribution function f = f (:1: v) which only depends upon one or
more of the integrals £, F, P, satisfies the boundary condztzon of specular reﬂectzon at each
z € 69, that zs,

 F0,56) = F(o9) for 3(s) = 0 — 2o, (a)(e).
In fact, we have 9(z)? = v2, #g(z) = vo(z) (because (v(z), es(z)) = 0 in the case of cylin-
drical symmetry) and ¥,(z) = v,(z) (in view of (v(z),e.(z)) = 0 in the case of translation
invariance). '
Throughout the paper, universal constants (elements of IR) will be denoted by C, con-
stants which depend on ¢ or R or ¢ and R -+ will be denoted by Cy,, Cr, Cy,r, ***, and
they may vary from line to line.

§3. Distribution Functions _'Depending Upon &

Our solution of problem (2.18) will be based on the following lemma, which is a slightly
specialized version of Theorem 9.6 in [1] (p.649). For notations and the assumptions, see
also [1] (p.633-634, p.646-647). -

'Lemma 3.1 (H. Amann). Let Q be a bounded domain in R® with boundary 8Q € C**#
for some p € (0,1). Let g € C2+#(89),9 > 0. Leth € C“(Q x [0,00)), A(-,0) > 0, be such
that there is a v > 0 with

h(z,€) — h(z, E') (¢ —-¢)
for all z € Q and all £,&' with € > ¢ > 0. Assume ‘there is a functzon He C[) and a
constant A1 > 0 such that

h(a;,&) < H(z)+M¢ z€Q,£>0.
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Then the boundarg) value problem
~A® = h(z,8) inQ,
B = g on |
" has a minimal nonnegative solution ® € C2(Q) provided A; < Ao, where A denotes the
smallest (positive) eigenvalue of the linear eigenvalue problem

~Au=Xu inQ, u=0 ondQ.

-We are going to define a class of functions ¢ in Case 1 so that the associated function A,
defined in (2.17) satisfies the assumptioris of Lemma 3.1.
Lemma 3.2. Let @ € CY1,00) be nonnegative and satzsfy the following two condztzons
) VE>0: (o ot + OtV —1 € LY(1,00),
ii) Im € L}(1,00) V¢ > 0 Ve > 1: o' (t + EtVEE — 1] < m(t).
Then h, given by

‘h«a--(é)‘ = (4m)? ][ Pl O —Tdt, €20
1

is nonnegative, monotonically decreasing to zero for £ — oo and continuously differentiable
on [0, 00). with bounded derivative

BL(€) = (4m)? / <p(t+£t\/t2 1dt, £>0.

The proof of Lemma 3.2 is stra,ightforward. Lemmas 3.1 and 3.2 yield
Theorem 3.1. Let Q be a bounded domain in IR® with boundary 89 € C?*E for some
uE (0_, 1). Letyp € C_'l [1,00) satisfy the assumptions of Lemma 3.2 and let o > 0. Then the
problem ' ’ '
—A® =h,(®) inQ,
=0 0ndQ

has a nonnegative solution ® € c Q). ' Consequently, every such ¢ induces a stationary
solution (f, E, B) of the RVMS on Q such that f = ¢(E),E = —8,® and B = 0.

Proof. We may apply Lemma 3.2 to see that h,, satisfies the conditions of Lemma 3.1.
In fact, we may deﬁne g = sup |h ()}, H(z) := h,(0) and A; =0, and the assertion follows

from Lemma 3.1.

§4. Distribution Functions Depending
Upon € and F (Regular Case)

In this section we are going to solve the system (2.24) with the boundary conditions (2.25).
By applying methods and theorems of nonlinear functional analysis in ordered Banach spaces
it is possible to generalize Lemma 3:1 to an existence theorem for semilinear elliptic systems
(see [1, p.654]). However, the main assumption is that the right hand side of the system has
to be increasing in the “off-diagonal” variables, and there do not seem to exist examples ¢
for which the resulting right hand side (hy, g,,) would satisfy this condition. The following
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[15,2-209]  The version given

theorem essentially goes back to P.J. McKenna and W. Walter
here asserts a slightly stronger regularity of the solution which we need later. Because not
all details of the proof can be found in [15] and because it will be necessary to conclude
the existence of cylindrically symmetric solutions in Theorem 4.2 we are going to provide
the main arguments here. In the following, inequalities between vectors in IR™ are to be

understood componentwise.

Theorem 4.1 (P.J. McKenna - W. Walter). Let Q CR* bea bounded domain (n € IN)
with boundary 8N € C*** for some p € (0,1). Let F:{x R — R" satisfy the following
condition: For all 1 > 0 there exists C, > 0 such that for all z,z; € Q, y, y; € IR™ with
|yl lyil < m,i=1,2 one has

|F(w1,y) - F((L'z,y)l S Cnlml - $2|”a
. IF(iL','yl) - F((L‘,yg)l < Cnlyl - y2l-

Assume further that there exists a pair of vector functions v,w € C*(Q)" N C#(Q)" with
v<winQ andv <0< w on N, such that fori=1,---,n

Ve € Q, Vz € R, v(z) < z < w(z), 2 = vi(x) : : —Av;(z)
Ve € Q,Vz € R™,v(z) < z < w(x), 2 = wi(z) : —Aw;(z)
Then there exists a solution u € C’2+“_(Q)” of the problem |
—Au = F(z,u) inQ,
‘u=0 onodQ,

< Fi(maz)a

and v < u < w pointwise on .

