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STATIONARY SOLUTIONS OF THE RELATIVISTIC 
VLASOV-MAXWELL SYSTEM OF PLASMA PHYSICS

J u r g e n  В а т т * * * K a r l  F a b ia n *

A b stra c t

The authors consider the stationary relativistic coupled system consisting of Vlasov’s equar- 
tion for the distribution function of charged particles and Maxwell’s equations for the electric 
and magnetic fields of a plasma. W ith different tools of nonlinear functional analysis the ex­
istence of solutions is proved, in which, according to different geometries and symmetries, the 
distribution function depends on one, two or three independent integrals of the motion.
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§1. Introduction
The present paper is part of a mathematical description of a collisionless plasma consid­

ered as a collection of many fast moving charged particles whose collisions are neglected and 
which interact only by their charges. The basic equations for the time development of the 
species of electrons consist of the following system of partial differential equations which is 
now called the Relativistic Vlasov-Maxwell System (RVMS)

dtf  +  v dx f  -  q (E + -  • v x B) =  0, а л )

-d tE  — curl В  — —— j, c c (1.2)

- 8tB  + curl В  =  0, 
c (1.3)

div E  =  47Г p, (1.4)

div В = 0. (1.6)

Here /  =  f ( t ,  x, v) > 0 denotes the distribution function of the electrons depending upon the 
time t > 0, the space coordinate ж =  (®i, Ж2, жз) G 2R3 and the momentum v =  (vi,U2,Vs) € 
2R3, E  =  E (t,x ) and В  =  B (t,x) are the electric and magnetic fields and v ■■■.—•v

V'm2+v2/c2
is the relativistic speed of a particle, q and m  denote the charge and mass of a particle, c is 
the speed of light and p = p(t,x) and j  — j(t,x )  are the local charge and current densities.
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These two quantities are related with /  through

p(x):=q j  f(x ,v)dv,
. R3

j(x) := q J  v f(x ,v)dv.
R3

The associated initial value problem with a prescribed distribution fo

f ( 0,x ,v) = f 0(x,v)
has received much attention in recent years. In the classical setting, R.T. Glassey and W.A. 
Strauss have shown that a  local solution is actually global if there exists an a priori bound 
for the support of f( t,x ,v )  in the momentum variable on the interval of its existence^, or 
more generally, if the kinetic energy density

/ ( m 2 +  v2)1/2 f( t,x ,v )d v  
R3

stays bounded^10). These results were used by R.T. Glassey, J. Schaeffer and W.A. Strauss 
to obtain the existence of global classical solutions for small initial dataf9! or nearly neutral 
data^11!. G. Rein considered a class of global solutions with a certain asymptotic behavior 
of the resulting solutions^17!. Global existence of classical solutions for general initial data is 
still an open problem. Global existence of distributional solutions were proven by P.L. Lions 
and R. Di PenuJ12!. In contrast to the classical situation, there is no uniqueness result for 
these weak solutions.

The present paper is concerned with the existence of stationary solutions of the RVMS 
in several geometric configurations arising from known solutions of Vlasov’s equation (1.1), 
that is, from three known integrals of the associated system of ordinary differential equations

x =  v,

v =  q(E +  -  • v x В ). 
c

Let us denote by Ф =  Ф(ж) and A  =  A(x) the scalar and vector potential associated with 
Maxwell’s equations (1.2)-(1.5). A first integral is the energy density

£(x, v) Ф(ж) +  y /l  +  v2.
We get a second integral if we assume that Ф and A  are cylindrically symmetric, that is, they 
only depend upon r(x) := y/xf +  x2 and z := X3 (but not upon 1? in cylindrical coordinates 
r,d ,z), namely

F(r, z,v) := r ( ^  +  A#(r, z)).

(Subscripts r ,$ ,2  denote the components of a vector in JB? in the local coordinate system 
(ег(ж),е^(ж),ег (о:)).) If we assume that Ф and A  are translational invariant, such that they 
do not depend upon г, then the quantity

P(r, v) := vz +  Az(r, #)

is a third integral. These integrals are well known in plasma physics. In a recent note P.
Degond has set up the form of systems of equations whose solution might lead to the con­
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struction of stationary solutions of the RVM S^. In fact, the determination of a distribution 
/  as a solution of Vlasov’s equation in one of the following forms

Case 1) /  == <p(£), Case 2) f  = tp(£,F), Case 3) f  = ip(£,F,P)

requires the solution of one semilinear elliptic equation in Case 1), of a system of two 
semilinear elliptic equations (one containing a singular term for r = 0 ) in Case 2) and 
a system of three ordinary differential equations of second order (one again containing a 
singular term) in Case 3), subject to  suitable boundary conditions.

It is the purpose of the present paper to prove the existence of solutions for the result­
ing equations with the boundary conditions of a perfect conductor and thus to get three 
essentially different families of the stationary RVMS.

The existing literature is not yet very rich in the topic addressed here. However, if we 
formally let В  =  0 or let c —> o o ^  then we obtain the well known (relativistic) Vlasov- 
Poisson system of equations denoted by (R)VPS. Stationary solutions of the RVPS have 
been constructed in [4] and for the classical VPS in [2] and [3]. These articles have in­
fluenced the present investigation. For two species of particles and for given distribution 
functions depending only upon the energy, G. Rein has recently proven the existence and 
uniqueness of stationary solutions of the RVMS by variational methods^18!. The articles of J. 
Dolbeaultt6!, of F. P o u p a u d ^  and of the Russian School at Irkutskf13’14) contribute further 
to an expanding theory.

§2. Formulation of the Problem
Let ft С  Ш3 be a domain with boundary dQ G C1. For the sake of simplicity we let 

q = m  =  с =  1 and consider the following system of equations:

vdxf  -  (E (x ) +  v x B(x))dvf  -  0, (2.1)

сиг1В(ж) =  47Г?(ж), (2 2 )

сиг11?(ж) =  0, (2.3)

divE 1̂ )  =  47гр(ж), (2.4)

d iv E ^ )  =  0, ж G Sl,v G Ш3 (2.5)

together with

p(x) := /  f(x,v)dv, (2.6)
JR3

j(x)  := lv f ( x ,v )d v ,  s:G O . (2.7)
J ■

R3
We shall impose the boundary conditions of an ideal conductor, tha t is,

E(x) x v(x) — Q, (2.8)

(B(x),v{x)) = 0 , x G dfl, (2.9)

where v(x) is the outer normal in x G dS2. A triple of functions (f ,E ,B ) with /  G C(Cl x
Ш3) П C'1(f2 x 2R3), /  >  0, /(ж ,-) G L 1(IR3) for x G and E ,B  G C'1(fl)3 satisfying the
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equations (2.1)-(2.9) will be called a stationary solution of the RVMS on Q. We shall have
to relax these conditions in certain situations. We introduce the scalar potential Ф and the
vector potential A by

E(x) =  - д хЦ х), (2.10)

B(x) = cuvlA(x) (2.11)

with the Lorentz gauge

div.A ^) =  0. (2.12)

Then (2.10) implies (2.3), (2.11) implies (2.5), (2.4) is equivalent to

—ДФ(ж) =  47гр(ж) (2.13)

in view of (2.12) and the well known relation curl curl A =  dx6xvA — ДЛ, (2.2) is equivalent 
to

—AA(x) — 4nj(x). (2-14)

The boundary conditions (2.8) and (2.9) are satisfied if Ф and A satisfy

Ф(ж) =  a, x G dfl, (2.15)

(сиг1Д(ж), 1/(ж)) =  0, x G dCt (2.16)

for a constant a  G JR3. We observe that if for given p and j  the potentials Ф G C1(Q)nC2(fi) 
and A G С 1(П)3 П C2(Q,)3 satisfy (2.13)-(2.16) then the fields E ,B  G C (fi)3 П C 1^ ) 3 given 
by (2.10)-(2.11) satisfy (2.2)-(2.9). We find solutions /  of (2.1) in three different situations. 

