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GLOBAL SOLUTIONS TO THE EVOLUTION EQUATION
OF SCHRODINGER TYPE WITH NONLOCAL TERM**
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Abstract

The existence of weak and smooth solutions for the nonlocal nonlinear Schrédinger equation
is solved by parabolic regularization. In addition, the continuous dependence on the mltla,l data
of smooth solution is also discussed.
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s1. Introduction and Results

In the present paper we shall study the initial-value problem for a nonlinear Schrédinger

equation of the following type!!

. :

qt+z'qm+a<qf |¢I| (a:) :L") =0 forzeR, t>0, . (1)
o T—% i

q(,0) = go(z) for x € R, (1.2)

where i = +/—1, o > 0 is a real constant, /ffzo denotes the principalévalue integral.

parabolic regularization

0t + 1Gee — (qH(|q|2))gc ~€¢ys =0 forzeR, t20, (1.3)
q(z,0) = goc(z) for z € R, (1.4)
‘ where £ > 0 is a constant,
1 _ L[ f@)
B =-1f I

is Hilbert transform, go. € H*°(R) = kr>‘|0H *(R) is such that

llgoell () < llgollam(r)s
andq0€—>qo 1nHm(R) ase | 0 for m > 0.

Without loss of generality, we assume or = 1. Under some conditions on the given initial
data, the global existence of solutions to the problem (1. 1) (1.2) is derived by the following

For ¢ > 0 fixed, by a similar strategy as in [2-4], we can easily show that (1.3),(1.4)

| possesses a unique solution g = ¢°(z, t) in the class C*°(0, T*; H*(R)), where T* > 0is a
constant depending on gq.
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Theorem 1.1. Suppose that g0 € H'(R), and ||go||2 < \/_ Then there exists a weak
solution g(z,t) of the problem (1.1),(1.2) such that '

(i) a(=,t) € L°°(R+,H1(R)) NCE(R x Ry),

() Jr, xr (Q‘Pt + isps — <pqu(|q|2)) dedt + [ g 909(z,0)dz =0,
for any function p(z,t) € C3(R x Ry).

Theorem 1.2. Suppose that g0 € H k(R) (k > 2), and ||gol}z < ﬁ Then there exists
a unique solution q(z, t) of the problem (1.1),(1.2) such that q € C"(Ry; H*=%"(R)) for all
r,k € N with k — 2r > 0, and q is continuously depending on the initial data qo. '

§2. ._Proofs’ of Theorem 1.1 and Theorem 1.2

In order to prove the conclusion of the Theorems, the most important procedure is to
establish certain a priori estimates for the solution of problem (1. 3), (1 4) For this purpose,
we ﬁrst give the following lemmas.

Lemma 2.1. For any function f(z),g(x) € L*(R), we have

/R fH(g)dz =- /R ,gHb(f)da:, /R H(f)H(g)dw: /ngdm, L

'Lemma_ 2.2, Let f(z) € H%(R) be a real function. Then we have the following inequali-
ties ‘

/ f-H(f)dz > 0,
R

< ( [ sz(f)dw) v ( [ eei(sz)ac) "

112 < 11272 ( /R me(fx)dw) "

where || - ||, denotes the usual LP(R)-norm for p > 1.
 Proof. Setting f = [ f(z)e~#dz, we obtain H( fz)=—-I¢ |f. Then by using Parseval

identity, we deduce that
1 [z~ 1 72
= —— = — > 0.
[ pemne =~ [FRc = o [ KiFPac 20
Furthermore, by Hoder’s inequality we obtain
1 T - 1 -
11 =57 [ Fofedc = 5 / (Cl21 g

( [ lcuf|2d¢) ( [ I<|3If|2d<)1/2
=( /R sz(f)dw)l/z ( /R me(fx)dw)l/z-

To verify the last inequality of the lemma, we need merely to notice that
R TAN T T

This completes the proof of the lemma.
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Lemma 2.3. Let € > 0,
q=q%(z,t) € C*(R4; H*(R))
be the solution of (1.3),(1.4). Then we have the following identities
(i) & JnlaPdo+ [5(la)-H(|al?)dz + 2¢ [ lgs*dz = 0,
() |
d 2 2
7 [\l + Im(qqz)H(lql ) ) dz + 2 |Q:c:c| dz
+g /R (P )esBP)e + | (0 H (@ )ds
3 | |
=St ([ dacE (P )ade + 2 | qucBaPB(al)c s
, , = o — .
+ [ g (B8P ) + i ([ B l)do

_ / qm(l?H(’q|2))$d:v+2 / (iqu(Re(qu))'dw).
R R

Proof. The above two identities can be checked out simply by performmg several mte-
grations by parts. We shall give the detailed demonstration in Appendix.