Proof 1. We introduce a cut-off P : Q x IR® — IR" by

wi(z) if z; > wi(x),
Pi(z,z) = { vi(z) if z < vi(z),
z; else
and let . .
G(z, 2) = F(z, P(z, 2)) +'a,rctan(_P(-m, z) — z)

(we define arctanz := (arctan z;);=1.., for z € IR"®). Then G is bounded, has the same
regularity properties as F', and G(z,-) = F(z,) on [w(z),v(z)]. '

2. We prove the existence of a solution u € C’2+“(§)" of —Au = G(z,u) in Q,u=00n
89 Define the Nemytsku—Operator :

G:o@)" - C@)" by ¢ G( ¥())- (%)

In particular, - v ‘ ,
‘ G: Q)" - @™ (3k)
and G maps bounded sets into bounded sets!!?647), The inverse (—A)~! : CH@Q)™ —
“CZHH(Q)™ is defined with respect to zero boundary values!:-6%] and has a unique extension
to a compact operator C(Q)" — C° ()" for all o € [0,2), again denoted by (—A)~* (see
[1, p.635]) (**x%). o

Hence K = (—A)"10 G : C(Q)* - C@)" is compact. G maps C(Q)" into some
open ball B about 0. The mapping A — id — AK on [0,1] is a homotopy on [0, 1], and
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10-¢ (id — MK)(8B). Hence the Leray-Schauder degree D(id _AK ,B,0) = 1. There exists
u € C(Q)" with u = Ku. By (%), Gu € C(Q)". By (xx%), u = Ku € C(Q)". By (),
Gu € C*()™, so that u = Ku € C2+r(Q)m,
3.We show v < u < w. In fact, assume there exists ¢ € {1, ,n} (we let i = 1)
such that min(w; — ;) < 0. There exists o € § such that the minimum is given by
0
wy(zo) — ui(xo) (for o € 9N implies wy(o) > 0 and uy(zo) = 0). Then, for 2 :=
- (Pa(zo,u(w0)), -+ , Pr(m0,u(z0))) we have ' :
0 < A(wy ~ ug)(wo) = Aws (o) + G (wo, u(z0))
< Gl(wo’u({”o» — Fi(zo, (w1(20), £)) ;
= (F1(wo, P(o, w(z0))) — F1(zo, (w1(x0), 2))) + arctan(Py (zo, u(xo)) — u1(x0))
<0, '
which is a contradiction. The inequality v < u is proven similary. It follows that » is the
desired solution. .

We define C,y;(Q) := {f € C(Q) : f o R = f for all rotations R about Z}.

Corollary 4.1. In addition to the hypotheses of Theorem 4.1 we assume for n = 3: Q
is cylindrically symmetric and F(-,y) € Coi(Q) for all y € IR? and v,w € Ceyi(Q). Then
there ezists a solution u € Cryyi ()% N C?HH(Q)® such that v < u < w.

Proof. We observe that the class Ccyl(ﬁ) is a closed subspace of C(Q) and that the
arguments of the proof of Theorem 4.1 can be carried through in C.y, Q).

We now make our choice of suitable functions ¢ which allow an application of the foregoing
results.

Lemma 4.1. Let ¢ € C*([1,00) X IR) be nonnegative and satisfy the following condition:
Im € L1(1,00)VE > 1VF € IR: |

o(€, F)E/E? 1< m(€),

e (€, F)EVER ~1 < mE),
Orp(E, FEE? 1) < m(£).

Then the functions h,, g, given by

oo VE2—1 ‘ A
((Veem=se [ [ (Detter@c+mis, eRe2oner
A 1 _yET :'- :

are continuous on IR3 x [0,00) X IR together with their derivatives with respect to & and 7,
Ozh, and B,g, exist as continuous functions on IR3\Z x [0,00) x IR. We have the following

estimates:

1 1
0< ‘2'h<mlg<p|’ '2‘|3£h<p|a |0eg,| < 82 || m ||,

%lanhcp(mag’ "7)'1 langv(w,é, | < 82 | m |1 r(z),

1
and for r(a:) >0: Elamhtp(xa&n)l’ |3xg¢(a:,§,n)| < 8n? ” m ”1 '(1 + |77|)

Furthermore, g,(0,&,7) = 0.
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Proof. We note

7o (t+€)
3 2 . m
ho(z,€,m) < 8w / / t TSN TS dsdit
1 _yEm1

N m(t + £)

2 —~—
= 81 /Zt 12 1( +E)\/(t_+—€-)-§—:Idt

0]

< 167 / (¢ +&)dt <1627 || m s,
1
oo

t_.

b, )l = 872 | [ / s + Ot + &, r(o)(s -+ ) dsdt - ex(2)
1

—2=T

_y m(t+¢)
E+OE+€)2-1)