Case 1. Let .4 =  0. The energy density

£{x, v) := \ / l  +  v2 +  Ф(ж)

obviously satisfies (2.1). Hence for any <p G C1 (JR), f(x ,v ) <p(£(x,v)) is a solution of
(2.1). If f(x , •) G Ьг(Ш3) for all x G fl, then

with

Furthermore,

47гр(ж) =  47Г J  f(x ,v )dv  =  47Г J  ip(y/l +  v2 + Ф(ж))
jR3 jR3

dv
jR3

=  M  *(*))

OO

hv{^) := (4тг)2 J<p(t +  £ ) t \ / t 2 -  ld t.
l

(2.17)

j(x) = J  v f(x ,v )d v  = J  v ip(y/1 +  u2 +  Ф(ж)) dv = 0,
к 3 JR3

because the integrand is odd in v. Hence our choice A  =  0 is compatible with (2.14) and 
(2.16). We deduce: To get a stationary solution of the RVMS in Case 1, it is sufficient to 
solve the problem

-Д Ф  — /^(Ф ) in fi, 

Ф =  a on
(2.18)
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for a  > 0, with hv defined by (2.17). A solution will be given by Theorem 3.3 in Section 3.

Case 2. Here we assume Q to be cylindrically symmetric, that is, invariant with respect to 
all rotations about the Жз-axis Z. We use cylindrical coordinates (r, i?, z), r(x) := y /x f + x\, 
z жз for ж G fl. For x € Cl\Z define the local vector basis

1 1
er(x) .= г • (®i)®2)0)) в$(ж) := — г • ( з?2>®1>0)> ®*(®) • (0»0,1).r\x) r\x)

Any vector function К  : Q \Z  —► Ш3 has a decomposition K(x) =  Кг(х)ег{х)+К${х)е${х)+ 
K z { x ) e z (x)  with

K r[x) ;— (K{x), ег(аз)), 
K#(x) := {K(x), ee(x)), 
K z{x) := (K(x),ez{x)).

We define К  to be cylindrically symmetric, if Kr, K #,K Z are invariant with respect to all 
rotations about Z, tha t is

K r =  K r (r, z), K# =  K$ (r, z) , K z =  Kz (r, z)

do not depend upon

L em m a 2.1. I f  Ф and A are cylindrically symmetric, then

F(x, v ) :=  r(x)(v#(x) + A#(r, z ))

is a solution of (2.1) and for v € JR3, F(-, v) is cylindrically symmetric.

It follows from Lemma 2.1, tha t for any ip € C'1(JR2),v? > 0, the function /  := <p(£,F) is 
a solution of (2.1). If f(x ,  •) €  Ь г{Шъ) for all x 6 fl, then

47гр(гс) =  47Г J  f ( x , v ) d v
JR3

=  47Г J  <p(V1 +  v 2 +  Ф(ж), г ( х ) ( у #  +  Д?(ж))) d v
R3

=  к г ( г { х ) , Ф ( х ) , А # ( х ) ) ,

47Гj o ( x )  =  4тг j  v  f { x , v) d v  
R3

=  47Г J  щ  <p(-\/l +  v 2 +  Ф(а), r(®)(^ +  А^(ж))) dv

к  0 л/1  +  »§ +  <?2
<p(yjl + +  92 +  #(® ),r(a)(vtf +  Atf(a;)))gdgdv^

=  Sv(K®)i ^(®)i A$(x))



258 CHIN. ANN. OF MATH. Vol.14 Ser.B

with
OO

M r > £> v) ■= 8тг2 J  J  +  i , r(v# +  ??)) qdqdv#,
JR 0

OO

9<p(r>t’V) : = 8 tt2 /  /  Щ ~<p{Jl + vj + q2 + ^r(vo  + r)))qdqdv#
J J y /l + vl + q2 v
JR 0 v v

after introducing cylindrical coordinates (q = +  v%,j,v$) with the axis given by e$.
The substitution t := ±у/ 1 + v# + q2 yields the unified representation

+^/P^T

^ ( r ,£ ,r ? )  =  8ir2 J  J  Q  <p(t + £,r(s + ri))dsdt. (2.19)
hy
9<p,

Furthermore

j r ( x )  =  J  v r f ( x , v ) d v  
jr,3

! , „ Ф  +  v% +  +  «2 -f ф(х), r(x)(v# +  A#(ж))) dvrdv#dvz
JR3 

=  0

because the integrand is odd in ur , and for a similar reason,

jz (  x) = 0.

(2.20)

(2.21)

We now express —ДА(ж) =  curl curl A(x) in the system (er(x),e&(x),ez(x)). It is well 
known that

(curlA)r =  -  dzA$,r
(curl A),? =  dzAr -  drA z, ► (2.22)

1 1(curlA)z =  -(d r{rA#)) — -d#Ar.

If A is also cylindrically symmetric, then d$AT =  d$A$ = d#Az = 0. Hence

-  (ДА)Г =  - d z(dzAr -  drAz),
1 Ач

-  (ДА),? =  dz(—dzA$) — dr(-d r(rA#)) = — ДА# +  — , (2.23)

-  (ДА)г =  ~(dr(r(dzAr -  drAz))).
r

Let us now choose Ar = Az =  0 and A# to be cylindrically symmetric. This is compatible 
with (2.12) because

1 1
divA(®) =  -d r(rAr(x)) +  -d#A#(x) +  dzAz(x) — 0.

As for (2.11) our choice implies

— (ДА)Г =  0 = jrt - (ДА)г =  0 — jz
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with (2.23), (2.20), (2.21). Equation (2.13) and the remaining part of (2.14) now read

-Д Ф  =  /^(г,Ф ,Д >),

- AA> +  =  gv (r, Ф, A#) in Cl.
(2,24)

We impose the boundary conditipns

Ф =  0, A# =  0 on dCl. (2.25)

The fields E  and В  are then rediscovered from Ф and A  by the general formula

(grad Ф)г =  5ГФ, (grad®)# =  -с?#Ф, (g rad ® )* ^ * ®  (2.26)г

and (2.22). If cylindrically symmetric solutions are continuously differentiable near x € 
dCl\Z, they satisfy the boundary conditions (2.15), (2.16). In fact, as for (2.16), we note that 
grad A$(x) =  drA$(x) ■ er(x) +  dzA$(x) ■ ez(x) is a scalar multiple oiu(x) if grad A$(x) ф 0, 
and we get with (2.22) and (2.25) for some c € JR

(curl Л (ж), vix)) =  —A$(x)dzAd(x) = 0. cr

If gradA,j(a:) =  0 then сиг1Л(ж) =  0 with (2.22) and (2.25).

Note that (2.24) contains a singularity in the term if ClDZ ф 0. In Section 4 we shall 
first investigate the regular case Cl П Z = 0 (Theorem 4.2 gives the existence result). The 
singular case Cl П Z ф 0 requires further preparations and will be treated in Section 7 for 
the case that О is a ball about the origin (see Theorem 7.1).