Lemma 2.4. Under the conditions of Theroem 1.1, we denote by g = ¢°(z,t) the solution
of (1.3), (1.4) with € > 0. Then we have the following a priori estimates

1
L Py T T

/ t / (1a?)ssH (g )addt + / / i (gg. ) H(Im(3gs))dz < C
Jo Jr : ~Jo Jr ] :

for all t > 0, where C is a positive constant depending only on the norm ||go||g:.

Proof. On account of the identity (i) of Lemma 2.3, one can easily adduce

t 1 .
G, BI2 + fo /R (lal?)=EL(lq[?)dods + 2 /0 leGORd <ol (21

for all £ > 0.

'Denoting the terms in the right hand side of (ii) of Lemma 2.3 by Ry(t), and by using
the following Sobolev interpolation inequalities

1lloo < CUFSZIAIN2, 1flloo < x/_llfxlll/zllflll/z

I£llz < ClFIR2IAIE2, IIflle < V2 IlwaI1/4IIfI|3/4 ufnoo < Cllfmmlll/4liflls/4
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and Hoder’s inequality, we compute as follows:

|Ro(®)| <C(llalloollgell21EL(lal* Mool (la1?)a Iz + llall2 llazlzll(I1)s l2)

+e(2lgelloo lgwsl2lgll2 + 4llali3 g ll2llgasllz)

<Cliallallgallzll(la1®)aliZ + eCllally *llgzally *lglla

. 1/2 '
Cligolzllgell ( / (|q|2>mH(|q|2)dw) ( /. (IqP)mH(quz)wdw)
+eCllao 13 lgolallgealls’®
<3 [ (aP)eatt o+ [ (GaoCal)ic) ool

+€llgzall3 + Cellgall3, ' o | (2.2)

where we have used Lemma 2.2 and Young’s inequality.
Integrating (ii) of Lemma 2.3 over the temporal interval [0,t], with the inequality (2.2),
and noticing that

3 a3 |
3t | @ B(a)ds < Slalolaalallalle < ool 13

1/2

from (ii) of Lemma 2.3 we obtain
(- Slao Dl D+ [ NataCor e+ 3 [ [ aP)uria) ot
43 [ (e E (e deds
< (laoall + 5 [ 1oto-Bi i)

t o
# [ [Laramtaryae + CelaclR ) ot ol @29
In virtue of the facts: 1 — 3||goll2 > 0, go(z) € H*(R) and

t [ [ GaPebia)edode+ 3 [ [ 1m(ag)). B (m(age et > 0
(2.3) leads to the inequality
las (D)3 < C'+/0 .(C /@R(IQI2)QH(|4|2)dw + Callqai(',t)ll%) llag (-, )3

" By Gronwall’s lemma, the above iﬁéquality

I )2 < Cexp ( / (c [ a)2E(aPyie + enq;(-,t)u%) dt)
< Cexp(laol2), -

where we have used the inequality (2.1).
Corollary 2.1. Under the conditions of Lemma 2.3,we have

gz, )la-2 < C forall 20,

where the constant C is independent of €.
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Proof of Theorem 1.1. With the results of Lemma 2.4 and Corollary 2.1, we can now
easﬂy pass to the limit by extracting a subsequence, still denoted by ¢°, such that

¢ —q in L®(Ry; H(R)) weak*, as e — 0, (2.4)

g —¢q in L°°(R+;H;1(R)) weak™*, as € — 0. (2.5)

By using classical compactness arguments and a standard calculation!®, one can deduce
from (2.4),(2.5) that the limiting function ¢ = q(z,t) is a weak solution of (1.1),(1.2), and
q(z,t) € C&3)(R x Ry).