< 8n%(jn| + 1) || m ||1 for r(:c) > 0.

d_sdt

x
<sn?lnl || m [ +8x° [ 4
1

The other estimates are similar. :

- We can now treat the regular case of the system (2.24),(2.25), in which Q does not contain

points of the z-axis Z. '
Theorem 4.2. Let Q C IR® be a cylindrically symmetric bounded domain with BQ € C3tw

for some p € (0,1) and assume QNZ =0. Letp € C’l([l o0) X IR) satisfy the assumptzons

of Lemma 4.1. Then the problem

—A® = hy(r, ®, Ay),

A19

—AAy = go(r, @, Ag) — in Q, (4.1)

®=0, Ay=0 onoQ,

has a cylindrically symmetric solution ®, Ay € C*+#(Q). Consequently, every such ¢ induces
a stationary solution (f,E,B) of the RVMS on Q such that f = (€, F ) E=-0,2 and
B=curlA with A, =A,=0.

Proof. It follows from Lemma 4.1 that the right hand 31de of the system (4.1) satisfies
the regularity assumptions of Theorem 4.1. Our next concern is the construction of the sub-
and supersolution v and w assumed in Theorem 4.1. :

Let R := maxr(z). We know from Lemma 5.2

e
1
0< hy and o || by ||, 1] gy 1< 87% | m 1< co.
We solve the boundary value problems A

L) =0, 44(0)=u(R)=0,

Loty =l g s 40) =wa(R) =0,
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——( 2) + —%=—||9¢II, v2(0) = v2(R) =

(g + 22 =l g, I, wa(0) = wa(R) =
and get - '
n=0, wi(r)=7 I holl (B =), wsr) =3 | byl r(R=7), v =—u

(see Lemmas 5.1 and 5.2). We may define v := (vy,v2),w := (wy,w2). In fact, we have
v <0 < w and for all z € IR? with z; > 0

~Avy(z) = 0 < hy(e, 2),
—Avy(z) = vzr(zw) < golz,2) — %—, if 29 = vo(z)

_.Awl(gg) =|| htp ”> h(p(w Z), :

wolT .
—Bun(e) =l g | -2 > g w,5) - 2, it = wale)

The existence of a solution in Coyt(€2)% N C?+1 ()2 now follows from Corollary 4.1.

§56. Explicit Solutions of Particular
Singular Second Order Equations

In this section we collect some results on certain ordinary differential equations of second
order with singular coefficients at » = 0. The statements made will be needed in the following
two s_ecti_ons. Qur general assumption is f € C[0, R] for some R > 0. For a,b € IR, we let
[@ < s < b] be the characteristic function (in s) of the interval [a, ]. '

Lemma 5.1. Consider the equatzon

u"+———-f('r), 0<r<R
The solution ug € C2[0, R] with ug(0) = up(0) = 0 is given by
0

T 8

uo(r) =/ /of( )dods = /[s < rsln f(s)

0o o
We have ul 0(0) = 1 £(0). _
b) The general solution u € C?(0, R} is o
u(r) = ay +azlogr + up(r), ai,az € R.
The following conditions are equivalent:
i) u or u' is bounded at r = 0 or has a finite limit for r — 0,
ii) hn%) u'(r) =0,
111) llli%’l’ u ('r) =0,
iv) ag = 0. '
In this case v € C?[0, R], v"(0) = £(0); and w(R) =0 iff u is
ugr(r) = —up(R) + uo(r)
R
/{[s < r]slog —=+[s>r]slog = } s f(s)ds.

0 -
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(For f(r) = X one has ug(r) = —3(R? —r%).)
Lemma 5.2. Consider the equation _
!
w, v v
v +?—;'2———f(1'), 0<’I‘SR (5.1)
a) The solution vy € C?[0, R] with vy(0) = v}(0) = 0 4s given by
' r s R '
_ 1 1 s
vo(r) = ol I f(o)dods = 3 [s<r(1- -T—Z—)rf(s) ds.
' o D 0
We have vjj(0) = 2£(0). 4
b) The general solution v € C?(0, R] is
1
'v(r) =byr+ bz; + '00(7‘), by, bs € R.
The following. conditions are equivalent:
i) v or v' is bounded at r = 0 or has a finite limit for r — O,
ii) 31_1)1% v(r) =0,
iii) linbr -v(r) =0,
- iV) b2 = 0.
In this case v € C?[0, R], v"(0) = —5f(0); and v(R) =0 iff v is
r : .
vr(r) = —fuo(R)—E + vq(r)
.1 7 1 2
NP : 1 _
=1 ERL > (1 -2 ds.
s [{<nd - e+ oz ra-gr} foas
0 _ :
(For f(r) =X one has vg(r) = —3r(R—7).)
Lemma 5.3. For 0 < § < R consider the equation |
, w w
w'+7——6—2=f('r), 0<r<R (5.2)