Case 3. Now let Cl be translation invariant with respect to z. Then we have

L em m a 2.2. If Ф and A do not depend upon z, then

P{x,v) := vz(x) + Az(xi,®2)

is a solution of (2.1),and for all v € Ш?, P does not depend upon z.

An interesting case arises if Cl is both cylindrically symmetric and translation invariant, 
and Ф and A  are cylindrically symmetric and independent of z. Then r is the only remaining 
variable. If ip € Сг(Ш3),(р > 0, is a given function, then /  := <p(£,F,P) is a solution of
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(2.1). If f ( x , •) G LH-R3) for all ж G ft , then 

47Г/)(ж) = 47T J  f(x , V) rft)
Ж3

=  47r J  <p(\/l +  v2 +  Ф(ж), г (ж )(^  +  А?(ж)), vz +  Az(x)) dv
R3

= hlfi(r(x),$(x),A#(x),Az(x)),

47rjo(®) =  4tt J  v# f(x ,v)dv
R3

=  47t J  v#<p(\/l~+v2 +  Ф(х),г(х)(у$ + A#(x)),vz +  Az(x))dv
R3

= gv (r(x),$(x),A#(x),Az(x)),

4njz(x) =  47Г J  vz f(x ,v )dv
R3

=  47Г J  vz <p(\/l +  v2 +  Ф(x),r(x)(v# +  A#(x)),vz +  Az(x))dv

where

=  kv (r(x),$(x),A#(x),Az(x)), 

h<p(r,Z,r},() :=4тг J  +  v% +  v% +  v\ +  £, r(v$ +  7?), vz + () dvr dv# dvz
R3

' ,  f  ^  A f  4 > W  1 +  « r  +  v l  +  v z  +  ( , r ( v *  + ' » ? ) . « *  +  0  j  j  j94>(rit>V, 0  := 4 tt / и * — *------------ ^ = = = = = = ---------------- dvr dv#dvz,
J . у  1 +

J v / l  +  Vr +  V a +  77-JR3 V r v  Z

and with the substitution t :=  ^ / l  +  t;2 + v |  + г ;2 one gets the unified representation

(r,Z,V,() = Z n f  j
',<р f  R2 \A +uS+^i

Furthermore, similarlly as above

щ  , У (* + М '»  + ч),«, + С) ЛЛщЛУг
Vz I -  (1 + Vl + Vz)

3 r ( x )  =  /  vr f(x ,v)dv  
R3

= J v r tp(y/l + vr +  vl  +  VZ +  Ф(*)> r(x)(v# +  А?(ж)), vz +  Az{x)) dvrdv#dvz
R 3
0. (2.27)

If we choose Ar = 0 and A# and Az to depend on r only, this choice is again compatible
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with (2.12) and it follows from (2.27) and (2.23) that

( AA)r =  0 =  j r.

Now (2.13) and the two equations remaining in (2.14) read

- * " - y  =  h'P { r , 9 , A 6, A . ) ,

- ^ - ^  +  ^ = ^ ( г , Ф , ^ , Л г), 

- A ' f - ^  = kv (r,$ ,A # ,A z),

(2.28)

where (•)' denotes differentiation with respect to r. We shall prove the existence of solutions 
Ф, A#, Az G C2[0, R] in Section 6 under the boundary conditions Ф'(0) =  A?(0) =  44(0) =  0 
in connection with

а) Ф(0) =  4 ,(0 )  =  Az(0) =  0 or b) Ф(Д) =  M R )  =  AZ(R) =  0

(see Theorem 6.1). Of course, a vanishing derivative at r =  0 guarantees the C2-extendability 
to functions of x in Cl] Ф, A# and Az are constant on dCl and hence (2.15) and (2.16) are 
satisfied (see the above argument).

W ith the methods presented here, further possibilities could be investigated, e.g. the 
case /  =  ip(£,P). Let us note tha t our distribution functions have the following interesting 
property.

C o ro lla ry  2 .1. Any distribution function f  =  f ( x ,v ) which only depends upon one or 
more of the integrals £, F, P, satisfies the boundary condition of specular reflection at each 
x G dCl, that is,

f{x,v{x)) = f{x ,v ) fo rv {x ):—v — 2{v,v{x))v{x).

In fact, we have v(x)2 =  v2, щ(х) = v$(x) (because (u(x), e#(x)) =  0 in the case of cylin­
drical symmetry) and vz(x) =  vz(x) (in view of (u(x),ez(x)) = 0 in the case of translation 
invariance).

Throughout the paper, universal constants (elements of 2R) will be denoted by C, con­
stants which depend on <p or R  or ip and R, • ■ ■ will be denoted by Cv, Cr , CVtR, • • •, and 
they may vary from line to line.

§3. Distribution Functions Depending Upon €
Our solution of problem (2.18) will be based on the following lemma, which is a slightly 

specialized version of Theorem 9.6 in [1] (p.649). For notations and the assumptions, see 
also [1] (p.633-634, p.646-647).

L em m a 3.1 (H. Amann). Let Cl be a bounded domain in 1R? with boundary dCl G C2+fl 
for some p G (0,1). Let g G C2+tt(dCl),g >  0. Let h G СМ(П x [0, oo)),h(-,0) > 0, be such 
that there is a 7 >  0 with

0  ~  h(x, £') >  - 7 ($ -  £')

for all x £ Cl and all £,£' with $ > £' > 0. Assume there is a function H  G C(Cl) and a 
constant Ai >  0 such that

h(x,£) < H(x) +  Ai£, x e C l,£ >  0.
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Then the boundary value problem

—ДФ =  /&(ж,Ф) in £1,
Ф =  g on dSl

has a minimal nonnegative solution Ф G C2{Sl) provided Ai < Ao, where Ao denotes the 
smallest (positive) eigenvalue of the linear eigenvalue problem

—Au  =  A и in SI, и =  0 on dSl.

We are going to define a class of functions ip in Case 1 so that the associated function hv 
defined in (2.17) satisfies the assumptions of Lemma 3.1.

L em m a 3.2. Let <p G C ^ l, oo) be nonnegative and satisfy the following two conditions:
i) V£ > 0 : (t ip(t + £)ty/t2 -  1 € L ^ l ,  oo),
ii) 3m G L1(l,oo) V£ > 0 Vt >  1 : \(p'(t +  £)Wt2 — 1| <  m(t).

Then hv given by
OO

M 6  := (4тг)2 J  <p{t +  £)*V*2 - 1 4t, £ >  0
l

is nonnegative, monotonically decreasing to zero for £ —> oo and continuously differentiable 
on [0, oo) with bounded derivative

OO

'■= (4?r)2 j  ч>'(* + Z)W t2 - 1 dt, £ > 0.
i

The proof of Lemma 3.2 is straightforward. Lemmas 3.1 and 3.2 yield 
T h eo rem  3.1. Let SI be a bounded domain in Ш? with boundary dSl G C2+fi for some 

p G (0,1). Let G C'1[l, oo) satisfy the assumptions of Lemma 3.2 and let a > 0. Then the 
problem

—ДФ =  /1̂ (Ф) in SI,
Ф — a on dSl

has a nonnegative solution Ф G C2(Sl). Consequently, every such ip induces a stationary
solution (f ,E ,B ) of the RVMS on SI such that f  =  ip(£),E =  -Д,.Ф and В = 0.

P ro o f. We may apply Lemma 3.2 to see that h<p satisfies the conditions of Lemma 3.1.
In fact, we may define 7 := sup \h' (£)|, H(x) := hv (0) and Ai =  0, and the assertion follows

£>o
from Lemma 3.1.