The proof of Theorem 1.1 is now complete.

Proof of Theorem 1.2. Again we consider the parabolic regularization (1.3),(1.4). The
proof is born out by establishing a priori estimates for high Sobolev norms. To this end, we
give the following lemmas to bound ||gZ_(-,t)||2 and ||g(-, t)||z+ for k > 2. '

Lemma 2.5. Under the conditions of Lemma 2.3,we have

| (el 4 P00 G ) STtV )) 4 2 [ gt

+ 15 /R (121> ez=H(lg|?) sz + T /R Im(§gs ) H(Im(dgs))-dz
=1 [ GagecH(m(g0e)e)d — i | 2 (B2 @Bl )ed
+ gt | 2 (@B Bg)e))ede + G1m | 2o BB
- g [ (@HOa)o (g ente. |
+ 21 [ Geog HOIPH()a + (o) (0
e (ﬁ;m | Gesteai(a )i+ S [ G
+ o [ forsBL(Re(fter) o + 5 *Im / CNCR: (FR)E

| - —Irn / 3229 H (qqmm)d ) | | I (2.6)

Proof. The a,bove 1dent1ty can be verified by several suitable integrations by parts, which
are similar to the proof of Lemma 2.3. For the sake of shortness, we omit the proof.

Lemma 2.6. Let T > 0. Under. the conditions of Lemma 2.4, we have the a priori
estimates

rae t)n2+e / leeo, (B <6,

[ / (aP)eccHilgendodt+ [ [ 1m(aes)ecHilm(gac))dz < O

for all t € [0,T], where the constant C depends only on the norm lgo|zr2 and T.
Proof. By several standard Sobolev interpolation inequalities and the H(R)-estimate
of Lemma 2.4, the terms (denoted here by R;(t)) in the right hand side of (2.6) can be
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bounded as follows:

IR1(#)] < 5lldallooligasllzTm(@ge)sllz + (1 + ligesll?) + ellgazsl, (2.7)

where we have used H6der’s and Young’s inequality.

Using the results of Lemma 2.4 and the interpolation inequalities in Lemma 2.2, we obtain

T (dge)o 13 < ( /R Im(qqm)a_cH(Im(q'qrm))alw)1/2 ( /R Im(ﬁqz)mH(_Im_(tjqz)w)dw)1/2 |

Inserting the above inequality into (2.7), we conclude that

' : C\ 1/4 o
IB1(0)] <lgsally? ( [ @) M) ([ Im(qqz)_mH(I_m(qqz)m)dw)
+C(1+ llgocll?) + ellgzeall3 | »

<0+ (1+ | Tn(a0e)o B (e ) ) gl + el

1/4

+ [ Tm(200) o (I3 ) .
Therefore, we combine the above inequality with (2.6) and reach the inequality
e ¢/ 12 15 ) P 0N 2 5 ) ‘o . 2
lgza (-, )iz + 5 m R(qmq)ﬂ(lql Jdo — glm | (ZeagcH(lg[")da
¢ .
b [zl + 55 [ [ (e |q| Jesd
_/ / Im(qu)wzH(Im(qu)m)dm
SC+C/ (1+/ Im(chw)mH(Im(qu)) dm||qz_.,,.||§dt |
0 R _

(2.8)

By using integration by parts and the application of Holder’s inequality, we see that

‘ Im/(szmq)H(|Q|z) z = _Im/ (qwa:Q:c H(IQ|2)dw

SC”qa:w"2 < 5”%0:”2 +C.

Whence, with the above inequality, by Lemma 2.4 and Gronwall’s lemma, from (28) we
immediately achieve the results of the lemma.