a) The solution wy € C2(0, R] with wo(0) = wg(0) = 0 is given by

wo(r) = 25(r) / (Is(r) = Is(s)) z8(s) s £(5)ds,
J |

where
. . T
. (r/6)% . ds
Here z5 € C2[0, R] is a solution of the homogeneous equation with
' 1
36(0) = 1’ z(’;(O) = 0) zé’(o) = 2~6_2'\,

z5(6) = S, 2'6(6) = %, -
with § == S [2R)]2, Sy = 5o 2k[(2K)1] 2.
We have w(0) = 2 £(0).
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b) The general solution w € C2(0, R) is
w(r) = c125(r) + cals(r)zs(r) + wo(r), ec1,c2 € R.
The following conditions are equivalent:
i) w or w' is bounded at r = 0 or has a finite limit for r — 0,
. . 7 - )
| ii) lx_r)%w (r) =0,
iii) Co = 0.
In this case w € C?[0, R], w"(0) = & + f(0).

Now we define
6 for0<r<é
7'5(1').:=

{r forr2>4.
Lemma 5.4. For 0 < § < R the solution vs € C2[0,R] of .
,vl

o —

v .
” —-—‘¥=f(r), 0<r<R

with vs(R) = 0 4s given by
ws(r) =.cszs(r) + wolr)
= z5(r) <ca+ ](Ia(r) — Is(s))zs(s)sf(s) ds) , 0<r<é,

: 1
vs(r) = bs (; - ﬁi) +wvg(r), 6§<r<R,

where wy and vy are defined in Lemma 5.3 and 5.2 'respectively, and

s =-—/{[ <%

- / (I5(6) — Is())25(s)sf (s) ds,

y '
.—,—-2—0/{[S<6 —6z5(s)—s)s

S—8,. 4 o
W (R? -~ 32)62} f(s)ds,

with N := (S + 51)R? + 6%(S — 51).

+[s 2 4]

Z5(s)s +[s> > 8](R? - 2)6} f(s)ds

(53)

(5.4

(5.5)

(5.6)

Proof. Lemma 5.3 implies that czs + wp, € € IR is the general bounded solution of
(5.2), and Lemma 5.2 says that b(2 —#z) +vr, b € IR, is the general solution of (5.1) which
vanishes at 7 = R. We can determine the constants in such a way that the solutions and
their first derivatives have the same value at r = § and thus obtain the formulas (5.5), (5.6).
Because r;s is continuous this 1mp11es the continuity of the second derivative at 7 = § and )

vs € C?[0, R] follows.

Corollary 5.1. There exists a constant CR >0 (. only depending upon ‘R) such that for
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all f € C[0, R] with f <0 one has
0 <vp(r),vs(r) <Cr |l f||6, 0<r<é,

0 < va(r) S vs(r) < vR() +Ch 1| £ 116, S<T<R,
for small § > 0. o |

Proof. The representation of vg in Lemma 5.2 b) implies vg > 0 on [0,R] and v <
Ci |l f1| 6 on [0,6]. The relations

/(Ig(r) — I5(5))25(s)s ds = O(8?) (6 — 0) uniformly for r ‘_<_ 8,
0 .

es= 0@ 1| £ 1), b5 =0 | £ ) 6 0)

are obvious. The integral kernel which represents —bs is nonnegative because for s < §

2R%625(s) — Ns > R%§ (2 - [s + 8 + S5 62])

RZ
>0

for all § > 0 such that § + Sy + ————162 < 2 (note that S+ S1<2and S~ Sy > 0). Hence
bs > 0 and because cs > 0 the representation of vs in Lemma 5.4 gives the result.

§6. Distribution Functions __Depehding Upon & Fand P

This section is devoted to the study of the system (2.28). The following lemma gives
sufficient conditions on ¢ such that existence can be proven later by Schauder’s ﬁxed pomt
theorem.

Lemma 6.1. Let p € C([1,00) x IR x [0,00)) be nonnegatwe and satzsfy the followmg
condition: 3m € L'(1,00) VE > 1VF € R VP >0: '

(€, F,P)EV/E—1 < m(€),
 |0ew(€, F, P)| £ V2 ~ 1,10p0(€, F, P) £ VE ~1 < m(£),
 |Or@(€, F,P)|£(€2 - 1) < m(£).
Then the functions h‘p, 9 k¢ given by

( )(w £,1,¢) :=8rx / / (v) (tjff’_"((”l”:v:):’zg ) dtdvodu,

1+'u2 +v2

are continuous on IR3 x [0,00) x IR* together with their derivatives with respect to €,1 and
€; Ozhy, 09, and Bk, exist as continuous functions on R3\Z x [0,00) x IR?. We have the
following estimates:

1 1.
0<“h¢, |g<p| I’%la '2‘|6£h<p| |85g<,,l |a£k¢|
"|3Chtp| 10¢gol, lack¢|<87r2 Ilmlll,

|3 hvl, 10494 104 kvl < 8r? | m ||y 7'("3)’
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and for r(z) > 0:
';‘laa:h«p(m,éana C)l’ |3wggo(~'v,§,?7, C)l, |aa:k<p(ma€’77) C)‘ < 8n° ” m “1 (1 + |"7|)