§4. Distribution Functions Depending 
Upon £ and F  (Regular Case)

In this section we are going to solve the system (2.24) with the boundary conditions (2.25). 
By applying methods and theorems of nonlinear functional analysis in ordered Banach spaces 
it is possible to generalize Lemma 3.1 to an existence theorem for semilinear elliptic systems 
(see [1, p.654]). However, the main assumption is that the right hand side of the system has 
to be increasing in the “off-diagonal” variables, and there do not seem to exist examples <p 
for which the resulting right hand side (h ^ ,,^ )  would satisfy this condition. The following
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theorem essentially goes back to P.J. McKenna and W. Walter 115,P-209K The version given 
here asserts a slightly stronger regularity of the solution which we need later. Because not 
all details of the proof can be found in [15] and because it will be necessary to conclude 
the existence of cylindrically symmetric solutions in Theorem 4.2 we are going to provide 
the main arguments here. In the following, inequalities between vectors in Mn are to be 
understood componentwise.

T h e o re m  4.1  (P.J. McKenna - W. Walter). Let Я C  Mn be a bounded domain (n G IN) 
with boundary 5Я  G C 2+p for some p  G (0, 1). Let F  : Я  x Шп —> Mn satisfy the following 
condition: For all rj > 0 there exists Cv > 0 such that for all x, X{ G Я, y, yi G Шп with 
\у\,\Уг\ < *7,* — 1,2 one has

\F (xi,y) -  F (x2,y)\ < C4|*i -  ж2Г,

\F(x,yi) -  F (x,y2)\ < Cv\yi -  у з \ .
Assume further that there exists a pair of vector functions v,w 6 C 1(fl)n П C2(Я)п with 
v < w in Я and v <0 < w  on dQ, such that for i = 1, • • • , n:

\/x G Q,Vz  G JRn,v(x) < z < w(x),Zi =  Vi(x) : —Avi(x) < F{(x,z),

Vx 6 Q,Vz € m n,v(x) <  z <  w(x),Z{ =  Wi(x) : —Awi(x) > Fi(x,z).

Then there exists a solution и G С2+Р(Я)П of the problem
—Au = F(x,u) in Я, 

и = 0 on 0Я,

and v < и < w  pointwise on Я.
P ro o f. 1. We introduce a cut-off P  : Я x JRn —>■ Жп by

{Wiix) if Zi > Wi(x)y 
V i ( x )  if Zi < V i ( x ) ,

Zi else
and let

G(x, z) F(x, P(x, z)) +  axctan(P(®, z) -  z)

(we define arctan 2 := (arctanzj)j=i..n for z  G Шп). Then G is bounded, has the same 
regularity properties as F, and G(x, •) =  F(x, ■) on [m(®),v(a;)].

2. We prove the existence of a solution и G С'2+Р(Я)П of —Au = G(x,u) in Я, и =  0 on 
9Я. Define the Nemytskii-Operator

G : C f f ln ^  С(П)п Ъу ф »  (*)
In particular,

G :С 1(Щп (**)•

and G maps bounded sets into bounded setsl1,p-647K The inverse (—Д )-1 : СМ(Я)П —»• 
С 2+М(Я)П is defined with respect to zero boundary vahW 1,p-635l and has a unique extension 
to a compact operator C(fl)n —> Ca{Я)п for all a  G [0,2), again denoted by ( - Д )-1 (see 
[1, p.635]) (***).

Hence К  := (—Д )-1 о G : С(Я)П —> С(Я)П is compact. G maps С(Я)П into some 
open ball В  about 0. The mapping Л i—> id — A К  on [0,1] is a homotopy on [0, 1], and
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0 £  (id — AK){dB). Hence the Leray-Schauder degree D(id — XK,B,0) = 1. There exists 
и G С(Щп with и =  Ku. By (*), Gu G С(Щп. By (* * * ), и =  Ku  G С Щ п. By (**), 
Gu G СР(й)п; so tha t и =  K u  G С2+»(Щп.

3.We show v < и < w. In fact, assume there exists i G '{1, • • • ,w} (we let i — 1)
such that min(wi — U\) < 0. There exists Xq E £2 such that the minimum is given by 

n
u>i(tco) — «i(®o) (for xo E df2 implies tui(cco) > 0 and ui(xo) =  0). Then, for z := 
(P2(xo,u(xo)),- - • ,Pn(xo,u(x0))) we have

0 < A(toi - tt i) (® 0) =  Aw i(x0) +  Gi(x0,u(x0))

< G 1(®0,tt(®o))-2!i(*o»(wi(*o).5))
= (Fi (x0,P(xq, u(x0))) -  jPi(®o,(wi(®o),«))) +  arctan(Pi(®0,tt(®o)) -« i(® 0))
< 0,

which is a contradiction. The inequality v < и is proven similary. It follows th a t и is the 
desired solution.

We define Ccyi(Q) := { /  G C(Q) \ f  oR  — f  for all rotations R about Z}.
C oro llary  4.1. In addition to the hypotheses of Theorem 4.1 we assume for n  = 3; fl 

is cylindrically symmetric and F(-,y) G Ccyi(£l) for all y G JR3 and v,w  G Ccyi(n). Then 
there exists a solution и G Ccyi(Q)3 П C 2+M(fi)3 such that v < u <w.

Proof. We observe tha t the class Ccyi(Q) is a closed subspace of C(S2) and tha t the 
arguments of the proof of Theorem 4.1 can be carried through in Ccyi(£2).

We now make our choice of suitable functions <p which allow an application of the foregoing 
results.

Lem m a 4.1. Let <p G Cll([l,oo) x M) be nonnegative and satisfy the following condition: 
3m E L X{ 1, oo)V£ >  1 VF G 1R: i

ip(£,F)£^/£2 - l< m ( £ ) ,

|ds <p(£, F)\£y/ £ 2 ~ 1 < m(£),
\dF<p(£,F)\£(£2 - 1 )  <m(£).

Then the functions h^^g^ given by
00 s/W-i

(^ ) (ж ,^ ,г / )  =  Ъж2 J  J  ^Jcp(t + £,r(x)(s + y))dsdt, x E JR3,£ > 0,ri E JR
1 _ v f c :

are continuous on JR3 x [0, oo) x JR together with their derivatives with respect to £ and 7], 
dxhy and dxg9 exist as continuous functions on JR3\Z  x [0, oo) x JR. We have the following 
estimates:

0 <  ^ V  \gv \, ^\dzK\, |% ^ |  <  8tt2 || m ||i, 

^ |а ^ ( ж ,£ ,77) | , |9^ (а :,£ ,? 7)| < 8тг2 || m ||i -r(®),

and for r( x) >  0 : ||5*fcv,(®,£,t/)|, \dxgv (xtt,ri)\ < 8ir2 || m  ||i -(1 +  |??|).

Furthermore, g<p(0,£,ri) =  0.
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P roof. We note
OO

h ^ x , ^ )  < 8n2 J  J  t m (t+ J)
(t +  Q \/(t  +  0 2 — 1

m(t+«

1 -y/iTZI
OO

dsdt

:dt
(t + tW ( t  + 0 2 - i

±

OO

< 167Г2 J m ( t  +-£) dt <  167Г2 || m  ||i,
I
oo %/i2—1

I I  t(s +  rj)dpip(t +  £ ,r(x)(s + t/)) dsdt • er(x)\ д х К ( х , £ , п ) \  =  87Г2

OO

<  8тг2|г7| || m ||i +8tt2 J t(t2 -  1) ^  +  dsdt
l

< 87t2(|?7| +  1) || m  ||i for r(x) > 0.