Lemma 2.7. Under the conditions of Theorem 1.2,we have the following estimates,

(k>2) .
laze o+ & [ lagaonCor B + [ [ (af)os Bt < €
S 0 - 0 R PR

for all t € [0,T], where the constant C depends only on the norm ||go|| = and T.
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Proof. From the equation (1.3), we deduce that

d ' :
Gl + 2l + [ (af)orssBE()ords
=~ [ oot B (al)ad+ e [ s (@HaP et gurs )

- qH(lql 2)ams1) dz + /R ((lg1*)o+ — 2Re(g,0q)) H(lql2)mkdw

<IH(lg1*)slloollgox 13 + 2llgo Izl (GH(al*)gr+1 — garaH(lgl) — gH(g|) g1 2
A+ 1(lg*)or 2l ((a1*)ar — 2Re(Zerg))l2 |

<IEL(1g1*)alloollgo I3 + 21z ll2(llallooll(a*)ex ll2 + IEL(Ial)elloollgz* l2)
+2(|(1g1*) 2+ ll2ll gl o |z 112)

<Cllgg» 13-

Thus, by Gronwall’s lemma, the above inequality implies the results of the lemma.
On account of the above a priori estimates obtained in Lemma 2.6 and Lemma 2.7, we

state that we have proved the existence of global solution g(z,t) € C"(R4+; H*~2"(R)) for

rk € N, k— 2r > 0. In order to finish the proof of Theorem 1.2, it remains to prove the
continuous dependence of solution with respect to the initial data. v
Let t > 0, g10, 920 € H*(R), (k > 2) be given. Let g1, g2 denote the solution of (1.1),(1.2)
corresponding to the initial data q10, 920 respectlvely We set W q1— qz, so that W satisfies
the initial value problem :

Wi + iWoo = (q1H(Iq1I2))¢ = (22H(g2*))a, (2.9)
W(z,0) = Wo = g10 — g20. | (2.10)
Of course, g1, g2 both obey the inequalities which are obtained in'Lemma 2.4, Lemma

2.6 and Lemma 2.7. Take the product of (2.9) with W and integrate over the interval [0, ¢],
we deduce that :

53 | IWiPde = —Re / W. (aH(al?) - qu<|qz|?)) do
_ 2 2 ‘ ]
—Re/ W, (WH(lqll + |ga] ) + QI+‘12H_(|q1'2_|q2|2)) dx

2 2
IWI2H (Iq1|2 + qulz) Re /R w. 4 erqz H(Re(W (g1 + 02)))de
/ wH (““'2 1) - 5 [ R lar-+ ) BReVias + )

+3Re / W(as +02)HRe(W (a1 +g2)))ds
<Cllasllam lallae) | (WPds =5 [ ReW(as + ) HRe(W (a1 + 2))o

JR
By Gronwall’s lemma, this inequality implies that
IW (-, £)ll3 < [Woll3e% for t € [0, ],
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Namely, we have

llgr (- t) — g2(-,t)ll2 < Cligio(*) — g20(-)ll2 for t € [0,T], (2.11)
where the constant C' depends only on the norm ||g10, 920/ 52 and T.
Obviously, the uniqueness of solution ¢(z,t) in the space C"(R4; H*~2"(R)) for k >
2, k—2r > 2 is a direct consequence of the inequality (2.11), and this concludes the proof
of Theorem 1.2. ' '

Appendix

Proof of Lemma 2.3. The first identity (i) can be easily deduced by taking the product
of equation (1.3) with g and integrating over the interval [0,7]. We now prove the second
identity (ii).

Since

= -2 / s+ / B / (o)),

and

d ' . - : -

[ gaH(a)de =1 | G B (o + @), + ) do

+Tm [ ZEL(af) (iges + @E(a)s +2s), do

+Im /R 20 H (210(300) + 2la/*H(lg)e + (lg2)oH(lg) + 2¢Re(dgso)) de
1

=5 [ P E(a)odo + 1 [ 20, BE(la)B(aP)ode + el | gutc (o)

3 " ’ 1 -

=2 [ lauPE(aP)ada + 5 [ (aP)ecB(a)ods ~ el [ grol@BL(a)eds

- 2Jr 2Jr | R

-2 [ Im(qae). Hllm(gae))do + 21 [ 0o BL(P)c)de

+ Im / 7. H((lg*)H(|g*))dz + 26 / Im(3g. ) H(Re(34:2))dz,
R R

combining the above two identities we can easily see the identity (ii) of Lemma 2.3.
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