Furthermore, g,(0,€,7,¢) = 0.
~ Proof. Fora>0and k=0,1,2,3 we have

ds = a1, (1),

0

where Ip(1) = §, 1(1) =1, L,(1) = %, I3(1) = 2. Hence

m(t + &) t
0 < hy(=z,&,m,¢) < 87r/ / T OVET O I VAT T o) dtdvygdv,

1+'vz+v2
--—_-1671'2_/. mit+§) t__ dt;;dp
. t+ t+£)2~14/t2 -
. 0\/1+_P—( 5)\/( 5) \/

dpt dt

e s T S

e [ mtO) e
e

"< 167 H m ” 1- ‘
Slmllarly, w1th the substltutlon o= vg, ,o = \/vg + v2,

- m(t+€) L vy
g (2,61, 0)] < 32 / f / T s i

oo ([ T o mit+8) o p
‘32_”0/0/ / NN W v N Er

o0

m(t +¢) _p |
~3 // : P didp
m(tfﬁ&)\/(tjs‘)_ Lve =+

o m(t +¢) |
- / (t.'+£)\_f-"_‘_'(t+s)?—‘ / NG “"‘“(1 R
= 8r2 m(+ - 1)dt

S @+ OVE+E) -

< 8r? ||m||1 .

The remaining estimates follow in a similar wé,y.
We remark that a radial function defined on an interval [0, a] is C2 on a neighborhood of
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0 in IR™ if it belongs to C?[0,a] and its radial derivative vanishes at » = 0.

Theorem 6.1. Let Q C IR? be a cylindrical domain of the form Q = {z € IR3 : r(z) < R}
for some R > 0. Let ¢ € C*([1,00) x IRx [0, 00)) satisfy the assumptions of Lemma 6.1. Then
the system |

v @l ) \
—8" — 2 = hy(r,, 49, As) |
’
A
S s L (6.1)

[

—A;’-—-j—lrﬁ= (p(r,@,Ag,Az), 0<r<R
in connection with ®'(0) = Ay(0) = A}(0) = 0 and ~ .
a) ®(0) = A5(0) = A4,(0)=0 or b) ®(R)=As(R)=A,(R)=0
has a solution (®,As,A,) € C?[0,R]®. Consequently, every such ¢ induces a stationary
solution (f, E, B) such that f = p(€, F, P); E, B only depend upon r, and f € C(© x R*)N
C((Q\2) x IR?), E,B € C*(Q0). ,
Proof. Let K; and K3 be the kernels in the integral representation of v and v in any

case a) or b) according to Lemmas 5.1 and 5.2 respectively. Then the system (6.1) has a
solution (®, As,A,) in 02[0 R)? if and only if (®, Ay, A,) € C[0,R]® and for 0 < r < R

/

/ Kl(r,s)h¢(s,i>(s) As(s), Ax(s)) ds,
- / Ka(r, )90 (s, 8(s), Ao(s), 4:(s)) ds,
0

R
A (r) = —/Kl(r, 8)k, (s, ®(s), As(s), A,(s)) ds.
' 0

Lemma 6.1 yields the a priori estimates.

; R
8001 < 1608 m 1 [ Kt 00
' 0

Ao(r)] <822 | m s [ Kar,s)ds

A <8 [ m s [ Kar,0)ds.

Because of the continuity of the kernels K, K> on [0, R}® and the Lipschitz-continuity of
hey, 94, k,, We may apply Schauder’s fixed point theorem and get a solution of (6.1). The
regularity of E, B follows from (2.22),(2.26),

B(r) = (dy(r) + 280y = ) 4 200 _ Aal0)
= 9(,0(7', (T)a A19(T), Az ("'))’
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and gtp(oa &, C) =0.

§7. Distribution Functions Depending
Upon € and F (Singular Case)

We shall now investigate the system (2.24) in the case that the z-axis Z intersects (2.
For the sake of simplicity we assume that € is the ball B = {z € IR® : |z] < R}. We

- shall first consider regularized problems by replacing the singular term ;,12- by ;1%-, where

rs(z) := rs(1/x2 + 22), = € IR? (see (5.3)), and then we let § — 0. For the regularization,
the restriction to Q = IB is not necessary. :

Lemma 7.1. Let Q C IR? be a cylindrically symmetric bounded domain with 3(2 € C?*e
for some p € (0,1). Let p € C*([1,00) X IR) satisfy the assumptions of Lemma 4.1. Then

- for each sufficiently small § > 0 the problem

—A® = hy(r, ®, Ay),

A
—AA,g = go(r, ®, Ay) — '9

in £,
®=0, Ay=0 onBQ.

has a cylindrical symmetric solution ®s,Ays € C*+e(Q) (with a similar statement for

(f,E, B) as in Theorem 4.2). We have the uniform estimates

0 < ®4(z) < wi(r(=)),

~Ws(r(z)) < Ags(z) < +Ws(r(x)), zeQ\Z, : (7.1)

where wy(r) = 1 || hy || (R% —72), Ws(r) := vs(r) +Ck || 9o |l 6, and vs is given by Lemma
5.4 for f(r) := — || gy || (C} is the constant of Corollary 5.1).