The other estimates are similar.
We can now treat the regular case of the system (2.24),(2.25), in which Cl does not contain 

points of the г-axis Z.
T h eo rem  4.2. Let Cl C JR3 be a cylindrically symmetric bounded domain with dCl G C2+At 

for some p G (0,1) and assume О П Z  =  0. Let ip G C71 ([1, oo) x Ш) satisfy the assumptions 
of Lemma 4.1. Then the problem

-Д Ф  =  hv (r ,$ , A?),

-Д А ?  = ^ ( г ,Ф ,Л ^ )  -  — ■ inti, (4.1)

Ф =  0, Д  > =  0 on dCl,

has a cylindrically symmetric solution Ф, A$ G C2+,x(Cl). Consequently, every such <p induces 
a stationary solution (f ,E ,B ) of the RVMS on Cl such that f  — <p(£,F),E = —дхФ and 
В  =  curl A with A  =  Az =  0.

P ro o f. It follows from Lemma 4.1 that the right hand side of the system (4.1) satisfies 
the regularity assu m p tio n s  of Theorem 4.1. Our next concern is the construction of the sub- 
and supersolution v and w assumed in Theorem 4.1.

Let R := maxr(x). We know from Lemma 5.2

0 < hv and i  J| hp ||, || g? ||<  8тг2 || m  ||x< oo.

We solve the boundary value problems

- - K ) '  =  0, v[(0) = v1(R )= 0,
r

- - { r w 'J  = || hv II, Ц (0 ) =  wi(R) = 0, 
r
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~ ~ (n ,2)' +  ^  = - \ \ g v \\, «2(0) =  .wa(jR) =  0,

- ^ ( г Ц ) '  +  ^  = || ^  у, w2(0) =  w2(R) =  0

and get

? ;i= 0 , w i(r) =  i  | | | |  (Д2 - r 2), wa(r) =  ^  || hv || r(R -  r), v2 = - w 2

(see Lemmas 5.1 and 5.2). We may define v := (vi,v2),w  := (wi,w2). In fact, we have 
v < 0 < w and for all z E Ш? with zi > 0

—Avi(x) = 0 < hlf>(x,z),

-A v 2(x) =  -  || gv || <  gv(x,z) -  if z2 = v2(x)

-A w i(x )  = || h v  II> hv(x,z),

—A w2(x) = || || -  W2̂  >  gv (x,z) -  , if z2 =  w2(x).

The existence of a solution in Ccyi(fl)2 П C2+/i(ST)2 now follows from Corollary 4.1.

§5. Explicit Solutions of Particular 
Singular Second Order Equations

In this section we collect some results on certain ordinary differential equations of second 
order with singular coefficients at r =  0. The statements made will be needed in the following 
two sections. Our general assumption is f  G C[0, R] for some R > 0. For a,b E Ш, we let 
[o < s < 6] be the characteristic function (in s) of the interval [a, 6].

L em m a 5.1. Consider the equation

u" +  —- =  f(r), 0 < r < R.r
a) The solution щ  E С2[0,1?] with щ (0) =  и'о(0) =  0 is given by

г а  R
u0(r) =  П 1  erf (a) dads = J  [s < r]s In -f(s) ds.

0 0  0

We have Uq(0) =  | / ( 0).
b) The general solution и E C2(0, Д] is

u(r) = ai -f-a2 lo g r+  uoM> ai,a2 ElR.
The following conditions are equivalent:

i) и or u' is bounded at r — 0 or has a finite limit for r —* 0,
ii) lim u'(r) =  0,

r —>0
iii) lim r • u'{r) =  0,

r —»0
iv) a2 =  0.
In this case и E C2[0, Д], «"(0) =  | / ( 0); and u(R) = 0 iff и is 

ия(г) =  - u 0{R) + u0(r)
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(For f(r) = A one has иц(г) — — j(R 2 — v2).) 
L em m a 5.2. Consider the equation

v" +  — -  =  f(r), 0 < r < R.г гг
a) The solution vQ G C2 [0, R] with v0(0) =  Vq(0) =  0 is given by

r s R 2

v0(r) = ^  J  s j  /(cr) dads = i  j [ s  < r](l -  ^ )r /(e )  da .  
o o  о

We have v{f(0) =  | / ( 0 ) .
b) The general solution v G C2(0, R] is

v(r) = bir+  b2^ + vo(r), bi,b2 e 1R.

The following conditions are equivalent:
i) v or v' is bounded a tr  = 0 or has a finite limit for r 0,
ii) lim v(r) = 0,

r —»0
iii) lim r • v(r) =  0,

т—►O
iv) Z>2 =  0.
In this case v G C2[0, J?], ^"(O) =  —1 /( 0); and v(R) =  0 iffv is

т
V R ( r ) = -V0(jR)— +  Vo (r)

R

=  J {[« <  r ] ( i  -  +  [* >  r ] ( i -  £ ) r }  / ( . ) * .

(For f(r)  =  A one has v r ( t ) =  — ̂ г(Д  — r).)
L em m a 5.3. For 0 <  6 < R  consider the equation

w ww'' + ------=  f(r), 0 <  r < R.r 62
a) The solution wq G C2[0, R] with гоо(0) =  w'Q(0) =  0 is given by

Г
W o(r) =  zs(r) J (Is(r) -  Ш )  z6(s) s f(s)ds, 

0
where

, \ v 2'  (r/6)2k T , N f  ds

zt r '“ S i W " ] 2’ г ' / “ S W

Here zg G C 2[0, R] is a solution of the homogeneous equation with

* (o )  =  i, 4 (0) = 0 , 4 '(0) =  ^ v  

« (« )  =  s , 4 (« ) =  y .
OO oo

with S  :=  £  [(2&)!!]-2 , Si := £  2&[(2A:)!!]-2.
fc=0 fc=i

We have Wq(0) =  | / ( 0 ) .

(5.1)

(5.2)



268 CHIN. ANN. OF MATH. Vol.14 Ser.B

b) The general solution w £ C2(0, R] is

w(r) =  c\Zfj{r) +  c2Ig{r)zs(r) +  w0{r), ci,c2 G Ш.

The following conditions are equivalent:
i) w or w' is bounded at r =  0 or has a finite limit for r —> 0,
ii) lim w'lr) =  0,

r -+0
iii) c2 =  0.
In this case w G C2[0, Д], ги"(0) =  ^  +  /(0).
Now we define

( 6  for 0 < r < 8
n ( r )  :=  <

I r tor r > 0.

L em m a 5.4. For 0 < 6  < R  the solution vg G C72[0, J2] of

v"+  V~  ~  3  =  / ( r )’ 0 < r < Rr r |

with vg(R) =  0 is given by

(5.3)

(5.4)

Vs(r) = csz6(r) + wQ(r)

=  zs(r) +  J (Is(r) -  Is(s))zs(s)sf(s) dsj  , 0 < r < 6,

n (r )  =  bs ^  + vR(r), 6 < r < R ,

where wq and vR are defined in Lemma 5.3 and 5,2 respectively, and
R

C5 : = - ! / { [ * <  S]R  s  S zs(s)s + [e > 6](R2 -  s2) ^ |  f(s) ds
о

s
-  J ( I 6(6) - I s ( s ) ) z s(s)sf(s)ds, (5.5)

о
R

h  \  J  ^[s < 6} ( ^ S z s ( s )  -  s) s
0

+ 1 > > « 1 ^ р 1(Л2 - » 2)«2} / М ^ .  (5.6)

with N  := (S + S J R 2 + 62(S -  Si).
P ro o f. Lemma 5.3 implies th a t czg + wo, c G JR, is the general bounded solution of

(5.2), and Lemma 5.2 says that b(£ — jp ) + vR, b G Ш, is the general solution of (5.1) which 
vanishes at r = R. We can determine the constants in such a way that the solutions and 
their first derivatives have the same value at r  =  6 and thus obtain the formulas (5.5), (5.6). 
Because rg is continuous this implies the continuity of the second derivative at r — 6 and 
vg G C 2[0,R] follows.