Proof. We want to apply Theorem 4.1 and Corollary 4.1 and we need to construct sub-
and supersolutions in C*(02)? N C%(2)%2. We can use v; = 0 and w; as in the proof of
Theorem 4.2 because w)(0) = 0 (see the remark preceeding Theorem 6.1). From Corollary
5.1 we have W5 > 0 and W§(0) = v;(0) = c52;5(0) + wO(O) = 0 by Lemma 5.3. For z; > 0

and 2 = W,s(w)

—AWs(x) = ~Avg(z) =|| g | _”L(‘c_)

T3
Ws(z) — CR I 90 Il 6
’"5

> gp(z,2) =

22
> go(z,2) — ;g, z €.

Hence (0, —W;) and (w;, W) are sub- and supersolutions.

By the uniqueness of the solution for Poisson’s equation with right hand sides

he,s(2) = he(r, Bs(x), As,s(z))
g(p,&(w) =Ge ('r, 5 (:1:‘), Aﬁ,&(m))
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and with homogeneous boundary conditions we have for the ball IB

2u(0) = [ @) hs)ds, | (1)
B

. _ - . ;.Agyg(y) J— ’
A#,E(m) "‘YIZ‘ G( ,y) (gq:,b'(y) rg(y) ) dy, x EB, (73)

where G is Green’s function :
1 1
G(zy) = o (m - Qﬁ(w,y.)>
with '
1/R for z =0,y € IB,
Q(z,y) :=

R 1
———— forz #0,y € BU(0B\{z}),

where z* := -i%z-:c for z # 0. The following result is classical. If f € C(IB) then

Ue) = [ 6,9 f@)dy, =B
B
is an element of C*(IB) and
[U(z)|,|DU(z)| < Cr || fIl, =€ B; - (79

by D,D?,.-. we denote partial derivatives of the respective order. If f € C*(IB) for some
0 < a<1,then U € C***(IB), and

1
002,U(@) = [ (7(6) = £(0))02:02,Gla,0) dy - 38:i1(@) r5)
B .
02,05 U(2)| < Cr(|| f | +Ha(f)), z€ B
H,(02,05;,U) < CoaHo(f),

where H,(f) is the Holder constant of f. This is the content of Miintz’ Theorem, a direct
proof of which has been given by S. Simoda 0], In the present situation we can control
the Holder continuity of the derivatives of f and U only away from Z, and we shall have to
refine Simoda’s arguments. For z,y € IB\{0} and for z,y € 00 with z # y we have

ey ey
Hence for x € IB '

R 1 —
Qz,9) = ————, yeB\{0}.
@)=y v<PVO
Because |a:—-y*|2|a:—y|]%,wehavefor)\20
R 1 1

— > - yeB,0 T
o=y = o—gprn YEPOFYFED

and this implies
Cr

I—w-ty—lln*,_ k= 0,1,2,3. (76)

ID;G(z,y)| <
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In the following we let Z,, := {z € IB : 7(z) < 5}, and for f € C*(IB\Zy),
Hon(f) =sup{If(v) = F(W) - ly —¥'|7* : 9,4 € B\Zn},
Hopn(f) = sup{|f(y) - &) ly~¥'|"*: 9,9’ € B\Zy, ly ~ | < B},
0<n<R,0<oa,B<1 Forzec R let K,(z):={y € R |y—z| < a}. '
Lemma 7.2. If f € C(IB)NC*(IB\Zy5), then U € C***(IB\Z,), and
DU (2)| < Co,r(Hampa(F)+ || £ 1| (logn] +1)), z€B\Z,,  (7.7)
Ho,1/5,0(D*U) < Com(Han/s(£)+ I £ 1| n7472). (7:8)
Proof. We still have the formula (7.5) for = € IB\Z,. We estimate over IBNK,/3(x) and
IB\K,5(z) separatly (y € K, 5(x) implies r(y) > 1/2) and we get (7.7). For p,q € B\Z,
such that 0 < |p — ¢| < /4 and K' := K|, (252) C IB (first case) one estimates

z=p z=p

= [ (@ - 1@)D*6@ ) dy

[(t0) - f@)D*Garv) dy
B

e=q BNK' o=g
+ [ 0w - 1) d|  + (1) - 1(0) / D*G(q, ) dy
B\K' o=q ‘ B\K'

to establish the inequality

Ho,1/a,(D?U) < Co,r(Hamya(F)+ || £ 11 57179). - (79
This is done similarly as in [20]: one uses Hy 5,/s(f) in the first term, and with (7.6) one
sees that the second term is bounded by

lp—a]
Cs

| [f(y) + f(p+sE)| ,
/ lp+ sE — y|* dyds

1] yeB
ly—-(p+sB) 2 1254l

lp—ql

| o +sE) - )
o / / PEST T

0. yEB
ly—(p+sB)1> 1259l

where E := {E=L. The inner integral of the first of these two terms is estimated over the

domains {y € B : |y — (p + sE)| > Jﬁg—ql, m(y) < n/4} (where |y — (p + sE)| > 9/2)
and its complement, bounding the dominator by 2 || f || or by Hy n/a(f)ly — (p + sE)|*
respectively. In the second term H, 3,/4(f) is used. In the general case p,¢ € IB\Z, such
that 0 < |p — g| < 1/5 one defines
lpl —lp — 4|
| Ip|
and one sees that p(®,¢(© belongs to the first case with 7 replaced by 4%/5, and one can
apply the argument with the chain of balls to prove the full assertion as in [20].

We still need a further result.

p(o)A = Ap, ¢ =g with \:=
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Lemma 7:3. a) Iffe C(B), then
V(e) = /G(m,y dy, zcB

is an element of C(IB) N C*(IB\Z) and " »
W@I<Crllfll, 2€B, [DV(@)|<Crllf| |lognl, z € B\Z C(110)
b) If f € O(B) N C*(1B\Zys), then V € C**(IB\Z,), and 3
| 1DV (2)] < CraHama(Hr~+ Il £l n7),
Ho/5(D?*V) < CRa(H m/s(f)"? ) f II n72%). (7.11)
Proof. For § > 0 we define -

Vs(z) -/G’(a:,y )) y, x€DB.
By the remark preceding Lemma 7.2 we have Vs € C%**+2(IB),

DVs() / D G(z,y)—= f((y)) dy,

B, B, V(@) = / Q< 14) _ 1(z) ) B8, Gz, ) dy

rs(y)  7s()

fl@)

_§5 () weB | : (7.12)

It is easy to see that

1 I
d <oo, z € BB,
f e — 9] r(y) / o] ( y

(1y) dy < Crllogn|, «e€ B\Z,

/ lw—ylzr(y) / o 0)‘ yi2r

C o a—2
/ - y|3-ar(y) / |(n,oo yl"*"‘r(y) Roal

Using (7.6), we get V5 — V in C(BB) and in C*(IB\Z,), and (7.12) is true on IB\Z if we
omit the index 4. For (7.11), we proceed as in Lemma 7.2, replacing f by f/r. Because
f) _ fl) _ f) - fl) -f(m)r(w)—r(y)

r(y) 7‘(fb‘) r(y) r(z)r(y) ’

we have

Hop(L) < Hon(fyr* 4 Call £ 72,
Similarly as in (7.9) for p,q € IB\Z such that 0 < |p — q| <#%/4"

lp—q|

C3f / | (”{yy (ﬂf"m) |pf$—'y|4 ’

0 |y—(p+sE)|2n/2
r(y)Sn/4
yebB
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lp—ql S _
SCrlp—ql®| flln 2 o+= / / - ds,
p-at i [ [ W g
0 ly~(p+aB)i2n/2
r(y)Sn/4
I

and the second term is of the ofder of the first term.
In the sequel we let C2t!™ (IB\Z) := [ C*+*(IB\Z,) for a = 1.
. . >0

Theorem 7.1. Let B := {z € R® : |¢| < R}, Z := {(0,0,23) : a3 € IR}. Let
@ € CY(J1,00) x IR) satisfy the assumptions of Theorem 4.2. Then the problem
—A® = h,(r, &, Ay),
—AAy = gy(r,®,As) - %Z in IB\Z,.
®=0, Ay=0 ondB

has a cylindrically symmetric solution

® ¢ CY(B)nC%t1" (IB\Z2), As € C(IB)nCEY (IB\Z).

loc loc

We have

0<8(r,2) < 7 Il by | (B = 72),
- (7.13)

! 1 .
[4s(r,2)l < 3 1l g || (B~ 7).
For the corresponding stationary solution such that f = @(E,F) we have f € C(BB) N
CY(B\Z), E c C(B*nC*'" (IB\Z)%, B € CItY (IB\Z)? and |B(r, 2)| < Cy,r|logr|.

loc loc

Proof. It follows from (7.2) and (7.4) that .
| |D®5(2)| < Cr || ko5 [< Cr | B |l - | (7.14)
We write (7.3) as ‘

doste) = [ Glew (900 - 5 - (y_) £248))) oy

and note that r(y)—‘-’ztz(—?) is a continuous function on IB which can be estimated by Lemma

* 7.1 and Corollary 5.1:

|Ag,5(z)] < Ws(r) = vs(r) +Cr || 9, Il 6
<vr(r)+2Ck |l 9, || 6

1 . on
| =|| g4 |l (§?‘(R ~ 1) + 2CR9), (7.15)
such that
A,g 5(y) ‘ ( 1'5)
< ~ 1)+ 2Cj <Crilgell -
r,;(y) “ 117 " ( R g | "4
Hence we obtain from Lemma 7.3 ‘

|DAs,s(z)| < Cr |l 90 |l |1Ogn|, ¢ € B\Z,. (7.16)
Theorem 4.2, the estimates (7.14), (7.15), (7.16) imply with the chainrule
IDh‘Pys(m)L |Dg‘P56(w)| S C 1R)77’ T G E\Z"I'
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Lemmas 7.2 and 7.3 then imply that {®;s} is bounded in C*(IB) and in C?*'” (IB\Z,) and
that {45} is bounded in C2*+1” (B\Zn) for each 77 > 0. By compactness, there exists a
sequence &, | O and functions ® € C(B)n C,",zo"c'1 (BB\Z), As € CZt1 (IB\Z) such that
®;, — @ in C(IB) and C?+'” (IB\Z,) and Ay s, — Ag in C**17 (IB\Z,) for all 5 > 0. If
we define Ag(x) = 0 for = € IBN Z, then also Ay 5, — Ay in C(IB) and (7.13) is va.hd This
follows from (7.15). The limits satlsfy