C o ro lla ry  5.1. There exists a constant C *R > 0 (only depending upon R ) such that for
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all f  G C[0, R] with f  < 0 one has

0 < vjt(r),vs(r) < Сд || /  || 6, 0 <r<6,

0 <  vR(r) <  ve(r) < vR(r) +  CR || /  || 8, 8 < r < R,

for small 6 > 0.
P ro o f. The representation of vR in Lemma 5.2 b) implies vR >  0 on [0, R] and vR < 

CR || /  || 8 on [0,5]. The relations
Г

J ( I f (r) -  /« (.)) zg(s)sds — 0 (82) (8 —> 0) uniformly for r < 8,
о

eg =  0(8- || /  ||), bs = 0(82- || /  ||) (8 —► 0) 
are obvious. The integral kernel which represents —bg is nonnegative because for s < 8

2R28zs(s) -  N s > R 28 (2  -

> °
for all 8 >  0 such tha t S + $1 +  ^ г 1#2 <  2 (note tha t S + S\ < 2 and S — S\ > 0). Hence 
bs >  0 and because eg > 0 the representation of vg in Lemma 5.4 gives the result.

S + St + s - s v

§6. Distribution Functions Depending Upon £, F  and P
This section is devoted to the study of the system (2.28). The following lemma gives 

sufficient conditions on <p such tha t existence can be proven later by Schauder’s fixed point 
theorem.

L em m a 6.1. Let <p G C 1([l,oo) x Щ x [0,oo)) be nonnegative and satisfy the following 
condition: 3m  € L 1(l, 00) V£ >  1 VP G JR  VP >  0 :

<p(£, P, P )£  \ / £ 2 -  1 < m(£), 

Iде<р(£, P, P ) | £ V £ 2 - 1 , 1dptp(£,F, P) |  £ s/ £ '2 - 1  < m(£),
\dFtp(£,F ,P)\£(£2 - l )< m (£ ) .

Then the functions h^g^^k^, given by 

9v  I :=87Г/  /
JR2

t
щ
Vz

<p(t+i,r(vs + v),Vz + C)
Ф 2 - { \  + vl + vl)

dtdv#dvz

are continuous on Ш3 x [0, 00) X Ш2 together with their derivatives with respect to £, rj and 
С/ dxh<p, дхдф and dxkv exist as continuous functions on JR?\Z x [0, 00) x JR2. We have the 
following estimates:

0 <—h<p, \д<р\, \k(p\, gl^f^vlj l f̂ff '̂l» l^fc^l,

\\dsK\i \dC9<p\, \dCK\ < 8тг2 И m ||i,

\\9r,hv \, \dvgv \, |d„Avl < 8тг2 || m \\x r(x),
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and for r(x) > 0:

i |e efcv(®,^i7,0l.' \dx9<p(x,Z,V,()\, I ^ M ^ ^ O I  < 87Г2 || m  ||x (1 + |t?|).
Furthermore, gv (0,£,??,C) =  0.

P roo f. For о >  0 and к =  0 ,1 ,2,3  we have
a k

h ( a ) ~  j  j = = ^ i s  = akh (  1),
0

where I0(l) = f , i i ( l )  =  1, J3(l) =  f , / 3(1) =  §. Hence
OO

0 < huj(x,£,r},C) < 87Г [ f ------- — ■ T=-:—p Л  dtdv$dvz_  ^ ^ , / , 4 -  f J  { t + i W i t  +  0 2 _ 1 ^/ t 2 _ { 1 + v l  +  v 2)

R y /i+ S fR

— 167Г2

= 167Г'

ra(t +  0

(t + O V t t  + O 2 - 1 Ф 2 -  (1 + P2)
dtp dp

OO OO

/ /
0 y / ^
OO Vt2 — 1

: 7 .. [  £ — ip m
•y/t2 - 1  -  p2

OO

/  (( +  f)V(< +  0 2 - i

< 167Г2 || m ||i .
Similarly, with the substitution <r :=  v$, p := +  u2,

m (t+ 0
OO OO OO

Mx>̂ v,C)\<̂  J j  J
о о л . 2~;

v#

у/ l+v%+v*
OO p  OO

(t +  0V (<  +  0 2 -  1 0 2 - ( 1  +  ^  +  г»2)
dtdvtfdvz

• 4 i  /

32тг

о о
OO OO

Л

\ / й 7

m (t +  £) P

(t +  £)\/(< +  £)2 “  1 \A 2 -  (1 +  P2) y/p2 - a 2
dt da dp

m(t +  £)

(t +  O V it + O2 ~ 1 -\A2 -  (1 +  P2)

.= 32тг

OO

/
OO

=  8^ /

m (t +  £)
Vt23!

т т /J (i +  О л /^  +  О 2 - !  /  V t2 -  ( ! + P 2)

pdtdp

dpdt

m( t  + 0
(t +  O v 'i t  +  O 2 - !

(t2 — 1) dt

<  8tt2 || m  ||i .

The remaining estimates follow in a similar way.
We remark that a radial function defined on an interval [0, a] is C2 on a neighborhood of
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0 in Mn if it belongs to C2 [0, a] and its radial derivative vanishes at r =  0.
T h eo rem  6.1. Let Cl с  M3 be a cylindrical domain of the form Cl = {x € Ш3 : r(x) < R} 

for some R  > 0. Let<p € C'1([l, oo)xJRx [0, oo)) satisfy the assumptions of Lemma 6.1 .Then 
the system

ф '
-Ф " -  — = h<p(r, Ф, A#, Az)
AI A .

- А £ - ^  +  ^ = 5Д г,Ф ,Д ,,4 Л

A'—A " ----- - =  /г<Дг, Ф, A#, Az), 0 < r < Rr ,
in connection with Ф'(0) =  АДО) =  A'z (0) =  0 and

( 6. 1)

а) Ф(0) =  A^O) =  Az(0) =  0 or b) Ф(R) =  АДД) =  AZ(R) = 0

has a solution (Ф, A$,AZ) € C2[0, R]3. Consequently, every such <p induces a stationary 
solution ( / , E, В ) such that f  =  <p(£, F, P ); E, В only depend upon r, and f  € C(Cl x Ш3) П 
C J((?1\Z) x Ш3), E ,B  e &(&).

P roo f. Let K\ and K2 be the kernels in the integral representation of и and v in any 
case a) or b) according to Lemmas 5.1 and 5.2 respectively. Then the system (6.1) has a 
solution (Ф,A # ,A Z) in C 2[0, R]3 if and only if (Ф,A #,A Z) € C[0, Д]3 and for 0 < r  < R

R

<&(r) = -  J  K x{r,s)htp{s,^(s),A^{s),Az{s))ds,
0
R

A#(r) =  -  J  K 2(r, 8)gv (a, Ф(«), A*(a), Az(s)) ds, 
о
R

Az{r) =  -  J  K 1(r,s)k<p(s^ (s) ,A ^ (s) ,A z{s))ds.

Lemma 6.1 yields the a priori estimates;
R

|Ф(г)| <  16f7r2 || wi J  K 1(r,s)ds,
о
R

|A*(r)| <  8tt2 || m  ||i J  K2(r,s)ds, 
о
R

|Az(r)| < 87Г2 || m  ||i j  K 1(r,s)ds.

Because of the continuity of the kernels K \,K 2 on [0, R}2 and the Lipschitz-continuity of 
hv ,g<p, kv , we may apply Schauder’s fixed point theorem and get a solution of (6.1). The 
regularity of E, В  follows from (2.22),(2.26),

b'M = (4, (r) + = 4SM + ^  -  —P-
=  9<p{r, Ф(r), АДг), Az(r)),
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and <7<ДО,£,?7, C) =  0.

§7. Distribution Functions Depending 
Upon В and F  (Singular Case)

We shall now investigate the system (2.24) in the case that the г-axis Z  intersects fl. 
For the sake of simplicity we assume that fl is the ball Ш — {x € Ш3 : |ж| < i?}. We 
shall first consider regularized problems by replacing the singular term ^  by where

rs(x) := rg (i/x f-Гж§), x G m? (see (5.3)), and then we let 6 —► 0. For the regularization, 
the restriction to fl =  Ш is not necessary.

Lem m a 7.1. Let fl С  Ш,3 be a cylindrically symmetric bounded domain with dfl G C2+/i 
for some /л G (0,1). Let ip G C 1([l, oo) x Ш) satisfy the assumptions of Lemma 4.1. Then 
for each sufficiently small 6 > 0 the problem

-Д Ф  =  /^(г,Ф, A?),
A #

-A A #  = gv (rf$ ,A e ) -----2” in fl,
rs

Ф =  0, A# =  0 on di1

has a cylindrical symmetric solution Фя, A^g G C2+/J,(fl) (with a similar statement for 
(f,E,JB) as in Theorem 4.2). We have the uniform estimates

0 < Фг(аз) <  u>i(r(jc)),

-Wg(r(®)) < А*,в(х) < +W*(r(aO), x G Q\Z, (7.1)

where w ^r) :=  |  || hv || (R2 - r 2), Ws(r) := ug(r) +  C£ || gv || 6, and vs is given by Lemma 
5.4 for f(r)  := — j| gv || (Сд is the constant of Corollary 5.1).

P roof. We want to apply Theorem 4.1 and Corollary 4.1 and we need to construct sub- 
and supersolutions in C'1(fl)2 П C2(fl)2. We can use v\ =  0 and w\ as in the proof of 
Theorem 4.2 because 1̂ ( 0) =  0 (see the remark preceeding Theorem 6.1). From Corollary 
5.1 we have Ws > 0 and W^(0) =  v's(0) =  cg ^ (0) +  ioq(0) =  0 by Lemma 5.3. For z\ > 0 
and z2 := Ws(x),

-A W s(x) =  -A v 6(x) = || gv ||

*2> gv (x ,z ) — 2 > * € fl.

Hence (0, —Wg) and (w\, Wg) are sub- and supersolutions.

By the uniqueness of the solution for Poisson’s equation with right hand sides

h(p,s(x) :— h(p(r1 Фg(ж), A?,fi(®))

9<р,б(х) :=  9<р(г,Фв(х)уА»,в(х))
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and with homogeneous boundary conditions we have for the ball Ш 

$«(®) =  J G(x,y) hVts(y)dy,

в
where G is Green’s function

with

> (7.2)

■ i w ) *  x e m ’
(7.3)

y\ Q(x ’y))

1/R  for x — 0, у E m ,

Q(a:,y)  ̂ W \W ~ y \ { o ix ^ ° > y e lB [J (dlB\{xV ’

where x* := ^ x  for x ф 0. The following result is classical. If /  E С(Ш) then

U(x) := J  G (x,y)f(y)dy, x e Ю 
в

is an element of C1 (JB) and

\U(x)\,\DU(x)\<CR \ \ f \ l  x e W ; (7.4)

by D ,D 2, • • • we denote partial derivatives of the respective order. If /  6 Са(Ш) for some 
0 <  a  <  1, then U E С2+а(Ш), and

dXidx .U(x) = j ( f ( y )  -  f(x))dXidXjG(x,y) dy -  ^ , / ( ж )  (7.5)
в

\dXidXjU ( x ) \ < C R( U \ \ + H a(f)),  х е ш  
Ha{dXidx.u) < c aHa (f),

where Ha( f ) is the Holder constant of / .  This is the content of Muntz’ Theorem, a direct 
proof of which has been given by S. Simoda f20̂ . In the present situation we can control 
the Holder continuity of the derivatives of /  and U only away from Z, and we shall have to 
refine Simoda’s arguments. For x ,у E H3\{0} and for x ,у G сЮ with x ф у  we have

l®L* „(i _ b / l u  „*i 
~r \ ~ y ' ~r ' y ''

Hence for ж G JB

Q{x,y) = W \W ^F \'
Because \x — y*\ > \x — у\щ , we have for A > 0

R  1 .  i  л , ,
TTi------- r m r  — i------- nzr> У ^^В ,0 ф у ф х ,\y\ |ж - 2/*|1+а \x — j/|1+A

and this implies

\D xG { x iy) \  — |a ;_ ^ |i+ fc !  k  =  0 , 1 ,2 ,3 . (7.6)
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In the following we let Zv := {x e ЛЗ : r{x) <  77}, and for /  G Са(Ш ^ р),

Ha,v (f )  :== sup ( If(y)  -  f(y')\ • \y -  y'\~a • y ,y ' G
Ha,p)V(f)  := sup{|/(y) -  /(y ') | • IУ -  y'\~a : У,у' e Ю\ZV, \y -  y'\ < /???}>

0 <  у < R, 0 <  a,/? <  1. For x G Ш let K a(x) := {y G JR3: |y -  ж| < a}.
L em m a 7.2. / /  /  G С(Ш) П C a ( B \Z n/5), then U G C'2+a( ® \ ^ ) ; and

| ^ 2t/(®)| < С'а ,д (Яа ,ч/2( / ) +  || /  || (| log??) + 1)), x G B \Z V, ' (7.7)

Ha,1/t„(D2U) < Сс,1л(Я„,,/5(/)+ || /  || ч"1-”). (7.8)
P ro o f. We still have the formula (7.5) for x  G B \Z V. We estimate over BC\Kn/ 2(x) and

JB\Kv/2(x) separatly (y G Krj/2(x) implies r(y) > 77/ 2) and we get (7.7). For p , ? G  B \Z V
such tha t 0 <  |p — q\ < 77/4 and K ' := K\p-q\{ŝ L) С Ш (first case) one estimates

J (f ( y ) ~  /(ю ))Я36?(а:, У) d y
В

x=p

x=q

j  (f ( y ) -  f(x))D 2G(x, y) dy 
в п ю

x=p

a?=g

+

x —p

J  (f(y) ~ f(p))D2G(x,y)dy  +  ( / ( ? ) - / ( ? ) )  j  D2G(q,y)dy

x=q B \ K 'B \ K '

to establish the inequality

Я*,1/4,„(В2Е0 <  С „ д (Я ад /4 (Л +  II /I I  (7.9)

This is done similarly as in [20]: one uses Ha;5r)/ 8(f)  in the first term, and with (7.6) one 
sees tha t the second term is bounded by

ч  i
О у е в

|y-(p+sB)|>i£^l

*  / 1 /О у е в
lv-(P+sB)|>l£=al

where E  :=  The inner integral of the first of these two terms is estimated over the

domains {y G Ш : \y — (p +  sF7)| >  r(y) < 77/ 4} (where \y — (p +  sE )| > r}/2)
and its complement, bounding the dominator by 2 || /  || or by Ha^/^{f)\y  — (p +  sE)\a 
respectively. In the second term is used. In the general case p,q G 1B\ZV such
that 0 <  \p — q\ < 77/5 one defines

p ^  := Ap, q(°) :=  Aq with A := ——r̂ — —
bl

and one sees that p(°\q(°) belongs to the first case with 77 replaced by 4tj/5, and one can
apply the argument with the chain of balls to prove the full assertion as in [20].