B(z) = / G(e,5) ho 0, 8(0), Aa(y)) d,

r%(y)

and hence ¥, Ay are solutlons of the problem. The asserted regularity of f and E is obv1ous
Using (2.22), we get in IB\Z

s0) = [ Gton (s o - 228) s, 2B am

B, =~8,As, By=0, B.=As+3ds.

The logarithmic estimate of B follows from (7.13) and (7.16). ,

In Theorem 7.1 it might not be excluded that B exists as a continuous function up to
the axis Z. To prove the existence of a Green’s function for the operator —A 4 —1- and the
generalization to arbitrary cyhndrlcally symmetric domains 2 seems to be a toplc of further
research.

Acknowledgement. The first author wants to thank Professor Li Ta-tsien, Fudan Uni-
versity, for the hospitality during his visit in September 1992.

REFERENCES

[1] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces, SIAM
Rev., 18 (1976), 620-709.

[2) Batt, J., Faltenbacher,W. & Horst,E., Stationary spherically symmetric models in stellar dynamics,
Arch. Rat Mech. Anal., 93 (1986), 159-183

[3] Batt, J., Beresticky, H., Degond, P. & Perthame, B., Some famxhes of solutjons of the Vlasov-poisson
system, Aﬂch Rat. Mech Anal., 104 (1988), 79-103.

[4] Batt, J., Steady state solutions of the relativistic Vlasov-Poisson system, 5th Marcel Grofimann Meeting
on General Relativity, 1988 Perth, Australia (Ruffini,R. ed.), World Scientific, 1989, Part A, 1235-1247.

[5] Degond, P., Solutions stationnaires explicites du systéme de Vlasov-Maxwell relativiste, C.R. Acad. Sci.
Paris, Série I, 310 (1990), 607-612.

[6] Dolbeault, J., Analyse de modéles de la phys1que mathématique, Thése, Université Paris IX Dauphine,
1991.

[7] Fabian, K., Stationire Lisungen des relativistischen Vlasov-Maxwell-systems partleller differentialgle-
ichungen auf beschrinkten Gebieten, Diplomarbeit, Universitdt Miinchen, 1991.

(8] Glassey, R. T. & Strauss, W. A., Singularity formation in a collisionless plasma could occur only at high
velocities, Arch. Rat. Mech. Anal 92 (1986), 59-90.

[9] Glassey, R. T. & Strauss, W. A., Absence of shocks in an initjally dilute, collisionless plasma, Commun.
Math. Phys., 118 (1987), 191-208.

[10] Glassey, R. T. & Strauss, W. A., High velocity particles in a collisionless plasma,, Math. Meth. in Appl.
Sci., 9 (1987), 46-52.

[11] Glassey, R. T. & Schaeffer, J., Global existence for the relativistic Vlasov-Maxwell system with nearly
neutral initial data, Commun. Math. Phys., 119 (1988), 353-384.

[12] Lions, P. L. & DiPerna, R., Global solutions of Vlasov-Maxwell systems, Commun. Pure Appl. Math.,
42 (1989), 729-757.



278 CHIN. ANN, OF MATH. . - -Vol.14 Ser.B

[13] Markov, Y. A., Rudikh, G. A, Sidorov, N. A., Sinizin, A. V. in Borne, P. & Matrosov, V. (editors),
Some families of the Vla,sov-Maxwell system a.nd their stability, the Lyapunov functions method and
applications, J. C. Baltzer AG, Scientific Publishing Co ©IMACS, 1990, 197-203.

[14] Markov, Y. A., Rudykh, G. A., Sidorov, N. A., Sinizin, A, V. & Tolstonogov, D., The steady state solu-
tions of Vlasov-Maxwell system,-Preprint Irkutsk Computing Center, Siberian Branch of the Academy
of Sciences, Irkutsk, Russia.

[15] McKenna, P. J. & Walter, W., On the Dirichlet problem for elhptlc systems, Appl. Anal 21 (1986),
207-224.

. [16] Poupaud, F., Boundary value problems for the stationary Vlasov-Maxwell system, Forum Math., 4
(1992), 499-527.

[17] Rein, G., Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physu:s, Commun.
Math, Phys., 135 (1990), 41-T5.

[18] Rein, G., Existence of stationary, collisionless plasma.s in bounded domams, Math. Meth. in Appl Sei.,
15 (1992), 365-374.

[19] Schaeffer, J., The classical limit of the relativistic Vlasov-Maxwell system, Commun. Math. Phys., 104
(1986), 409-421.

[20} Simoda, S., Sur le théoréme de Miintz dans le théorie du potentiel, Osaka Math. J., 8 (1751), 65-75.