We still need a further result.
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Lem m a 7.3. a) I f f  € C{B), then

V(x):=  J  G{x,y)fM dy, x e B  
в

is an element of C (B ) П Cl (B \Z )  and

|V (s)| <CR \ \ f \ \ , X e B , \DV{x)\ < CR II /  || -I log 7/1, ж G B \Z .  (7.10)

b) / / /  G 0 (B )  П Ca(B \Z v/b), then V  G C2+a(B \Z v), and

\D2V(x)\ <  II f  II i f 1-*),

« . . i r f ’ l  <  Ся,<.(Я«л /5( / ) ч - 1+  II f  II r 2~“). (7.11)

P roof. For 6 > 0 we define

Vs(x) :=  J  G (x,y)-j~^dy, x  G B . 
в

By the remark preceding Lemma 7.2 we have Vs&C2+a(B),

DVs(x) =  J  D G (x ,y )M ^ d y ,  
в

dx.dXjVs(xl= J  dXidXjG(x,y)dy
в

■ Х * Ж  (7.12)

It is easy to see that
f  1 1 f  1 1  __
/ l ------- ,-T^-dy <  /  T-T-T-r dy < oo, x e B ,J \ x - y \ r {y )  J |y| r(y)

в  в

/ 5  /  | ( ч . 0 , 0 ) - y \2 7 W ) d y  -  С я |1° Ы  х е Щ г ”в  в

/  \х -  у\3~а r(y) dy <  /  1(7/, 0,0) -  у\3~а r(y) К Cn,aV 
в  в

Using (7.6), we get Vs —► V  in C(B)  and in C2(B \Z V), and (7.12) is true on B \Z  if we 
omit the index 6. For (7.11), we proceed as in Lemma 7.2, replacing /  by f/r.  Because

f (y)  /(®) _  f (y)  - / (? ) + f ( x )T(x) ~  r (y)
r(y) r(x) r(y) r(x)r(y) ’

we have

H a ,v C -)  < я „ л ( / ) ч - ‘ 4- c R  II /  \ \ v 1—a

Similarly as in (7.9) for p, q G B \Z V such that 0 < |p — q\ < rj/A
la»—el ...........  .. ,, 4

f \ \ \  dyГ Г Г ЛГ/И | 11/11 ^
3 J  J  \ r (y) r(p +  sE ) J

0 |»-(p+aS)|>T,/2
r(y)<V/4 «ев

r(p +  sE ) J  \p +  s E - y \4
ds
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|p -g |

< CR \p -q \a || /  || v—2—a +
f  /  /

dy

О | » - ( р + в Я ) |> Т | / 2  

уев

\p + s E - y \4
ds,

and the second term is of the order of the first term.
In the sequel we let Cf* 1 (TB\Z) :=  f |  C2+a(JB\Zv) for a  =  1.

v>o
T h eo rem  7.1. Let JB := {x e JR3 : |ж| < R}, Z  := {(0,0, жз) : ®з € JR}. Let 

<p € C71 ([1, oo) x JR) satisfy the assumptions of Theorem 4.2. Then the problem

—Д Ф  =  h v ( r ^ , A # ) ,

A $

(7.13)

- ДЛ? =  gv (r, Ф, A#) -  —£■ in JB\Z ,

Ф =  0, A# = 0 ondJB 

has a cylindrically symmetric solution

Ф e C‘ (B ) п  c j * 1'  (® \2 ) ,  A> e  0 (B ) n  C?+r  (® \Z ).

We have

0 <  Ф(г,г) <  ^  || hv || (R2 - r 2),

\A#(r,z)\ < ^ | | ^  \ \ r ( R- r ) .

For the corresponding stationary solution such that f  =  (p(£,F) we have f  € C(JB) П 

C \JB \Z ), E  e С(Ш)3 П C,1* 1" (B \Z )3, В  € Cf +^ i BXZ )3 and \B(r,z)\ < C ^ l o g r l -  
P ro o f. It follows from (7.2) and (7.4) tha t

|L><M*)| <  Cr  II ll< Cr  II К  II . (7.14)

We write (7.3) as

A*AX) T f e f a v )  (vvAv) -  щ  ) )  dy
в

and note that r(y) is a continuous function on JB which can be estimated by Lemma
7.1 and Corollary 5.1:

|Am(s)I <• W«(r) = vs{r) + C*R II gv II 6 
<VR(r) + 2C*R \\gv \\ 6

H I * *  II ^ r ( R - r )  + 2C*R8)t (7.15)

such that

А#,б(у)
r s ( v )

<11 s *  II ( | з ( Я  ■- <•) +  2C J ^ )  <  O n  II g v  || 

Hence we obtain from Lemma 7.3

\DA#,S(X)\ ^  °R  II 9V II |logi?|, x € TB\ZV. 
Theorem 4.2, the estimates (7.14), (7.15), (7.16) imply with the chainrule

\JJh<p,s(x )\i \J-}g<p,s{x )\ 5: x € JB\ZV.

(7.16)
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Lemmas 7.2 and 7.3 then imply that {Ф$} is bounded in Сг(Ю) and in C2+1 (B \Z V) and 
that {Д?,й} is bounded in C2+1 (B \Z V) for each 77 >  0. By compactness, there exists a 
sequence Sn |  0 and functions Ф e  С(Ш) П C2£} (B \Z ), A# € Cf*1 (1B\Z) such, that 
Ф5п -> Ф in C (B )  and C2+1~ (B \Z V) and A#tSn A# in C2+1~ (B \Z V) for all 7? >  0. If 
we define A#(x) = 0 for x  € BC\Z, then also A#tgn —*■ A# in C (B ) and (7.13) is valid. This 
follows from (7.15). The limits satisfy

Ф(®) =  J  G(x,y)h4>(y^(y) ,A^(y))dy,  
в

A 4 x ) = j G ( x , y ) ^ g ip{ y , ^ ( y ) , A ^ ( y ) ) - ^ ^ j d y ,  x e B  (7.17)
в

and hence Ф, A# are solutions of the problem. The asserted regularity of /  and E  is obvious. 
Using (2.22), we get in B \Z

Br — —dzA$, В$ — 0, Bz =  —Ад +  дгА&.r
The logarithmic estimate of В  follows from (7.13) and (7.16).

In Theorem 7.1 it might not be excluded that В  exists as a continuous function up to 
the axis Z. To prove the existence of a Green’s function for the operator — Д +  ^  and the 
generalization to  arbitrary cylindrically symmetric domains 12 seems to be a topic of further 
research.
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